
EEM164 BİLGİSAYAR PROGRAMLAMA I

Ders Notu 1

ELEKTRİK ELEKTRONİK

MÜHENDİSLİĞİ

Dr. Öğr. Üyesi Enes KAYMAZ

Bilgisayar Nedir?

➢ Bilgisayar en basit olarak üç ana görevi yerine getiren bir makinedir. Girilen bilgiyi alır (INPUT), işler

(PROCESSING) ve bu işlenmiş veriden bir sonuç (OUTPUT) çıkarır. Bilgisayar, sadece donanım olarak

çalışmaz. Çünkü yazılım olmadan, donanım ne yapacağını bilemez. Bilgisayar donanımına ne yapacağını

söyleyecek bir komutlar dizisi gerekir.

➢ Hardware (Donanım)- Bilgisayarın Fiziksel Parçaları

✓ Printer, Monitör, Klavye, Anakart vs.

➢ Software (Yazılım) - Bilgisayar tarafından kullanılan programlar

✓ Word, Excel, C, Matlab, Java, Phyton vs.

Bilgisayar Donanımı

1. Input Devices (Giriş Cihazları)

➢ Bilgisayara bilgi göndermek için kullanılan araçlardir. (Klavye, Mouse

vs.)

2. Output Devices (Çıkış Cihazları)

➢ Bilgisayardan kullanıcıya bilgi iletimi için kullanılır. (Monitör, printer vs.)

3. CPU (Central Processing Unit- Merkezi İşletim Ünitesi):

➢ Bilgisayarın beyni olarak bilinir

➢ Aritmetik ve mantıksal işlemleri yapan birimdir. (Toplama, çıkarma,

karşılaştırma, büyüklük, küçüklük vs.)

➢ CPU aynı zamanda birimlerin çalışmasını ve veri akışını kontrol eder.

4. Memory (RAM)

➢ CPU çalışırken geçici olarak verilerin saklandığı ve kullanıldığı alandır.

Bilgisayar Yazılımı

➢ Bilgisayarın çalışması için donanıma komutlar veren programlara yazılım

adı verilir.

➢ Genel olarak üç kısımda incelenebilir

✓ Sistem Yazılımları (Işletim Sistemi – Windows, Unix, Linux vs.)

✓ Program Geliştirme Yazılımları (Programlama Dilleri – Java, C,

Pascal, Phython vs.)

✓ Uygulama Yazılımları (MS Word, Excel, Autocad, vs.)

➢ Yazılım geliştirme sonucu ortaya çıkan ürüne program denir.

➢ Bir problemin bilgisayar tarafından çözülebilmesi için öncelikle

algoritmasının oluşturulması gerekmektedir.

Bilgisayar Programı

➢ Belirli bir işi gerçekleştirmek için gerekli komutların belirlenmesi ve uygun biçimde

kullanılmasıdır.

✓ Komut: Bilgisayara belli iş yaptırmaya yarayan emir sözcüğüdür. Bu emir özcüğü ‘break’

gibi basit bir komut da olabilir ‘for ()’ döngüsü gibi daha karmaşık bir yapıda da olabilir.

➢ Programlama Dilleri:

• Bir programın oluşturulmasında kullanılan komutlar, tanımlar ve kuralların belirtildiği

programlama araçlarıdır. Yaygın Programlama Dillerine örnek olarak; C , Phyton,

Java, Matlab, Visual Basic vb. verilebilir.

• Windows, Linux gibi işletim sistemleri ya da piyasada yaygın olarak kullanılan

elektronik aygıt ve bilgisayar kartlarının sürücüleri çoğunlukla C dili ve türevleri

kullanılarak yazılmıştır.

Bilgisayar Programı

✓ Assembly: Mikroişlemcileri veya mikrodenetleyicileri programlamak için kullanılan programlama dilleridir. Assembly’de program

yazmak zor ve zaman alıcıdır fakat donanım seviyesinde işlemler yapılmasına imkan verir. Bu nedenle özellikle robot vb.

uygulamalarda sıklıkla tercih edilir.

✓ Makine Dili: Sadece 0 ve 1’lerden oluşan programlama dilidir. Makine dili ile program yazmak zor ve zaman alıcı olduğundan

dolayı fazla tercih edilmez.

✓ Kaynak Kod: Herhangi bir programalama dili kullanılarak yazılmış metinlere kaynak kod denir. Örneğin;

• C# ile yazılmış bir programın kaynak kodunun dosya uzantısı .cs

• Visual Basic ile yazılmış bir programın kaynak kodunun dosya uzantısı .vb

• Matlab ile yazılmış bir programın kaynak kodunun dosya uzantısı .m şeklinde olur.

✓ Editör: Kaynak kodları oluşturmak yani kod yazmak için kullanılan yazılımlardır.

✓ Derleyici (Assembler/Compiler): Belirli bir programlamacı diliyle yazılan kaynak kodların işlemcinin anladığı makine koduna

dönüştürülmesini sağlayan yazılımdır.

✓ Amaç (Executable) Program: Derleme işlemi sonunda ortaya çıkan ve bilgisayar tarafından çalıştırılabilen programdır.

Sayı Sistemleri

➢ Günlük yaşantımızda 10 luk sayı sistemi kullanılır. Ancak, bilgisayar sistemleri 2 lik sayı

sistemini kullanılırlar. 10 luk sistemde taban 10, ikilik sistemde taban 2 dir.

➢ Bilgisayar sistemlerindeki bütün bilgiler ikilik sistemde 1ve 0 ile temsil edilen elektrik

sinyalleri ile saklanır.

➢ İkilik sistemdeki her bir basamağa bit denir.

➢ Bit nicelik ifade edebilmek için yeterli bir birim değildir. Temel hafıza birimi olarak byte

kullanılır. 1 byte = 8 bit

➢ Bilgisayar sisteminde her bir karakter 8 bit’ten oluşur. Örneğin: A karakteri bilgisayar

içinde 0100001 sayısıyla ifade edilir. İşte bu sayının her basamağına 1 Bit denir.

Sayı Sistemleri

Sayı Sistemleri

Sayı Sistemleri

➢ Bellek Ölçü Birimleri

✓ 1 Byte = 8 Bit

✓ 1 Kilobyte (KB) = 103 byte= 1.024 byte.

✓ 1 Megabyte (MB) = 106 byte = 1.048.576 byte.

✓ 1 Gigabyte (GB) = 109 byte = 1.073.741.824 byte.

✓ 1 Terabyte (TB) = 1012 byte = 1.099.511.627.776 byte.

✓ 1 Petabyte (PB) = 1015 byte.

✓ 1 Exabyte (EB) = 1018 byte.

✓ 1 Zettabyte (ZB) = 1021 byte.

✓ 1 Yottabyte (YB) = 1024 byte.

Temel Kavramlar ve Matematiksel İşlemler

➢ Bilgisayar programları ile gerçekleştirilen

işlemler;

1) Matematiksel İşlemler

2) Karşılaştırma (karar) İşlemleri

3) Mantıksal (lojik) İşlemler

➢ Matematiksel İşlemler

• Temel aritmetik işlemler

• Toplama, çıkarma, çarpma, bölme

• Matematiksel fonksiyonlar

• Üstel, logaritmik, trigonometrik, hiperbolik) vb

Temel Kavramlar ve Matematiksel İşlemler

Temel Kavramlar ve Matematiksel İşlemler

ALGORİTMA

➢ Günlük hayatta, matematikte veya bilgisayar ortamında bir problemi çözebilmek için çözüm aşamalarının iyi

belirlenmesi gerekir. İyi bir algoritma oluşturmak veya iyi bir kod yazmak için öncelikle aşağıdaki aşamalar takip

edilmelidir:

• Problemin Tanımlanması.

• Algoritma Oluşturulması. (Akış diyagramı ve sözel kodlarla yazıya dökülmesi önemlidir.)

• Deneme ve Düzeltme Süreci.

❖ Algoritmanın Oluşturulması:

➢ Bir problemi çözebilmek için gerekli olan sıralı mantıksal adımların tamamına algoritma denir. Diğer bir ifadeyle

algoritma, bir problemin mantıksal çözümünün adım adım nasıl gerçekleştirileceğinin sözlü ifadesidir.

Algoritmanın Özellikleri

➢ İyi bir algoritmanın temel özellikleri şu şekilde olmalıdır:

➢ Kesinlik: Algoritma içindeki adimlar herkes tarafindan aynı şekilde anlaşılabiliyor olmalı, farklı

anlamlara gelebilecek bulanık ifadeler içermemelidir.

➢ Sıralı Olma: Her algoritma için bir başlangiç durumu söz konusudur. Çözüm, bu başlangıç

durumu gözönünde bulundurularak gereklestirilir. Adimlarin hangi sırada gerçekleştirileceği çok

önemlidir ve net bir şekilde belirtilmelidir.

➢ Sonluluk: Algoritma sonlu sayıda adımdan oluşmali, sinırlı bir zaman diliminde

tamamlanmalıdır. Her algoritmanın bir son noktası, bitişi olmalıdır.

Algoritmanın Faydaları

➢ Programın kodlanmasını kolaylaştırır; algoritmaya bakılarak daha rahat bir şekilde kod

yazılabilir.

➢ Algoritması belli olan programı sadece siz değil, başkaları da yazabilir. Böylece kodlama işi daha

hızlı ilerler.

➢ Özellikle mantıksal hata yapma ihtimali azalır. Eğer algoritmanın doğruluğunu daha önce test

ettiyseniz programın hatalı sonuç vermesi zorlaşır.

➢ Algoritmayı hazırlarken, o konu hakkındaki uzmanlığınızı da test etmiş olursunuz. Eğer konu

hakkında yeterli bilgiye sahip değilseniz, bilgi eksikliğinizi gidermeli veya uzman kişiden destek

almalısınız.

Algoritma Geliştirmek

Şimdi algoritmanın tanımını ve özelliklerini günlük yaşamdan basit bir örnekle pekiştirelim. Diyelim ki araç trafiği olan bir yolda

karşıya geçmek istiyoruz. Bu durumda çözmemiz gereken problem (buna yapılması gereken iş de diyebiliriz) karşıya geçmektir.

O zaman bu problemin çözümü için bir yol bulmamız gerekiyor.

Şöyle bir ifadeye ne dersiniz?

1) Önce araba var mı kontrol et, ardından yürü!

2) Bu ifade özünde doğrudur. Ancak yeterince açık değildir. Bunu hayatında ilk defa karşıdan karşıya geçecek birine

söylersek, kim bilir nasıl anlar?

3) Yolun kenarına park etmiş araba var mı? Evet var. O zaman kaldırımdan yürüyeyim.

4) Yolun kenarına park etmiş araba var mı? Hayır yok. O zaman yolun ortasından yola paralel yürüyeyim.

5) Sol taraftan gelen araba var mı? Hayır yok. O zaman sola bakarak karşıya yürüyeyim.

6) Yolun karşısına geçtin.

Algoritma Geliştirmek

➢Algoritma ile oluşturulacak çözümler sözel olarak ifade edilir. Örneğin, sabah kalktığımızda kahvaltı yapılacağı zaman

kahvaltı hazırlama algoritması oluşturulursa:

✓Adım 1: Yataktan kalk.

✓Adım 2: Mutfağa git.

✓Adım 3: Ekmek al.

✓Adım 4: Çayı hazırla.

✓Adım 5: Dolaptan kahvaltılıkları çıkar.

✓Adım 6: Bardağın bitince çayını doldur.

✓Adım 7: Karnın doyunca sofradan kalk.

