Ders Bilgileri

Ders Bilgileri
Ders Adı Kodu Dili Türü Yarıyıl T+U Saat Kredi AKTS
Lineer Cebir INS108 Türkçe Zorunlu 2. Yarıyıl 3 + 0 3,0 3,0
Ön Koşul Dersleri
Dersin Seviyesi Lisans
Dersin Verilişi
Dersin Koordinatörü Doç. Dr. Bayram POYRAZ
Dersi Veren(ler)
Dersin Amacı
Dersin İçeriği
Ders Planı (Haftalık Konular)
Hafta Konular/Uygulamalar Yöntem
1. Hafta Matrisler: Matris tanımı, matris çeşitleri, matrislerin eşitliği, matrislerin toplamı ve farkı, bir skalerle bir matrisin çarpımı, matrislerin toplamı ve skalerle çarpımı ile ilgili özellikler, matrislerin çarpımı ve bunlara ait özellikler, matrisin transpozezi ve özellikleri.
2. Hafta Bazı Özel Matrisler ve matris uygulamaları
3. Hafta Matrislerde elemanter satır ve sütün işlemleri, bir matrisin satırca indirgenmiş (eşolon) formu, matrisin rangı, bir kare matrisin tersi ve konu ile ilgili uygulamalar.
4. Hafta Determinantlar: Bir kare matrisin determinantı, Laplace açılımı, determinant özellikleri
5. Hafta Sarrus kuralı, Ek matris, bir matrisin tersinin ek matris yardımı ile hesaplanması, konuyla ilgili uygulamala
6. Hafta Lineer Denklem Sistemleri: Lineer denklem sistemlerinin denk matrisler yardımı ile çözümü, Lineer homojen denklem sistemleri, konuyla ilgili uygulama. Cramer yöntemi, Katsayılar matrisinin inversi yardımı ile çözüm, konuyla ilgili uygulama.
7. Hafta Cramer yöntemi, Katsayılar matrisinin inversi yardımı ile çözüm, konuyla ilgili uygulama.
8. Hafta Arasınav
9. Hafta Özdeğer ve Özvektör bulma
10. Hafta Özdeğer ve Özvektör bulma 2
11. Hafta Vektör tanımı, vektörlerin toplamı, farkı, vektörlerin analitik ifadesi, vektörlerin skaler çarpımı, skaler çarpıma ait özellikler.
13. Hafta Vektörlerin lineer bağımlılığı ve lineer bağımsızlığı ve konu ile ilgili teoremler.
14. Hafta Genel Tekrar
*Ara sınav ve final sınav tarihleri 14 haftalık ders işleyiş planında belirtilmemiştir. Ara sınav ve final sınav tarihleri Üniversitemiz Senatosu kararı ile akademik takvimde belirtilen tarihlerde yapılmaktadır.
Kaynaklar
Ders Kitabı veya Notu Ders Kitabı veya Ders Notu bulunmamaktadır.
Diğer Kaynaklar
  • Lineer Cebir ve Çözümlü Problemleri\Linear Algebra and Solving Problems (Güncelleştirilmiş Baskı), Prof. Dr. A. Göksel AĞARGÜN, Yrd. Doç. Dr. Hülya BURHANZADE, Birsen Yayınevi, İstanbul 2015