Course Information

Course Information
Course Title Code Semester L+U Hour Credits ECTS
Differential Equations BM221 3. Semester 4 + 0 4.0 4.0
Prerequisites None
Language of Instruction Turkish
Course Level Undergraduate
Course Type
Mode of delivery Face to face education
Course Coordinator Assist. Prof. Dr. Barış KANTOĞLU
Instructor(s)
Assistants
Goals Matematiksel düşünceyi geliştirmek. Matematik, Fizik ve mühendislikte karşılaşılan diferansiyel denklem problemlerini çözebilmek.
Course Content Diferansiyel denklemlerin temel kavramları ve çeşitli mühendislik alanlarında uygulamaları. Birinci mertebeden diferansiyel denklemlerin sınıflandırılması, Birinci mertebeden değişkenlerine ayrılabilir diferansiyel denklemler. Homojen diferansiyel denklemler. Homojen türe dönüştürülebilen diferansiyel denklemler. Tam diferansiyel denklemler. Tam diferansiyel türe dönüştürülebilen diferansiyel denklemler. Birinci mertebeden lineer diferansiyel denklemlerin mühendislik uygulamaları ve çözümler teorisi. Bernoulli diferansiyel denklemi. Riccati diferansiyel denklemi. Yüksek dereceden diferansiyel denklemler. Clairaut diferansiyel denklemi. Lagrange diferansiyel denklemi. İkinci mertebeden diferansiyel denklemler. İkinci mertebeden lineer diferansiyel denklemler.
Learning Outcomes - Diferansiyel denklemi tanımlar
- Değişkenlerine ayrılabilen, homojen, lineer, tam diferansiyel denklem çeşitlerini çözer
- Bernoulli ve Riccati diferansiyel denklemlerini çözer
- İkinci ve daha yüksek mertebeden sabit katsayılı lineer diferansiyel denklemleri çözer
- Yüksek dereceden diferansiyel denklemleri çözer.
- Parametrelerin değişimi yöntemini bilir.
- Değişken katsayılı diferansiyel denklemleri tanımlar
- Bazı değişken katsayılı diferansiyel denklemleri çözer
Weekly Topics (Content)
Week Topics Learning Methods
1. Week Basic concepts and classification of differential equations Verbal Expression Course Hours Practice Visual Presentation
2. Week Introduction to first order differential equations, differential equations that can be divided into variables Visual Presentation Verbal Expression Practice Course Hours
3. Week Linear Differential Equations Practice Visual Presentation Verbal Expression Course Hours
4. Week Homogeneous Differential Equations Practice Course Hours Verbal Expression Visual Presentation
5. Week Exact Differential Equations Course Hours Visual Presentation Verbal Expression Practice
6. Week Fully Differential Equation Convertible Differential Equations Verbal Expression Visual Presentation Practice Course Hours
7. Week Bernoulli and Riccati Differential Equations Course Hours Practice Verbal Expression Visual Presentation
8. Week Bernoulli and Riccati Differential Equations
9. Week Engineering applications and solutions theory of first order differential equations. Course Hours Verbal Expression Practice Visual Presentation
10. Week High order differential equations, Lagrange and Clairaut differential equations Visual Presentation Course Hours Practice Verbal Expression
11. Week Introduction to higher order differential equations, differential equations with constant coefficients Verbal Expression Course Hours Practice Visual Presentation
12. Week Differential equations with variable coefficients Course Hours Verbal Expression Practice Visual Presentation
13. Week Differential equations with variable coefficients Visual Presentation Practice Verbal Expression Course Hours
14. Week Method of variation of parameters Practice Visual Presentation Course Hours Verbal Expression
Recommended Sources
Yunus A. Çengel ve William J. Palm, Mühendislik ve Temel Bilimler İçin Diferansiyel Denklemler, İzmir Güven Kitabevi 2013.
Relations with Education Attainment Program Course Competencies
Program Requirements Contribution Level DK1 DK2 DK3 DK4 DK5 DK6 DK7 DK8 Measurement Method
PY1 5 0 0 0 0 0 0 0 0 -
PY2 5 4 4 4 4 4 2 3 4 -
PY3 4 0 0 0 0 0 0 0 0 -
PY4 2 0 0 0 0 0 0 0 0 -
PY5 3 0 0 0 0 0 0 0 0 -
PY6 3 0 0 0 0 0 0 0 0 -
PY7 3 0 0 0 0 0 0 0 0 -
PY8 4 0 0 0 0 0 0 0 0 -
PY9 2 0 0 0 0 0 0 0 0 -
PY10 3 0 0 0 0 0 0 0 0 -
*DK = Course's Contrubution.
0 1 2 3 4 5
Course's Level of contribution None Very Low Low Fair High Very High
Method of assessment/evaluation Written exam Oral Exams Assignment/Project Laboratory work Presentation/Seminar
ECTS credits and course workload
Event Quantity Duration (Hour) Total Workload (Hour)
Course Hours 14 4 56
Midterm 1 1 1.5 1.5
Final 1 1.5 1.5
Practice End-Of-Term 11 3 33
Classroom Activities 10 1 10
Total Workload 102
ECTS Credit of the Course 4.0