✓Adım 8: Kahvaltılıkları dolaba koy.

✓Adım 9: Sofrayı temizle.

Algoritma Geliştirmek

Örnek-1

Bir işyerinde çalışan işçiler arasından yalnızca yaşı 23 üzerinde olup, maaş olarak asgari ücret alanların isimleri istenebilir.

Burada iki koşul vardır ve bu iki koşulun da doğru olması gerekir. Yani;

Eğer Yaş>23 VE maaş=asgari ücret ise ismi Yaz

Yaz komutu 1. ve 2.koşulun her ikisi de sağlanıyorsa çalışır.

Örnek-2

Bir sınıfta Bilgisayar dersinden 65 in üzerinde not alıp, Türk Dili veya Yabancı Dil derslerinin herhangi birinden 65’in

üzerinde not alanların isimleri istenmektedir.

Burada 3 koşul vardır ve Bilgisayar dersinden 65 in üzerinde not almış olmak temel koşuldur.

Diğer iki dersin notlarının herhangi birinin 65 in üzerinde olması gerekir.

Eğer Bilg.Not>65 VE (TDili Not>65 veyaYDil Not>65) ise ismiYaz

Algoritma Geliştirmek

➢ Bir problem çözmek üzere geliştirilen algoritma üç şekilde yazılabilir:

• Satır algoritma: Problemin çözüm adımları düz metin olarak açık cümlelerle yazılır.

• Akış diyagramı (flow-chart): Problemin çözüm adımları geometrik şekillerle gösterilir.

• Sözde kod (pseudo-code): Problemin çözüm adımları komut benzeri anlaşılır metinlerle veya kısaltmalarla ifade edilir.

➢ Örnek: Klavyeden girilen iki sayıyı toplayıp ekranda gösteren programın algoritmasının üç değişik yöntemle gösterilmesi:

Satır algoritma ile gösterilmesi:

1. Başla

2. Birinci sayıyı (A) klavyeden oku

3. İkinci sayıyı (B) klavyeden oku

4. Girilen sayıları toplayarak

sonucu oluştur (C=A+B)

5. Sonucu (C) ekrana yazdır

6. Dur

Sözde kod ile gösterilmesi:

1. Başla

2. A oku

3. B oku

4. C=A+B

5. C yaz

6. Dur

Akış diyagramı ile gösterilmesi:

Algoritma Geliştirmek

➢ Örnek: İki sayıdan büyük olanı bulan programın sözde (pseudo) kodunu yazınız.

Sözde kod ile gösterilmesi:

1. Başla

2. İlk sayıyı giriniz. (S1)

3. İkinci sayıyı giriniz. (S2)

4. Eğer S1>S2 ise

5. Ekrana ‘S1 büyük’ yaz

6. Akis takdirde ‘S2 büyük’ yaz.

AKIŞ DİYAGRAMLARI

➢ Çeşitli anlamlar ifade eden ve birbirine oklarla bağlanan

şekillerle görsel olarak algoritmanın adımlarını ifade

etmektir.

➢ Akış şemaları Dikdörtgen, Baklava, Elips, Daire gibi özel

amaçlı bazı sembollerin çizilmesi ile oluşturulurlar.

Algoritmaların Sınıflandırılması

Basit (Lineer) Algoritmalar

➢ İçerisinde mantıksal ifadelerin yer almadığı, program akış dallanmalarının olmadığı algoritmalardır. Bu

algoritmalarda akış düz bir halde baştan sona doğru olacaktır. Çoğunlukla küçük hesaplamaları

gerçekleştirmek için kullanılırlar. Bir önceki algoritmaya bakılırsa bir karar yapısının olmadığı

görülmektedir.

➢ Örnek:

✓ Adım 1: Hesaplanacak kilometre uzunluğunu al; km

✓ Adım 2: Girilen değeri 1000 ile çarp; m=km*1000

✓ Adım 3: Hesaplanan değeri ekrana yazdır; m

Basit (Lineer) Algoritmalar

➢ Örnek: Dışarıdan girilen üç adet sayısının toplamını, çarpımını ve ortalamasını hesaplayan ve ekrana

yazdıran algoritma;

✓ Adım 1: Başla

✓ Adım 2: Üç adet sayı al; a, b, c

✓ Adım 3: Sayıların toplamını hesapla; toplam=a+b+c

✓ Adım 4: Sayıların çarpımlarını hesapla; çarpım=a*b*c

✓ Adım 5: Sayıların ortalamasını hesapla; ort=toplam/3

✓ Adım 6: Sayıların toplamını, çarpımını ve ortalamasını ekrana yazdır; toplam, çarpım, ort.

✓ Adım 7: Dur

Mantıksal Algoritmalar

➢ Algoritma içerisinde mantıksal

karşılaştırmaların bulunduğu yapılardır.

Mantıksal karşılaştırmalara göre

algoritmanın akışı farklı adımlara

geçecektir. Bu şekilde oluşturulan

algoritmalara Mantıksal Algoritmalar

denir.

➢ İlk oluşturulan algoritma biraz daha

ayrıntılanırsa karar yapılarının ortaya

çıktığı görülür.

✓ Adım 1: Başla

✓ Adım 2: Yataktan kalk

✓ Adım 3: Mutfağa git

✓ Adım 4: Eğer ekmek yoksa ekmek al

✓ Adım 5: Çayı hazırla

✓ Adım 6: Dolaptan kahvaltılıkları çıkar

✓ Adım 7: Bardağın bitince çayını doldur

✓ Adım 8: Karnın doyunca sofradan kalk

✓ Adım 9: Eğer kahvaltılıklar bitmişse bulaşık makinesine koy

✓ Adım 10: Eğer kahvaltılıklar bitmemişse kahvaltılıkları dolaba koy

✓ Adım 11: Sofrayı temizle

✓ Adım 12: Dur

Döngüsel Algoritmalar

➢ Program için geliştirilen algoritmada bir işlem birden fazla tekrar ediyorsa döngülü algoritma yapısı

kullanılır.

➢ Döngüsel algoritmalarda mantıksal karşılaştırma yapısı özel olarak kullanılır.

➢ Eğer algoritma içerisinde kullanılan mantıksal karşılaştırma işlemi sonucunda programın akışı karşılaştırma

yapılan yerden daha ileriki bir adıma değil de daha önceki adıma gidiyorsa bu şekilde oluşturulmuş

algoritmalara döngüsel algoritma denir.

➢ Yani döngüsel algoritmalarda mantıksal karşılaştırma sonucunda program daha önceki adımlara gider.

Döngüsel Algoritmalar

Örnek Pasta Yapım Süreci

❖ DEĞİŞKEN

➢ Dışarıdan alınan veya işlem sonucunda elde edilen verilerin saklandığı bellektir.

➢ Örneğin bir sayının karesini alacaksınız:

✓ Öncelikle bu sayıyı alıp SAYI veya benzer isimli bir değişkene atamak zorundasınız.

✓ 2 + SAYI (2 ile SAYI değişkeninin içindeki değeri topla.

✓ 5* SAYI (SAYI değişkeninin içindeki değeri 5 ile çarp.

✓ 2*SAYI+1 (SAYI değişkeninin içindeki değeri 2 ile çarp ve 1

ekle.)

❖ DEĞİŞKEN

➢ Değişkenler farklı veri tipinde olabilir. Örneğin bazı değişkenler; 3, 41, 1453 gibi tam sayı (integer) olurken;

bazıları ‘‘bilimsel’’, ‘‘bilgisayar’’ gibi metin (string) tipinde olabilir.

❖ DEĞİŞKEN ATAMA İŞLEMİ

➢ Sayaçlar, bir işlemin kaç defa yapıldığını

sayan değişkenlerdir. Eğer belirli sayıda bir

işlem yapılacaksa veya bir işlemin kaç defa

yapıldığını öğrenmek istiyorsanız sayaç

kullanmalısınız.

➢ Örneğin ekrana 5 defa ‘‘ merhaba’’

yazdırılacaksa bir sayaç değişkeni tanımlanır

ve sayaç 5 oluncaya kadar ekrana ‘‘

merhaba’’ yazdırılır.

❖ SAYAÇLAR

➢ Belirli bir şart sağlandığı sürece veya sağlanana kadar belirli işlemlerin defalarca yapılmasını sağlayan

algoritmalardır. Örneğin 1’den 5’e kadar olan sayıların toplamı bulunacaksa burada 5 defa toplama işleminin tekrar

edilmesi gerekmektedir.

❖ DÖNGÜ

➢ Değişkenlerin durumunun kontrol edilmesi işlemidir.

➢ Sorgu işlemi sonucunda algoritmanın iki veya daha fazla

dala ya da yöne ayrılması durumuna ‘dallanma’ denir .

❖ SORGU İŞLEMİ

➢ Kullanıcı tarafından program içinde oluşturabileceği

gibi hazır da olabilir.

➢ Örneğin;

✓ KARE (A) : A değerinin karesini hesaplar.

✓ KOK (A) :A değerinin kökünü hesaplar.

❖ FONKSİYON

TEŞEKKÜRLER…

ELEKTRİK ELEKTRONİK

MÜHENDİSLİĞİ

Dr. Öğr. Üyesi Enes KAYMAZ

EEM164 BİLGİSAYAR PROGRAMLAMA I

Ders Notu 2

ELEKTRİK ELEKTRONİK

MÜHENDİSLİĞİ

Dr. Öğr. Üyesi Enes KAYMAZ

Değişkenler ve Veri Girişi-Çıkışı

❖ Açıklama Satırları

❖ C Dili Yazım ve Noktalama Kuralları

❖ Değişkenler

❖ Veri Giriş-Çıkışı

❖ Değişken Ömrü ve Değişken Kapsamı

❖ Veri Tipi Dönüştürme

❖ Uygulamalar

Değişkenler ve Veri Girişi-Çıkışı

❖ Açıklama Satırları :

✓ '' // '' tek satırda açıklama veya yorum yapılmasını sağlar.

✓ /*…..*/ çoklu satır açıklaması yapılır.

❖ Noktalı Virgül: Her komut sonuna

noktalı virgül (;) koyulur.

int x = 0 , y = 0, top = 0 ;

x=x+1;

top=top+x;

printf ('' yasiniz: ''); scanf (''%d '' , & yas); veya

printf ('' yasiniz: '');

scanf (''%d '' , & yas);

Değişkenler ve Veri Girişi-Çıkışı

❖ Güzel (Süslü) Parantezler {….} ve Blok Kavramı:

➢ C dili bloklardan oluşur. Blokların başlangıç ve bitiş yerini de süslü parantezler belirler.

➢ Örneğin; main () isimli ana programımız { işaretiyle başlar ve } işareti ile biter.

➢ {…….} işaretleri içinde bulunan komutlara blok denir. Bloklar belirli bir amaç için bir araya

getirilmiş olan komutlardan oluşur ve ilgili kodların ayırt edilmesini sağlar. Ayrıca bloklar programın

daha rahat okunabilmesine de yardımcı olur.

int main ()

{ // blok başlangıcı

Komut 1

Komut 2

Komut 3

} // blok bitişi

Değişkenler ve Veri Girişi-Çıkışı

❖ Boşluk Karakteri:

➢ C dili için boşluk karakterinin bir anlamı yoktur. İstediğiniz kadar boşluk koyabilirsiniz.

int main () { printf ('' merhaba ''); getchar (); return 0; }

#include <stdio.h>

int main ()

{

printf ('' merhaba '');

getchar ();

return 0;

}

✓ Yukarıdaki ve yandaki program ekrana '' merhaba ''

yazar ve bekler. Dev C++ boşlukların düzenli

kullanılmasını kendisi halletmeye çalışacaktır.

Değişkenler ve Veri Girişi-Çıkışı

❖ Boşluk Karakteri:

➢ C dili büyük ve küçük harfe duyarlı bir dildir. Yani C dili için ''ali'' ve ''Ali '' farklı ifadelerdir.

int x=1;

int y=2;

int top =0;

Top=x+y;

printf (Top);

✓ Yan tarafta verilen program top ve Top ifadeleri

farklı olduğundan dolayı çalışmayacaktır. Bazı

editörlerde İntelliSense adı verilen otomatik kod

tanımlama özelliği vardır.

Nesne-Değişken

❖ Değişkenler, dışarıdan alınan veya program içerisinde üretilen değerleri geçici olarak saklayan belleklerdir.

❖ Bir ifadenin nesne olabilmesi için bellekte yer belirtmesi gerekir.

❖ a = b + c; d = 100;

❖ Yukarıdaki ifadelerde a, b, c, d birer nesnedir.

❖ Nesnelerin özellikleri: İsmi, değeri, türü, faaliyet alanı ve ömrü.

❖ İsim (name): Nesneyi temsil eden karakterlerdir.

❖ Değer (value): Nesnelerin tuttuğu bilgidir. İstenildiği zaman değiştirilebilir.

❖ Tür (type): Nesnenin türü, işleme girdiğinde derleyici tarafından nasıl yorumlanacağını belirleyen özelliktir.

❖ Programlama dillerinin çoğunda char (karakter), integer (tamsayı) ve float (gerçek sayı) gibi nesne türleri

bulunur.

Veri tipleri

❖ Aşağıdaki tabloda dışarıdan okunabilecek bazı verileri ve değişken veri tiplerini görebiliriz:

Veri Tipleri

Veri Tipleri

❖ Unsigned Char: RAM bellekte 8 bit yani 1 byte yer kaplar. 0-255 arası değer alır. Char kelimesinin önündeki

unsigned ifadesi işaretsiz demektir ve bu durum bu veri tipinin sadece pozitif tam sayıları alabileceği anlamına

gelir. Örneğin; 0-100 arası öğrenci notları ile çalışacaksak short veya int veri tipi yerine bu veri tipi

kullanılması daha iyi olur. Çünkü int RAM bellekte 4 byte yer kaplarken, char veri tipi 1 byte yer kaplar ve bu

sayede daha az bellek isteyen ve kaynakları daha iyi kullanan bir program yazmış oluruz.

❖ Char: RAM bellekte 8 bit yani 1 byte yer kaplar. -128 ile 127 arasında değer alır.

❖ Unsigned Short: RAM bellekte 16 bit yani 2 byte yer kaplar. ‘ushort’ olarak kullanılır ve u işaretsiz anlamına

gelir ve sayının sadece pozitif değerler alabileceğini gösterir. 0 ile 65535 arası değerler alır.

❖ Short: RAM bellekte 16 bit yer kaplar. -32768 ile 32767 arası değerler alır.

❖ Unsigned Int: 32 bit yani 4 byte veri tipidir. Sadece pozitif değerler alır ve 0 ile 4294967295 (0 ile 4 milyar)

arası değerler alır.

❖ Int : 32 bitlik veri tipidir. -2147483648 ve 2147483647 arasında değerler alır. (- 2 milyar : + 2milyar)

Veri Tipleri

❖ Unsigned Long : RAM bellekte 64 bit yer kaplar ve çalışılabilecek en büyük tam sayı değerlerini kapsar.

(0 ve 18446744073709551615) arasında değerler alır.

❖ Long: 64 bit yer kaplar. En soldaki bit, sayının pozitif veya negatif olma durumunu belirler.

(-9223372036854775808 ve 9223372036854775807) arasında değerler alır.

❖ Float: Eğer tam sayılarla değil de ondalık veya kesirli sayılarla çalışılacaksa float veri tipi kullanılabilir.

RAM’de 32 bit yer kaplar. (-3.4e +-38 ile +3.4e+- 38)arası değerde çalışır.

❖ Double: RAM bellekte 64 bit yer kaplar. Float veri tipinden daha küçük veya daha büyük sayılarla

çalışılmasına olanak sağlar. (-1.7e+-308 ve +1.7e+-308) arasında değer alır.

❖ String: Aslında C dilinde string adında bir veri tipi bulunmamaktadır. Ancak tüm sözel ifadeler bu veri tipi ile

saklanır. Saklanan her karakter RAM bellekte 1 byte yer kaplar. C dilinde string değerler ″ ‶ içerisine alınır.

❖ Not: Genellikle tamsayı değerleri için ‘int’, ondalıklı değerler için ‘double’ ve metinler içinde ‘char’ veri tipini

kullanabiliriz.

Veri tipleri, kapladığı alanlar (size) ve değer aralıkları (range)

Değişken isimlendirme

❖ Programda kullanılacak değişken isimleri programcı tarafından tanımlanır.

❖ Değişkenlere isim verirken aşağıdaki kurallara uyulmalıdır.

❖ C dilinin kendine özgü anahtar sözcükleri, komut veya fonksiyon adları değişken ismi olarak kullanılamaz.

❖ Değişken isimleri içerisinde, a-z ve A-Z arası İngilizce harfleri, 0-9 arası rakamlar ve özel karakter olarak

sadece alt çizgi (_) karakteri kullanılabilir.

❖ Özel karakterler (+,-,! vs.) ve Türkçe karakterler kullanılmaz.

❖ Maaş, öğrenci, sınıf -> bunlar değişken adı olarak kullanılamaz.

❖ Değişken ismi rakam ile başlayamaz.

❖ 1. vize (yanlış) vize1 (doğru)

Değişken Oluşturma ve Değer Atama

❖ Atama Operatörü

✓ C dilinde değişken oluşturma ve değer atama aşağıdaki gibidir:

✓ (Değişken Tipi) Değişken Adı = İlk Değer

✓ Bir değeri bir değişkene atar ve C programlamada ”=“ ile gösterilir.

✓ İstenirse, önce değişken oluşturulup sonrasında değer atanabilir.

int a=5;

char harf= 'a ';

double pi=3.14
int b;

b = 20;

char karakter;

karakter= ''e'';

double pi

pi=3.14

Değişken Oluşturma ve Değer Atama

❖ Atama Operatörü

Toplam ve Atama:

Toplam = toplam + sayi;

Çarpma ve Atama:

İşlem= işlem* sayi;

Ör: 5!

5*4*3*2*1=120

int f=1;

int sayi=1;

sayi=sayi+1;

f=f*sayi;

Değişken Oluşturma ve Değer Atama

❖ Tam Sayı Değişkenler

✓ Eğer 2, 547, 9150, -33 gibi tam sayılarla işlem yapılacaksa,boyutuna ve işaretine göre unsigned char,

char, unsigned short, short, unsigned int, int , unsigned long veya long gibi tam sayı değişkenleri

kullanılması gerekir.

✓ Örneğin; 0:100 arası pozitif sayılarla çalışacaksanız ″unsigned char‶ veri tipi kullanılabilir. Bu veri tipi

0:255 arası değerleri saklayabilir ve RAM bellekte sadece 1 byte yer kaplar.

Değişken Oluşturma ve Değer Atama

❖ Tam Sayı Değişkenler

❑ Örnek:

#include <stdio.h>

int main ()

{ // Değişkenleri tanımlayalım.

unsigned char s1=1, s2=2;

unsigned top=0;

// s1 ve s2 değişkenlerini toplayalım

top=s1+s2;

// toplamı yazdıralım

printf (″ %d ‶, top);

return 0;

}

➢ Aslında 0:100 arası değerleri char ve n tipi de

saklayabilir. Yani ″unsigned char‶ yerine ″char ‶ veri

tipi de kullanılabilir. ″short ‶ veya ″int ‶ veri

tiplerinde de saklayabilirsiniz. Ama ″short ‶ veri tipi

2 Byte, ″int ‶ veri tipi ise 4 Byte yer kaplar. Bu

durum hafızada daha fazla yer kaplanmış olması

nedeniyle özellikle büyük programların yavaş

çalışmasına yol açar. Eğer -100:+100 gibi tam

sayılarla çalışacaksanız ″char ‶ veri tipi en

mantıklısıdır. Bu veri tipi -128:+127 arası değerleri

saklayabilir.

Değişken Oluşturma ve Değer Atama

✓ (n1+n2) / 2; yani (1+2)/2 = 1,5 ondalık

sayıdır. Fakat ″ort ‶ değişkeninin veri tipi

tam sayı olduğu için virgülden sonraki

rakamlar atılır ve ort=1 olur.

❖ Tam Sayı Değişkenler

➢ Eğer bir işlem sonucunda ondalıklı (kesirli) bir değer

ortaya çıkarsa, virgülden sonraki değeri atarlar.

#include <stdio.h>

int main ()

{

char n1=1, n2=2;

char ort;

ort = (n1+n2) / 2;

printf (″ %d ‶, ort);

return 0;

}

Değişken Oluşturma ve Değer Atama

❖ Ondalıklı Değişkenler

➢ Tam sayı olmayan, 1.25, 13.4141 gibi sayılara

ondalıklı veya kesirli sayı denir. Bu tür sayıları

saklayabilmek için ″float ‶ veya ″double‶ veri tipi

kullanılır. ″float ‶ veri tipi virgülden sonra 6 karakter

″double ‶ karakteri virgülden sonra 8 karakter

saklayabilir.

✓ float pi =3.14;

✓ double r=24.434365;

✓ double z=1.25 e3; // 1.25*10^3

✓ float x=234 e-2; // 234 * 10^-2

Değişken Oluşturma ve Değer Atama

#include <stdio.h>

int main ()

{

char n1=1, n2=2;

double ort

ort = (n1+n2) / 2;

printf (″ %f ‶, ort);

return 0;

}

#include <stdio.h>

int main ()

{

double n1=1, n2=2;

double ort;

double ort

ort = (n1+n2) / 2;

printf (″ %f ‶, ort);

return 0;

}

➢ (n1+n2)/2 yani (tam sayı 1 + tam sayı 2) /2 ifadesinin sonucu da tam sayı

olur. Elde edilen 1 değeri eşitliğin solundaki double veri tipine aktarılır. Tüm

değişkenlerin double veya float olması gerekmektedir. Ayrıca %f yerine

%.2f yazılırsa virgülden sonra iki karakter yazdırılır.

Değişken Oluşturma ve Değer Atama

❖ Sözel Değişkenler

➢ C dilinde sözel verileri saklayabilmek için

″char‶ veri tipi kullanılır. ″char‶ veri tipi

sadece tek bir karakter saklayabilir. ″char‶

veri tipindeki değişkenlere değerler tek tırnak

('……') içinde atanmalıdır.

char harf= 'a'

char cevap;

cevap= 'e'

❖ Sabitler

➢ Program içinde değeri hiç değişmeyen değişkenlere

sabit denilir. Sabit tanımlamak için ″define‶ komutu

kullanılır.

#define değişken değer

#include <stdio.h>

#define pi 3.14

int main()

{

double r, alan=0, cevre=0;

double pi=3.14; // yazılmayabilir.

alan=pi*r*r

cevre=2*pi*r

return 0;

}

Veri Çıkışı ve Metin Yazdırma

➢ Program içinde üretilen bir değeri konsola yazdırmak için '' printf '' kullanılır.

✓ printf ('' Merhaba '') ;

✓ printf ('' Dünya '')

Merhaba Dünya

✓ printf ('' Merhaba \ n '')

✓ printf ('' Dünya '')

Merhaba

Dünya

✓ \ n : Alt satıra geç

✓ \ r : Satır başına git

✓ \ t : Tab (sekme)

✓ \ ' : Tek tırnak

✓ \ ' ' : Çift tırnak

✓ \\ : Ters bölü

✓ \? : Soru işareti

Veri Çıkışı ve Metin Yazdırma

➢ Eğer verileri ve değişkenleri elirli bir

biçimde yazdırmak isterseniz '' printf ''

komutunun kalıbı şöyle olur;

➢ printf ('' biçim ifadesi '' , değişkenler);

➢ Veri tipine göre; % d, % f, % c gibi

ifadeler kullanılır.

Veri Çıkışı ve Metin Yazdırma

Ekran çıktısı:

Sayilarin toplami=10.355

#include <stdio.h>

int main ()

{

float s1=1.55, s2=10.200, top=0;

top=s1+s2;

printf ('' sayilarin toplami = %f '‘,top;

return 0;

}

C dilinin bazı Anahtar Sözcükleri

Kütüphaneler

❖ Her standart kütüphane, o kütüphanedeki her fonksiyonun prototiplerinin yer aldığı ve bu fonksiyonlar tarafından

kullanılabilecek çeşitli veri tipleriyle, bazı sabitlerin bulunduğu bir öncü dosyaya sahiptir.

❖ assert.h

❖ Programın hatalarının ayıklanmasında yardımcı olması için eklenen teşhislerin makroları ve bilgilerini içerir.

❖ math.h

❖ Matematik kütüphane fonksiyonlarının prototiplerini tutar.

❖ setjmp.h

❖ Fonksiyon çağrıları ve geri dönüşleri arasındaki geçişlere izin veren fonksiyonların prototiplerini tutar.

❖ signal.h

❖ Programın çalıştırılması esnasında oluşabilecek çeşitli durumları gerçekleştiren makroları ve fonksiyon prototiplerini tutar.

❖ stdarg.h

❖ Sayısı ve tipleri belli olmayan argüman listesine sahip fonksiyonların çalışmasını sağlayan makroları tutar.

❖ stdio.h

❖ Standart giriş/çıkış kütüphane fonksiyonlarının prototiplerini ve bunlar tarafından kullanılan bilgileri tutar

❖ stdlib.h

❖ Sayıları yazılara, yazıları sayılara çeviren, rastgele sayılar üreten, hafıza ayrılmasını sağlayan fonksiyonların prototiplerini

tutar

❖ string.h

❖ String işlemlerini yapan fonksiyonların prototiplerini tutar.

❖ time.h

❖ Zamanla ve tarihle ilgili işlemler yapan fonksiyonların prototiplerini tutar.

TEŞEKKÜRLER…

ELEKTRİK ELEKTRONİK

MÜHENDİSLİĞİ

Dr. Öğr. Üyesi Enes KAYMAZ

EEM165 BİLGİSAYAR PROGRAMLAMA I

Ders Notu 3

ELEKTRİK ELEKTRONİK

MÜHENDİSLİĞİ

Dr. Öğr. Üyesi Enes KAYMAZ

Kütüphaneler

B
lo

k
 b

a
ş
la

n
g
ıc

ı
v
e

 b
it
iş

i

Ön-işlemci direktifi
Başlık (header) dosyası

Ana fonksiyon Açıklama satırları (comment)

BASİT BİR C PROGRAMI

Kütüphaneler

❖ C dili birden fazla satırdan oluşan açıklama satırlarına izin verir.

❖ Bu açıklama satırları programın ne iş yaptığı hakkında bilgi verir.

❖ Açıklama satırları /* ile başlayıp */ ile sona erer.

❖ Derleyici bu satırları çalışma anında dikkate almaz.

❖ C de her bir işletilebilir ifade (komut satırı) ; ile sonlandırılır.

❖ Bütün anahtar kelimeler ve komutlar küçük harfle yazılır (#define hariç).

❖ C dili büyük-küçük harf duyarlıdır.

❖ Yani; “TOPLAM”, “toplam” ve “tOpLaM” kelimelerinin hepsi C derleyicisi tarafından ayrı ayrı algılanır.

C Dilinin Genel Yazım Kuralları

Kütüphaneler

❖ Ön-işlemci direktifleri # işareti ile başlar ve program derlenmeden önce C ön-işlemcisi tarafından işletilir.

❖ Her bir ön-işlemci direktifinin farklı bir görevi vardır.

❖ #include ve #define en çok kullanılan direktiflerdir.

❖ #include direktifi program içerisinde kullanılan fonksiyonlar için gerekli kodları programa dahil etmek için

kullanılır.

❖ I/O fonksiyonları standart input/output C Kütüphanesinde tanımlanmış

✓ stdio.h

❖ stdio.h programın başına eklemeniz gerekiyor.

❖ Bu eklemeyi #include önişlemci komutuyla yapmanız gerekiyor.

✓ #include <studio.h>

❖ Önişlemcikomutları # ile başlar.

✓ #define

Ön-işlemci Direktifleri

Kütüphaneler

❖ Hemen hemen bütün C programları birden fazla fonksiyondan oluşur.

❖ Main () bütün C programlarında bulunması gereken programın ana fonksiyonu yani gövdesidir.

❖ İlk çalıştırılacak olan fonksiyondur.

❖ Programda çalıştırılacak ifadeler (kod satırları) { - } küme parantezleri içinde yazılırlar.

❖ Her parantez çiftinin oluşturduğu yapılara kod blokları denir.

❖ Bir kod bloğu içerisinde program içerisinde kullanılacak değişkenler ve gerçekleştirilecek işlemleri

yerine getirecek komutlar bulunur.

Main Fonksiyonu

Kütüphaneler

❖ Örneğin tasarladığımız programda ekrana çıktı yazdırmak istiyoruz.

❖ Bunun için C dilinin standart bir fonksiyonu olan printf fonksiyonunu kullanmamız gerekir.

❖ printf (“Örnek Çıktı”);

❖ Ancak printf fonksiyonunun çalışabilmesi için <stdio.h> isimli dosyaya ihtiyacımız olacaktır.

❖ Bu dosyayı programa dahil etmek için program kodunun en tepesine

❖ #include <stdio.h> komut satırı yazılır.

❖ C dilinde .h uzantılı dosyalara başlık dosyası (Header File) adı verilir.

❖ stdio.h başlık dosyası standart giriş çıkış işlemleri için gerekli kodları içerir.

Ön-işlemci Direktifleri

Kütüphaneler

❖ Değişkenlerin değerlerini, hesaplanan sonuçları ya da mesajlar ekranda göstermek için kullanılır.

❖ printf () fonksiyonu, fonksiyon ismi ve parantezler içindeki parametreler olmak üzere iki kısımdan

oluşur.

❖ printf () fonksiyonu, parametre olarak görüntülenecek bilginin hangi biçimde görüntüleneceğini bildiren

çıktı metin formatını ve bu formatın içinde yazdırılacak olan değişkenler listesini alır.

printf () fonksiyonu

Kütüphaneler

❖ printf çıktı formatındaki % karakterinin dışındaki tüm karakterleri ekrana yazar.

❖ % karakterini gördüğünde bunun sağındaki karakteri yazdırılacak değişkenin format karakteri olarak ele

alır.

❖ printf çıktı formatındaki ‘ \ ’ karakterine escape karakteri denir.

❖ Bu karakterden sonra gelen karakter ise escape serisini ifade eder.

❖ Örneğin \n ifadesi, çıktı ekranında yeni bir satıra geçilmesi gerektiğini ifade eder.

printf () fonksiyonu

Kütüphaneler

❖ \a Ses üretir (alert)

❖ \b imleci bir sola kaydır (backspace)

❖ \f Sayfa atla. Bir sonraki sayfanın başına

geç (formfeed)

❖ \n Bir alt satıra geç (newline)

❖ \r Satırbaşıyap (carriage return)

printf () fonksiyonu

❖ \t Yatay TAB(HorizontalTAB)

❖ \v Dikey TAB(verticalTAB)

❖ \" Çift tırnak karakterini ekrana yaz

❖ \’ Tek tırnak karakterini ekrana yaz

❖ \\\ karakterini ekrana yaz

❖ %% % karakterini ekrana yaz

❖ Kontrol: "\" işaretiyle başlayan bu karakterlerin anlamları şu şekildedir:

❖ Standart C de üç farklı yerde değişken tanımlanabilir: Fonksiyonların üstünde, blokların { } içerisinde ilk

sırada ve fonksiyonlarda parametre olarak.

❖ İlk değer ataması yapılmayan değişkenlerin değerleri (eğer main fonksiyonunun üstünde tanımlanmışsa)

sayısal olanlar 0 diğerleri boş olarak belirlenir, eğer main içinde tanımlanmışsa bellekte rastgele değerler

olarak belirlenir.

Değişken tanımlama yerleri, şekilleri ve ilk değer atama

Değişken tanımlama yerleri, şekilleri ve ilk değer atama

Değişken tanımlama yerleri, şekilleri ve ilk değer atama

❖ Değişkenlerin içerisine klavyeden değer atamak için kullanılır.

❖ Fonksiyon ismi ve parametrelerden oluşur.

❖ Parametre olarak, girilecek değerin hangi formatta olacağını bildiren girdi formatını ve bu formata göre

girilecek değişkenler listesini alır.

❖ scanf fonksiyonunda dışarıdan değer girilecek bütün değişkenlerin başına & işareti konur.

❖ Bu işaret bellek operatörüdür, değişkenlerin tutulduğu bellek hücresinin adresini okur.

scanf () fonksiyonu

Mantıksal operatörler

Ve (&&)

A B işlem sonuç

Hayır Hayır A && B Hayır

Hayır Evet A && B Hayır

Evet Hayır A && B Hayır

Evet Evet A && B Evet

Veya (||)

A B işlem sonuç

Hayır Hayır A || B Hayır

Hayır Evet A || B Evet

Evet Hayır A || B Evet

Evet Evet A || B Evet

YÜKSEK ÖNCELİK

() Soldan sağa Öncelik op.

! ++ -- Sağdan sola Aritmetik op.

* / % Soldan sağa

+ - Soldan sağa

> >= <<= Soldan sağa İlişkisel op.

== != Soldan sağa

&& Soldan sağa Mantıksal op.

|| Soldan sağa

= Sağdan sola DÜŞÜK ÖNCELİK Atama op.

Operatörlerde Öncelik Sırası

❖ return ifadesi bir fonksiyondan çıkış yapmak ve program içinde fonksiyon çağrısının yapıldığı işlem

satırından bir sonraki işlem satırına geçiş yapmak için kullanılır.

❖ Return 0 = 0 değeri, programın başarılı bir şekilde yürütüleceği ve yapmak istediği şeyi yapacağı

anlamına gelir.

❖ Eğer bir fonksiyon void olmayan bir değer geri döndürecek şekilde tanımlanmış ise, return ifadesi

fonksiyonun geri döndürdüğü değerle birlikte dönüş yapar. Eğer fonksiyon void bir değer geri

döndürecek şekilde tanımlanmış ise, return değeri de herhangi bir değer geri döndürmez.

return

❖ Örnek 1 : ″ günaydın, merhaba düzce ‶ ifadesini ekrana yazdıracak olan C programlama kodunu

yazınız.

ÖRNEKLER

#include <stdio.h>

// bu bir c ornegidir

int main() {

printf("gunaydin,merhaba duzce");

// printf("gunaydin \n");

// printf("merhaba duzce");

return 0;

}

Örnek 2 : Aşağıda verilen işlemlerin

sonuçlarını işlem öncelik sırasını göz

önüne alarak hesaplayınız.

❖ a=8, b=10, c=4, d=2

● a*b/(c*b)+d+a*b/d;

● a*b/c*b+d+a*b/c;//

● a*b/c*b+(d+a)*b/c;//

ÖRNEKLER

#include<stdio.h>

int main()

{

int a=8,b=10,c=4,d=2;

double sonuc;

sonuc=a*b/(c*b)+d+a*b/d;

//sonuc=a*b/c*b+d+a*b/c;//

//sonuc=a*b/c*b+(d+a)*b/c;//

printf("%f",sonuc);

return 0;

}

❖ Örnek 3 : char komutu kullanarak ″sehiradi=duzce″ ifadesini ekrana yazdırınız.

ÖRNEKLER

#include <stdio.h>

int main() {

//parantez ici karakter sayisini belirtir

char sehiradi[10]="duzce";

printf("%s",sehiradi);

return 0;

}

❖ Örnek 4 :Kişinin ismini ve soyismini sorarak (scanf), cevapları ekrana yazdırınız.

ÖRNEKLER

#include <stdio.h>

int main() {

//parantez ici karakter sayisini belirtir

char isim[10],soyisim[10];

printf("isminizi giriniz:");

scanf("%s",isim);

printf("soyisminizi giriniz:");

scanf("%s",soyisim);

printf("Sayin %s, %s",isim,soyisim);

return 0;

}

❖ Örnek 5 :Klavyeden girilen bir sayının karesini hesaplayan programın akış diyagramını çiziniz ve C

programlama kodunu yazınız.

ÖRNEKLER

#include<stdio.h>

int main()

{

int sayi,kare;

printf("sayi giriniz:"); scanf

("%d",&sayi);

kare=sayi*sayi;

printf("sayi= %d karesi=%d",sayi,kare);

return 0;

}

❖ Örnek 6 : sayi1=10, sayi2=20, toplam ve çarpım sonuç ifadelerini ekrana yazdıran C programlama

kodunu yazınız.

ÖRNEKLER

#include <stdio.h>

int main(){

int sayi1=10,sayi2=20,toplam,carpim;

toplam=sayi1+sayi2;

carpim=sayi1*sayi2;

printf("sayilarin toplami %d'dir: \n",toplam);

printf("sayilarin carpimi %d'dir:",carpim);

return 0;

}

❖ Örnek 7 : Aşağıda verilen matematiksel ifadelerin C dilindeki kod karşılıklarını yazınız.

ÖRNEKLER

#include <stdio.h>

#include <stdlib.h>

#include <math.h>

int main () {

int A=3;

float x;

x = sqrt ((A+5) / (2 + (1 / pow (A,2))));

printf("Islem Sonucu = %.4f" , x);

return 0;

}

𝐶 =
𝐴 + 5

2 +
1
𝐴2

𝐶 =
𝐴 + 𝐵

𝐵2 +
1
𝐴2𝐵

#include <stdio.h>

#include <stdlib.h>

#include <math.h>

int main () {

int A=4,B=8;

float x;

x= (float)(A+B) / (float)((B*B)+(1/(A*A*B)));

printf("Islem Sonucu = %.4f" , x);

return 0;

}

❖ Örnek 8 : A=3, B=4 ve C=2 için aşağıda verilen denklemin C programlama kodunu yazarak sonucunu

hesaplayınız.

ÖRNEKLER

#include <stdio.h>

#include <stdlib.h>

int main () {

int A=3, B=4, C=2;

float x;

x = (float) (A+A*(B*B)+3*A*C) / (float) (2*A*B*C);

printf(" Islem Sonucu = %.4f ", x);

return 0;

}

𝑥 =
𝐴 + 𝐴𝐵2 − 3𝐴𝐶

2𝐴𝐵𝐶

❖ Örnek 9 : ax+b=0 tek bilinmeyenli denklemi için kullanıcı tarafından klavyeden girilen a ve b

değerlerine göre x değişkenini hesaplayan programın akış diyagramını çiziniz ve C programlama kodunu

yazınız.

ÖRNEKLER

#include<stdio.h>

int main()

{

double x,a,b;

printf("a ve b degerlerini giriniz:");

scanf("%lf %lf",&a,&b);

x=-b/a;

printf("x=%lf",x);

return 0;

}

❖ Örnek 10 : Bir öğrencinin 3 sınav sonucunun ortalamasını alan programı C programlama dilinde yazınız

ÖRNEKLER

#include <stdio.h>

int main() {

float sinav1,sinav2,sinav3,ortalama;

printf("1. sinav sonucunu giriniz=");

scanf("%f",&sinav1);

printf("2. sinav sonucunu giriniz= ");

scanf("%f",&sinav2);

printf("3. sinav sonucunu giriniz= ");

scanf("%f",&sinav3);

ortalama=(sinav1+sinav2+sinav3)/3;

printf("Ders ortalamaniz %f'dir",ortalama);

return 0;

}

❖ Örnek 11 : Bir kenar uzunluğu 8 cm olan karenin cevresini ve alanını hesaplayan C programı kodunu

yazınız.

ÖRNEKLER

#include <stdio.h>

int main() {

int uzunluk=8,cevre,alan;

cevre=uzunluk*4;

alan=uzunluk*uzunluk;

printf("karenin cevresi %d, alani ise %d'dir: \n",cevre,alan);

return 0;

}

❖ Örnek 12 : Taban ve Yükseklik Değerine göre üçgen alan hesabi yapan algoritmaya ait C programlama

kodunu yazınız.

ÖRNEKLER

#include <stdio.h>

int main() {

//int komutu sadece sabit degerleri hesaplar.

float taban,yukseklik;

float alan;

printf("taban degerini giriniz: ");

scanf("%f",&taban);

printf("yukseklik degerini giriniz: ");

scanf("%f",&yukseklik);

alan=(taban*yukseklik)/2;

printf("ucgenin alani %.2fdir",alan);

return 0;

}

❖ Örnek 13 :Aşağıda verilen program parçacığındaki yanlışlıkları bularak nedenlerini belirtiniz. Program yarıçapı

klavyeden girilen bir dairenin alanını ve çevresini hesaplamaktadır.

ÖRNEKLER

#include<stdio.h>

#include<stdlib.h>

const float PI=3.14;

int main(){

float r, alan , cevre;

printf("Yaricapi Giriniz:");

scanf("%f",&r);

alan=PI*r*r;

cevre=2*PI*r;

printf("Alan=%f\n",alan);

printf("Cevre=%f\n",cevre);

return 0;

}

#include<stdio.h>

#include<stdlib.h>

const float PI=3.14;

int main(){

float r;

int alan , cevre;

printf("Yaricapi Giriniz:");

scanf("%f",r);

alan=PI*r*r;

cevre=2*PI*r;

printf("Alan=%.2f\n",Alan);

printf("Cevre=%.2f\n",cevre);

return 0;

}

❖ Örnek 14 : Aşağıda verilen program parçacığındaki yanlışlıkları bularak nedenlerini belirtiniz. Program

koordinatları klavyeden girilen iki nokta arasındaki mesafenin bulunmasını sağlamaktadır..

ÖRNEKLER

#include <stdio.h>

#include <conio.h>

#include <math.h>

int main () {

int x1,y1,x2,y2

float 2uzaklik;

printf("1. Noktanin koordinantlarini giriniz:");

scanf("%d%d",x1,y1);

printf("2. Noktanin koordinantlarini giriniz: ");

scanf("%d%d",&x2, &y2);

uzaklik=sqrt (pow ((y2-y1) ^ 2) + pow((x2-x1) ^ 2));

printf("\n Mesafe : %.2d", uzaklik);

return 0;

}

#include <stdio.h>

#include <conio.h>

#include <math.h>

int main () {

int x1,y1,x2,y2

float uzaklik;

printf("1. Noktanin koordinantlarini giriniz:");

scanf("%d%d", &x1, &y1);

printf("2. Noktanin koordinantlarini giriniz: ");

scanf("%d%d",&x2, &y2);

uzaklik=sqrt (pow ((y2-y1) , 2) + pow((x2-x1) , 2));

printf("\n Mesafe : %.2f ", uzaklik);

return 0;

}

❖ Örnek 15 : Aşağıda verilen programın çıktısı ne olur?

ÖRNEKLER

#include<stdio.h>

#include<stdlib.h>

int main()

{

int a=1, b=10, c=100;

printf("%d\n",a);

printf("%d\n",b);

printf("%d\n",c);

printf("\n");

printf("%3d\n",a);

printf("%3d\n",b);

printf("%3d\n",c);

printf("\n");

printf("%.3d\n",a);

printf("%.3d\n",b);

printf("%.3d\n",c);

return 0;

}

TEŞEKKÜRLER…

ELEKTRİK ELEKTRONİK

MÜHENDİSLİĞİ

Dr. Öğr. Üyesi Enes KAYMAZ

EEM165 BİLGİSAYAR PROGRAMLAMA I

Ders Notu 4

ELEKTRİK ELEKTRONİK

MÜHENDİSLİĞİ

Dr. Öğr. Üyesi Enes KAYMAZ

Kütüphaneler

KARAR YAPILARI

Kütüphaneler

❖ Akış diyagramı: Algoritmanın grafiksel

gösterimidir.

❖ Özel şekiller birbirine çizgilerle bağlanır ve oklar

akış yönünü gösterir.

❖ Dikdörtgen şekli (işlem sembolü): Herhangi bir

işlemi gösterir.

❖ Oval Şekil: Programın veya programın bir

bölümünün başlangıcını ve sonunu gösterir.

❖ Tek-giriş/tek çıkış kontrol yapısı: Bir kontrol

yapısının çıkışı diğerinin girişine bağlanır.

Programın yapılandırılmasını kolaylaştırır.

Akış Diyagramı

Kütüphaneler

❖ Akış diyagramında karar yapısı için baklava

deseni sembolü kullanılır.

❖ Bu şeklin içine şart ifadesi yazılır. Karar

yapısından iki adet ok çıkar.

❖ Birisi şartın doğru olması durumunda, diğeri ise

yanlış olması durumunda gidilecek yönü belirtir.

Koşullar

Kütüphaneler

❖ Seçmeli Yapı (Selection Structure): Kodun çalışma akışını

belli şartlara göre dallandırmaya (branching) yarayan

yapılara denir. Programda belli kararlar alınması

gerektiğinde kullanılır. Programın akışı 2 veya daha fazla

yola ayrılabilir. Daha önce kullandığımız ve bu bölümde

anlatacağımız if deyimi de bu yapıdadır.

❖ Yinelemeli Yapı (Iteration Structure): Bir kodun birden

fazla olacak şekilde çalışmasını sağlayan yapılardır. Bu

yapılarda da yine seçmeli yapıda olduğu gibi koşul ifadeleri

kullanılır. Fakat bu sefer koşulun gerçekleşmesi sonucu

yapılması gereken işlem birden fazla kez tekrarlanabilir.

Koşullar

Kütüphaneler

❖ Bazen birden fazla koşulu test etmek isteriz, ta ki bir koşul

sağlanana kadar.

➢ eğer <şart ifadesi1>

➢ işlem1;

➢ değilse eğer <şart ifadesi2>

➢ işlem2;

➢ değilse eğer <şart ifadesi3>

➢ işlem3;

➢ …….

➢ değilse

➢ işlem;

Kademeli Yapılar

Kütüphaneler

if Yapısı

❖ İşlem gruplarından birini seçmek için kullanılır.

❖ if ifadesi parantez içindeki test ifadesini değerlendirir.

❖ Test ifadesi true (sıfır olmayan) olarak değerlendirilirse, if

’in gövdesi içindeki ifadeler uygulanır.

❖ Test ifadesi false (0) olarak değerlendirilirse, if’’in gövdesi

içindeki ifadeleri yürütmeden atlanır.

❖ C boşlukları ve satır sonlarını dikkate almaz.

❖ Eğer if ’in altında birden çok komut varsa,

ayraç işareti (veya küme parantezi) koymamız

gerekir. Şayet if ’ten sonra, tek komut

bulunuyorsa, ayraç koyup-koymamak size

kalmıştır. Zorunluluğu yoktur.

Kütüphaneler

❖ Boolean ifadeler mantıksal operatörler

(AND,OR,NOT) kullanılarak birleştirilebilirler.

❖ C dilinde bunlar için “&&” “||” “!” sembolleri

kullanılıyor.

Mantıksal Operatörler

❖ 1: mantıksal AND operatörü kullanarak

if(sayı >=0&&sayı <=100)

cout<<"sayı aralıkiçinde";

else

cout<<"sayı aralıkdısında";

❖ 2: mantıksal AND ve NOT operatörleri

kullanarak

if(!(sayı >=0&&sayı <=100))

cout<<"sayı aralıkdısında";

else

cout<<"sayı aralıkiçinde";

❖ 3: mantiksal OR operatörü kullanarak

if(sayı <0||sayı >100)

cout<<"sayı aralıkdısında";

else

cout<<"sayı aralıkiçinde";

cout: character output (C++)

Kütüphaneler

if – else Yapısı

❖ if deyiminin içerisinde tanımlanan koşul haricinde kalan tüm

koşullar için else deyimi kullanılmaktadır.

❖ Programda else deyimi kullanıldığında if deyiminin

çalışmadığı yani if koşulunun gerçekleşmediği tüm

koşullarda else bloğundaki kod çalışmaktadır.

Test ifadesi true olarak değerlendirilirse,

– if ifadesinin gövdesi içindeki ifadeler yürütülür.

– else ifadesinin gövdesi içindeki ifadeler yürütmeden

atlanır.

❖ Test ifadesi false olarak değerlendirilirse,

– else ifadesinin gövdesi içindeki içindeki ifadeler çalıştırılır.

– if ifadesinin gövdesi içindeki ifadeler atlanır.

Kütüphaneler

if , else-if, else Yapısı

❖ Bazı durumlarda yazılan kodlarda birden fazla koşul

programcı tarafından programa eklenmek ister. Bu gibi

durumlarda her koşul için sürekli olarak if yapısı kurmak

yerine tek bir if yapısı içerisinde tüm koşulların

yazılması tercih edilmektedir. İlk koşul if deyimi ile

tanımlanırken diğer koşulların hepsi else if deyimiyle

tanımlanmaktadır. Son olarak tüm koşulları kapsamayan

koşul else deyimi ile ifade edilmektedir.

Kütüphaneler

break ve continue Yapısı

❖ break ifadesi döngüyü sonlandırırken,

❖ continue ifadesi döngünün bir sonraki yinelemesini

zorlar.

❖ Bazen, döngü içindeki bazı ifadeleri atlamak veya test

ifadesini kontrol etmeden hemen döngü sonlandırılmak

istenebilir.

❖ Bu gibi durumlarda, break ve continue ifadeleri

kullanılır.

Kütüphaneler

break ve continue Yapısı

❖ break ifadesi döngüyü sonlandırırken,

❖ continue ifadesi döngünün bir sonraki yinelemesini

zorlar.

❖ Bazen, döngü içindeki bazı ifadeleri atlamak veya test

ifadesini kontrol etmeden hemen döngü sonlandırılmak

istenebilir.

❖ Bu gibi durumlarda, break ve continue ifadeleri

kullanılır.

Kütüphaneler

switch-case Yapısı

❖ Bu yapı bir değişkenin içeriğine bakarak, programın akışını

çok sayıda seçenekten birine yönlendirir. case (durum)

yapısından sonra değişkenin durumu belirlenir ve sonraki

gelen satırlar işleme girer.

❖ Aksi söz konu olduğunda gerçekleştirilmesi istenen deyimler

default deyiminden sonraki kısımda bildirilir.

❖ Kısaca yapının temel amacı; değişkenin değerine göre

programın çalışmasına yön vermektir.

❖ Aynı işlem if else yapısı ile uygulanabilse de daha kolay

okunması nedeniyle programcılar tarafından tercih

edilmektedir.

Kütüphaneler

switch-case Yapısı

❖ Örnek 1 : Girilen sayının 10dan büyük olup

olmadığını karşılaştıran programı if yapısı

kullanarak yazınız.

ÖRNEKLER

#include <stdio.h>

int main() {

int sayi;

printf("bir sayi giriniz= ");

scanf("%d",&sayi);

if(sayi>10)

{

printf("girilen sayi 10dan buyuktur");

}

else

{

printf("girilen sayi 10dan kucuktur");

}

}

❖ Örnek 2 : Girilen sayının pozitif, negatif veya

0 olduğunu gösteren programı yazınız.

ÖRNEKLER

#include <stdio.h>

int main() {

int sayi;

printf("bir sayi giriniz= ");

scanf("%d",&sayi);

if(sayi>0)

{

printf("sayi pozitiftir");

}

if(sayi<0)

{

printf("sayi negatiftir");

}

if(sayi==0)

{

printf("sayi sifira esittir");

}

}

❖ Örnek 3 : Girilen 2 sayının toplamının

50’den büyük olup olmadığını karşılaştıran

programı yazınız.

ÖRNEKLER

#include <stdio.h>

int main() {

int sayi1,sayi2,toplam;

printf("bir sayi giriniz= ");

scanf("%d",&sayi1);

printf("bir sayi giriniz= ");

scanf("%d",&sayi2);

toplam=sayi1+sayi2;

if(toplam>50)

{

printf("toplam sayi 50dan buyuktur");

}

else

{

printf("toplam sayi 50dan kucuktur");

}

}

❖ Örnek 4 : Girilen 3 sınavın ortalaması

50’den büyük ise, dersi geçtiğini gösteren

ifadeyi yazdıran programın C programlama

kodunu yazınız.

ÖRNEKLER

#include <stdio.h>

int main() {

int sinav1,sinav2,sinav3,ortalama;

printf("bir sayi giriniz= ");

scanf("%d",&sinav1);

printf("bir sayi giriniz= ");

scanf("%d",&sinav2);

printf("bir sayi giriniz= ");

scanf("%d",&sinav3);

ortalama=(sinav1+sinav2+sinav3)/3;

if(ortalama>50)

{

printf("ortalamaniz %d, Dersi

gectiniz",ortalama);

}

else

{

printf("ortalamaniz %d,Dersi tekrardan

aliniz",ortalama);

}

}

❖ Örnek 5 : Üç sınav sonucunun

ortalamasına göre harf notunu

belirleyen programın kodunu C

dilinde yazınız.

❖ 80-100= A

❖ 70-80=B

❖ 60-70=C

❖ 60 ve aşağısı=D

ÖRNEKLER

#include <stdio.h>

int main() {

float sinav1,sinav2,sinav3,ortalama;

printf("bir sayi giriniz= ");

scanf("%f",&sinav1);

printf("bir sayi giriniz= ");

scanf("%f",&sinav2);

printf("bir sayi giriniz= ");

scanf("%f",&sinav3);

ortalama=(sinav1+sinav2+sinav3)/3;

if(ortalama>=80 && ortalama <100)

{

printf("ortalamaniz %f,Harf notunuz=A",ortalama);

}

else if(ortalama>=70 && ortalama <80)

{

printf("ortalamaniz %f,Harf notunuz=B",ortalama);

}

else if(ortalama>=60 && ortalama <70)

{

printf("ortalamaniz %f,Harf notunuz=C",ortalama);

}

else

{

printf("ortalamaniz %f,Harf notunuz=D",ortalama);

}

}

❖ Örnek 6 : Girilen sayının 2 veya

5e bölündüğünü gösteren

programı (||-or) yapısıyla yazınız

ÖRNEKLER

#include <stdio.h>

int main() {

int sayi1;

printf("bir sayi giriniz= ");

scanf("%d",&sayi1);

if(sayi1%2==0 || sayi1%5==0)

{

printf("sayi 2 veya 5e tam bolunur");

}

else

{

printf("sayi 2 veya 5e tam bolunmez");

}

}

❖ Örnek 7 : Klavyeden kenar uzunlukları girilen bir üçgenin ne tür bir üçgen olduğunu

(eşkenar,ikizkenar,çeşitkenar) bulan C programını yazınız.

ÖRNEKLER

#include<stdio.h>

#include<stdlib.h>

int main(){

int a,b,c;

printf("Kenar uzunluklarini giriniz:");

scanf("%d %d %d",&a,&b,&c);

if((a==b)&&(b==c)){

printf("Tum kenarlar esit oldugundan eskenar ucgendir.\n");

}else if((a==b)||(b==c)||(a==c)){

printf("Iki kenar esit oldugundan ikizkenar ucgendir.\n");

}else{

printf("Tum kenarlar farkli uzunlukta oldugundan cesitkenar ucgendir.\n");

}

return 0;

}

❖ Örnek 8 : İkinci dereceden bir

bilinmeyenli bir denklemin

köklerini hesaplayan C

programlama kodunu yazınız.

ÖRNEKLER

#include<stdio.h>

#include<stdlib.h>

#include<math.h>

int main(){

float x1,x2;

int a,b,c,delta;

printf ("Denklemin a katsayisi:");

scanf("%d",&a);

printf("Denklemin b katsayisi:");

scanf("%d",&b);

printf("Denklemin c katsayisi:");

scanf ("%d",&c);

delta=pow(b,2)-4*a*c;

if (delta<0)

printf("Denklemin kokleri yoktur.\n");

else if (delta==0){

printf("Denklemin esit iki koku vardir.\n");

x1=(-b)/(2*a);

printf("X1=X2=%.2f",x1);

}else{

printf("Denklemin farkli iki koku vardir.\n");

x1=(-b+sqrt(delta))/(2*a);

x2=(-b-sqrt(delta))/(2*a);

printf("X1=%.2f\n X2=%.2f\n",x1,x2);

}

return 0;

}

❖ Örnek 9 : Switch yapısıyla

girilen rakamı [1-5] tahmin eden

programı yazınız.

ÖRNEKLER

#include <stdio.h>

int main()

{

int sayi;

printf("Bir sayi giriniz [1-5]\n");

scanf("%d", &sayi);

switch (sayi) {

case 1:

printf("Bir rakamini tusladiniz");

break;

case 2:

printf("İki rakamini tusladiniz");

break;

case 3:

printf("Üç rakamini tusladiniz");

break;

case 4:

printf("Dört rakamini tusladiniz");

break;

case 5:

printf("Beş rakamini tusladiniz");

break;

default:

printf("Hatali giris yaptiniz");

}

return 0;

}

❖ Örnek 10 : Kullanıcı tarafından

rakam olarak girilen bir değerin

haftanın hangi günü olduğunu

gösteren C programlama kodunu

switch-case kullanarak yazınız.

ÖRNEKLER

#include <stdio.h>

#include<stdlib.h>

int main(){

int gun;

printf("Gun degerini giriniz (1-7):");

scanf("%d",& gun);

switch(gun){

case 1: printf("Pazartesi\n");break;

case 2: printf("Sali\n");break;

case 3: printf("Carsamba\n");break;

case 4: printf("Persembe\n");break;

case 5: printf("Cuma\n");break;

case 6: printf("Cumartesi\n");break;

case 7: printf("Pazar\n");break;

default:

printf("Gecersiz bir deger girdiniz.\n");

}

return 0;

}

❖ Örnek 11 : Switch yapisiyla 4

islem yapan programı aşağıdaki

şekilde yazınız.

❖ Kullanicidan 2 sayi iste, printf ile

islem komutlarini gir. Switch

komutuyla islemleri sirala.

ÖRNEKLER
#include <stdio.h>

main()

{

int sayi1,sayi2;

int islem;

printf("1.Sayiyi giriniz:");

scanf("%d",&sayi1);

printf("2.Sayiyi giriniz: ");

scanf("%d",&sayi2);

printf("\n\n1-Toplama\n");

printf("2-Cikarma\n");

printf("3-Bolme\n");

printf("4-Carpma\n");

printf("\nIslemi seciniz:");

scanf("%d",&islem);

switch(islem){

case 1:

printf("Toplama isleminin sonucu : %d",sayi1 + sayi2);

break;

case 2:

printf("Cıkarma isleminin sonucu : %d",sayi1 - sayi2);

break;

case 3:

printf("Bolme isleminin sonucu : %f", (float) sayi1 / (float) sayi2);

break;

case 4:

printf("Carpma isleminin sonucu : %d", sayi1 * sayi2);

break;

default:

printf("Lutfen gecerli bir sayi giriniz..");

}

}

TEŞEKKÜRLER…

ELEKTRİK ELEKTRONİK

MÜHENDİSLİĞİ

Dr. Öğr. Üyesi Enes KAYMAZ

EEM165 BİLGİSAYAR PROGRAMLAMA I

Ders Notu 5

ELEKTRİK ELEKTRONİK

MÜHENDİSLİĞİ

Dr. Öğr.Üyesi Enes KAYMAZ

Kütüphaneler

❖ Bir programda bir komut parçasının belli koşullar gerçekleştikçe veya gerçekleşinceye kadar defalarca icra

etmesi gerekebilir. Bu defalarca çalışmayı sağlayan komutlarına döngü (çevrim) yapıları denir. Döngü yapıları

genelde karşımıza iki tür olarak çıkar. Çalışma sayısının belli olduğu durumlarda sayaç kontrollü döngüler,

döngü sayısının değişken olduğu durumlarda ise koşullu döngüler kullanılır. C programlama dilinde sayaç

kontrollü döngü yapısına for döngüsü, koşullu döngü yapısına while ve do-while döngüleri örnek olarak

verilebilir.

Döngüler

Kütüphaneler

❖ C programlama dilinde sayaç kontrollü döngü

yapısı olarak for döngüsü kullanılmaktadır.

Kullanımı aşağıdaki gibidir;

✓ For (ilk_değer; devam_şartları; ara_işlemler)

✓ {

✓ Döngü_Bloğu

✓ }

for döngüsü

❖ ilk_değer : Döngüye ilk defa girildiğinde burada belirttiğimiz

komutlar icra edilir. Döngünün diğer icralarında bu işlem

tekrarlanmaz.

❖ devam_şartları : Döngünün bir kere daha icra ettirileceği veya

döngünün icrasına son verileceği buradaki koşul ifadeleri

değerlendirilerek yapılır. Buradaki ifade doğru sonuç verdikçe

döngü yenilenir.

❖ ara_işlemler : Döngünün her icrası sonunda uygulanacak işlemler

burada belirtilir.

❖ For döngüsü altında tek bir satırlık kod yazıldığında blok

parantezleri { } kullanmak zorunluluğu yoktur, ancak döngü için

birden fazla komut yazılacaksa blok parantezleri { }

kullanılmalıdır.

Kütüphaneler

for döngüsü

❖ Örnek 1 : Ekrana 5 Defa

‘Merhaba’ yazdıran

programın akış diyagramını

çiziniz ve C programlama

kodunu for döngüsü

kullanarak yazdırınız.

ÖRNEKLER

#include <stdio.h>

int main() {

int i;

for(i=1;i<=5;i++)

printf("Merhaba");

return 0;

}

❖ Örnek 2: 1’ den 20’ye kadar

olan tamsayıları ekrana

yazdıran programın akış

diyagramını oluşturunuz ve

C programlama dilinde

kodunu for döngüsü

kullanarak yazınız

ÖRNEKLER

#include <stdio.h>

int main() {

for (int i = 0; i <= 20; i++)

{

printf("%i \n", i);

}

printf("\n");

return 0;

}

❖ Örnek 3 : 12 'den 54'e kadar olan çift

sayıların toplamını hesaplayan programı C

programlama dilinde for döngüsünü

kullanarak kodlayınız.

ÖRNEKLER

#include <stdio.h>

int i, sonuc;

main() {

sonuc= 0;

for (i=12; i<54; i=i+2)

{

sonuc= sonuc+ i;

}

printf("12'den 54'e kadar çift sayıların toplamı

:%d", sonuc);

return 0;

}

❖ Örnek 4 : Klavyeden girilen N

adet tam sayının ortalamasını

bulan programı for döngüsü

kullanarak C dilinde yazınız.

ÖRNEKLER

#include <stdio.h>

#include<stdlib.h>

int main (){

double ortalama=0;

int i, toplam=0,N,sayi;

printf("Kac adet sayi toplanacak:");

scanf("%d",&N);

for (i=0;i<N;i++){

printf("%d.sayiyi gir:",i+1);

scanf("%d",&sayi);

toplam += sayi;

}

ortalama=(float) toplam/N;

printf("Girilen sayilarin toplami=%d\n",toplam);

printf("Girilen sayilarin ortalamasi=%f\n",ortalama);

return 0;

}

❖ Örnek 5 : Kullanıcı

tarafından girilen bir sayının

faktöriyelinin for döngüsüyle

hesaplandığı ve ekrana

yazdırıldığı programın akış

diyagramını çiziniz ve C

programlama dilinde kodunu

yazınız.

ÖRNEKLER

#include <stdio.h>

int main() {

int c, n;

int faktoriyel = 1;

printf("Faktoriyel Alinacak Sayiyi Giriniz\n");

scanf("%d", &n);

for (c = 1; c <= n; c++)

faktoriyel = faktoriyel * c;

printf("%d", faktoriyel);

printf("\n");

return 0;

}

❖ Örnek 6 : Klavyeden girilen

bir N pozitif tam sayısına

kadar 7’ye tam bölünen

sayıları listeleyen C

programını yazınız.

ÖRNEKLER

#include <stdio.h>

#include<stdlib.h>

int main (){

int i,N;

printf("Bir sayi giriniz:");

scanf("%d",&N);

for(i=0;i<=N;i++){

if(i % 7==0){

printf("%d\n",i);

}

}

return 0;

}

❖ Örnek 7 : Aşağıda ekran

görüntüsü verilen şekildeki gibi

klavyeden girilen bir sayı adeti

kadar ekrana * karakteri

bastıran C programını yazınız.

ÖRNEKLER

#include <stdio.h>

#include<stdlib.h>

int main (){

int sayi, i, j;

printf("Bir sayi giriniz:");

scanf("%d",&sayi);

for(i=0;i<sayi;i++){

for(j=0;j<sayi;j++){

printf("*");

}

printf("\n");

}

return 0;

}

Kütüphaneler

❖ Eğer program içerisinde belirtilen bloklar belli bir koşula göre

tekrar edecekse koşullu döngü yapısı kullanılır. Koşulun döngü

bloğundan önce veya sonra kontrolüne göre koşullu döngü

yapıları ikiye ayrılır. Verilen koşul ifadesi doğru olduğu sürece,

döngü bloğun tekrar icra görmesini sağlayan döngü yapısının

akış şeması şeklindeki gösterimi yandaki gibidir;

❖ Döngünün kaç defa çalışacağı bilinmediği durumlarda kullanılır

Koşullu Döngüler

Kütüphaneler

❖ C programlama dilinde ön kontrollü koşullu

döngü yapısı olarak while döngüsü

kullanılmaktadır. While döngüsü döngü sayısının

belli olmadığı durumlarda kullanılır. belirtilen şart

sağlandığı sürece döngü çalışmaya devam eder.

❖ Kullanımı aşağıdaki gibidir;

while (devam_şartları)

{

Döngü_Bloğu

}

while döngüsü

❖ devam_şartları : Döngünün bir kere daha icra ettirileceği veya

döngünün icrasına son verileceği buradaki koşul ifadeleri

değerlendirilerek yapılır. Buradaki ifade doğru sonuç verdikçe

döngü yenilenir.

❖ While döngüsü altında tek bir satırlık kod yazıldığında blok

parantezleri { } kullanmak zorunluluğu yoktur, ancak döngü için

birden fazla komut yazılacaksa blok parantezleri { }

kullanılmalıdır

❖ Örnek 1 : While döngüsü kullanarak ekrana 10 defa ‘while dongusu’ yazdıran programın C kodunu

yazınız.

ÖRNEKLER

#include <stdio.h>

int main(){

int i=0;

while(i<10){

printf("%d \n",i);

i++;

}

}

❖ Örnek 2 :While döngüsü ile, sayı 0 değilse tekrardan sayı girmesini isteyen programın C kodunu

yazınız.

ÖRNEKLER

#include <stdio.h>

int main() {

int c =1;

while (c != 0)

{

printf("\nBir Sayi Girin:");

scanf("%i", &c);

}

printf("\nDonguden Cikildi. ");

printf("\n");

return 0;

}

❖ Örnek 3 : While döngüsü ile, 0’dan 20’ye kadar olan tek sayıları ekrana yazdıran programın C

kodunu yazınız.

ÖRNEKLER

##include <stdio.h>

int main(){

int i=0;

while(i<20){

if(i%2 == 1){ //Eğer 2 ile modu alındığında sonuç 1 ise sayı tektir.

printf("%d \n",i);

}

i++;

}

}

❖ Örnek 4 :Klavyeden girilen bir N pozitif tam sayısından sıfıra (0) kadar olan tamsayıları listeleyen C

programını while döngüsü kullanarak yazınız.

ÖRNEKLER

#include <stdio.h>

#include <stdlib.h>

int main() {

int N,i;

printf(" Bir Sayi Giriniz:");

scanf (" %d" ,&N);

i=N;

while (i>=0){

printf(" %d \n", i);

i--;

}

return 0;

}

Kütüphaneler

❖ Do-While döngüsü, döngü bloğunun tekrar

icrası verilen koşul ifadesi gerçekleştiği sürece

gerçekleşen döngü yapısıdır.

❖ Bazı durumlarda döngü bir kere çalıştıktan

sonra devam edip etmemeye karar vermek

isteriz. Bu durumlarda "do while" döngüsü

kullanılır.

❖ Döngünün gövdesi en az bir kere çalışmaktadır.

do

{

Döngü_Bloğu

} while (devam_şartları)

Do-While döngüsü

❖ Do-While döngüsü içindeki döngü bloğu

her durumda en az bir kere çalışır.

Tekrar çalışıp çalışmayacağını ise şart

belirler.

❖ devam_şartları : Döngünün bir kere

daha icra ettirileceği veya döngünün

icrasına son verileceği buradaki koşul

ifadeleri değerlendirilerek yapılır. Döngü

sonuna gelindiğinde buradaki ifade

doğru sonuç verdikçe döngü yenilenir.

Kütüphaneler

#include <stdio.h>

int main()

{

int a = 10;

do{

printf("Kod Bloklari");

}

while(a > 100);

}

Do-While döngüsü

❖ Sol tarafta yer alan kodda, while

komutunun içindeki koşulun yanlış

olmasına rağmen döngü 1 defa çalışır.

Bunun sebebi do-while döngüsü şarta

bakmaksızın önce ‘do’ bloğunu çalıştırır

daha sonra şartı kontrol eder.

#include <stdio.h>

int main()

{

int a = 0;

do{

printf("Kod Bloklari\n");

a++;

}

while(a < 5);

}

Kütüphaneler

while & do-while döngüsü

Kütüphaneler

Döngü Kontrol Ifadeleri

❖ Döngü içerisinde bazı durumların oluşması sonucu döngüden çıkmak veya döngüyü bir sonraki değeri için

çalıştırmak gerekebilir. C dilinde bu işlemleri gerçekleştirmek üzere iki komut mevcuttur;

✓ break

✓ continue

❖ Break komutu, programın icrasını döngü dışına taşır ve programın icrası döngünün bittiği yerden devam eder.

Break komutunu içeren en içteki blok terk edilir. Genellikle bazı koşulların oluşması sonucunda döngünün diğer

deyimlerinin icra edilmemesi gereken veya edilmesinin gereksiz olduğu durumlarda kullanılır.

❖ Switch-case, for, while veya do-while komutları ile oluşan bloklar içinde yer alabilir. Genellikle, switch-case

yapısında her bir case satırının sonunda break kullanılır. Aksi takdirde, herhangi bir satırda break komutuna

rastlanıncaya kadar sonraki case değerleri ile karşılaştırma yapılmadan o satırlara ait olan tüm komutlar icra edilir.

Kütüphaneler

Döngü Kontrol Ifadeleri

❖ Continue komutu, döngü bloğuna ait diğer komutların atlanmasını ve programın icrasının döngünün bir sonraki

çevriminden devam etmesini sağlar. Genellikle bazı koşulların oluşması sonucunda döngünün diğer deyimlerinin

icra edilmemesi gereken veya edilmesinin gereksiz olduğu ve döngünün tekrar icrasının gerçekleştiği (kontrol

ifadesine bağlı olarak) durumlarda kullanılır.

❖ For, while veya do-while komutları ile oluşan bloklar içinde yer alabilir.

Kütüphaneler

Döngü Kontrol İfadeleri

#include <stdio.h>

int main (){

int sayi=0;

while (sayi < 20){

printf("%d \n",sayi);

if (sayi == 10){

break ;

}

sayi ++;

}

return 0 ;

}

while-break

#include <stdio.h>

int main()

{

for(int i = 0; i < 5; i++)

{

if(i == 2){

break;

}

printf("Kod Bloklari\n");

}

printf("Dongu sonlandi ve program dongunun sonundan devam ediyor.");

}

if-break

Kütüphaneler

Döngü Kontrol İfadeleri

#include <stdio.h>

main()

{

for(int i = 0; i < 5; i++)

{

if(i == 2){

continue;

}

printf("KOD BLOKLARI\n");

}

}

#include <stdio.h>

main()

{

int toplam = 0;

for(int i = 1; i < 10; i++)

{

if(i == 4){

continue;

}

toplam += i;

}

printf("Toplam = %d",toplam);

}

if-continue if-continue

Kütüphaneler

İç içe Döngüler

Döngüleri iç içe kullanabiliriz.

Çoğu programda bu durum gerekmektedir.

Örnek: Çarpım tablosunu yazdıralım.

#include <stdio.h>

int main()

{

int i, j;

for (i=1; i <= 10; i++){

printf("i: %d: ",i);

for (j=1; j <= 10; j++){

printf("%5d" , i*j);

} /* end-for-içerdeki */

printf("\n");

} /* end-for-dışardaki */

}

TEŞEKKÜRLER…

ELEKTRİK ELEKTRONİK

MÜHENDİSLİĞİ

Dr. Öğr. Üyesi Enes KAYMAZ

EEM165 BİLGİSAYAR PROGRAMLAMA I

Ders Notu 6

ELEKTRİK ELEKTRONİK

MÜHENDİSLİĞİ

Dr. Öğr. Üyesi Enes KAYMAZ

Kütüphaneler

❖ Bilgisayarlar yardımıyla yapılan işlemlerde, çok sayıda veri girilmesi ve girilen verilerin işlenerek belirli bir

sistematiğe göre sıralanması gerekebilir.Belirli bir düzende olan verilerin işlenmesi hem daha kolay hem de

daha pratiktir.

❖ Bu nedenle bilgisayar programlarında çoklu verileri işlemek için "dizi" olarak adlandırılan sıralı veri alanları

kullanılır.

❖ –dizi elemanların bellekte (program çalıştığı sürece) sürekli biçimde bulunması

❖ –dizi elemanların aynı türden değişkenler olması

❖ Tek isimle adlandırılan bu veri alanları belleğe ardışık olarak yerleşirler.

Diziler

Kütüphaneler

❖ Aynı amaç için birden fazla aynı tip değişkene ihtiyacımız olur.

❖ Örneğin,100 kişilik bir sınıfın "Programlama Dilleri" dersinden aldığı yılsonu notlarını tek tek değişkenlere

aktarmak yerine (100 tane değişken adı gerekli), bunları ‘Notlar’ isimli bir dizide tutulabilir.

❖ Bu şekilde birçok değişken adı ve alanı kullanımına gerek kalmaz.

❖ Bilgiler tek bir isimle belirli bir yapı altında tutulur ve hızlı bir şekilde işlenirler.

Diziler

Kütüphaneler

❖ Birden fazla aynı tip değişkeni bir arada tutan veri yapısıdır.

❖ En basit tipi bir boyutlu olanıdır. Bir boyutlu dizinin elemanları bir satırda bir biri ardına dizilmiş şekilde kabul

edilir.

❖ Basit Kodlama:

Diziler

float kutle[5]= { 8.471, 3.683, 9.107, 4.739, 3.918 };

int maliyet[3] = { 25, 72, 94 };

double a[4] = { 10.0, 5.2, 7.5, 0.0};

Kütüphaneler

❖ Dizinin n. elemanı c[n-1]ile gösterilir.

❖ c[0]+ c[1]+ c[2]+…….c[n-1]

❖ Dizi elemanları normal değişkenler gibidir.

❖ c[0] = 3;

❖ printf(“%d”, c[0]);

❖ İndis numarası üzerinde işlemler gerçekleştirilebilir.

❖ a= 2, b=3 ise c[a+b]+= 8; // c[5] eleman değerine 8 ekler.

❖ 4. Dizinin ilk üç elemanının değerleri toplamını yazdırmak içinprintf(“%d”, c[0]+c[1]+c[2]);

Diziler

Kütüphaneler

❖ Dizilere tanımlama sırasında ilk değer atanabilir.

int A[10]={8, 4, 10, 2, 5, 6, 7, 8, 9, 4};

❖ Eğer ilk değerler dizinin eleman sayısından az ise kalan elemanların değeri 0 olur.

int A[10]={1, 2, 3, 4};/* A[10] dizisinin ilk değerleri{1, 2, 3, 4, 0, 0, 0, 0, 0, 0}*/

❖ Eğer ilk değerlerle bir dizi tanımlıyorsak, dizinin boyutunu boş bırakabiliriz.

int A[]={1, 2, 3, 4, 5, 6, 7, 8, 9, 10};

/* A dizisinin10 elemanı var. A[0]..A[9] */

❖ Bir dizinin uzunluğu belirtilmeden de başlangıç değeri atamak mümkündür.

int a[] = { 100, 200, 300, 400 };

float v[] = { 9.8, 11.0, 7.5, 0.0, 12.5};

Dizilere Değer Atama

Kütüphaneler

❖ Dizi elemanlarının başlangıç değerleri otomatik olarak sıfır olmaz. Bunun için en azından ilk eleman değeri

sıfır yapılmalıdır.

❖ int n[5] = {0}; // tüm elemanların değeri 0 olur

❖ Eğer gereğinden fazla başlangıç değeri varsa hata oluşur.

❖ int n[5] = {1, 2, 3, 4, 5, 6}; //altı adet başlangıç değeri

Diziler

Kütüphaneler

❖ Dizinin elemanlarına ulaşılırken genelde döngüler kullanılır, ve döngünün her iterasyonunda dizinin bir

elemanı üzerinde çalışılır.

❖ En sık kullanılan döngü for döngüsüdür. Çünkü döngü ifadesinde açıkça hem ilk değer atamaları hem de indeks

değişkeni kullanılabilmektedir:

Dizi Kullanımı

ÖRNEKLER

#include<stdio.h>

#include<conio.h>

int main(){

int a[10] = {25, 18, 20, 0, 29, 5, 4, 8,19,13};

a[7]= a[7] + a[1];

printf("%d",a[7]);

getch();return 0;}

❖ Örnek1:

a[10] = {25, 18, 20, 0, 29, 5, 4, 8,19,13} dizisinin

2. ve 8. elemanlarının toplamını ekrana yazdıran

programı C dilinde yazınız.

ÖRNEKLER

#include<stdio.h>

#include<stdlib.h>

int main(){

int i,N;

printf("Bir N degeri giriniz:");

scanf("%d",&N);

int dizi [N];

for (i=1;i<=N;i++){

dizi[i-1]=i;

}

for(i=1;i<=N;i++){

printf("%d",dizi[i]);

}

return 0;

}

❖ Örnek 2:

Klavyeden girilen pozitif bir N tamsayısına kadar

olan sayıları bir diziye yazan

ve diziden okuyarak ekrana listeleyen C

programını yazınız.

ÖRNEKLER

#include<stdio.h>

#include<stdlib.h>

int main(){

int i,N;

printf("Bir N degeri giriniz:");

scanf("%d",&N);

int dizi[N];

for (i=1;i<=N;i++){

dizi[i]=i;

}

for (i=1;i<=N;i++){

printf("%d=%d\n",i,dizi[i]*dizi[i]);

}

return 0;

}

❖ Örnek 3:

Klavyeden girilen pozitif bir N tamsayısına kadar

olan sayıları bir diziye yazan ve diziden okuyarak

sayıların karesini ekrana listeleyen program

kodunu yazınız.

ÖRNEKLER

#include<stdio.h>

#include<stdlib.h>

int main(){

int i,dizi[10],enbuyuk;

for(i=0;i<10;i++){

printf("%d.sayiyi

giriniz:",i+1);

scanf("%d",&dizi[i]);

}

enbuyuk=dizi[0];

for(i=1;i<10;i++){

if (dizi[i]>enbuyuk){

enbuyuk=dizi[i];

}

}

printf("En buyuk deger=%d\n",enbuyuk);

return 0;

}

❖ Örnek 4:

Kullanıcı tarafından girilen birbirinden farklı 10

adet pozitif tam sayı arasından

en büyük olanı bulmaya yarayan C programını

yazınız.

ÖRNEKLER

#include<stdio.h>

#include<stdlib.h>

int main(){

int i, dizi[10],aranan;

for(i=0;i<10;i++){

printf("%d.sayiyi giriniz:",i+1);

scanf("%d", &dizi[i]);

}

printf("\n Aranan degeri giriniz:");

scanf("%d",&aranan);

for(i=0;i<10;i++){

if(dizi[i]==aranan){

printf("Aranan deger dizinin %d.sirasinda bulundu.",i+1);

}

}

return 0;

}

❖ Örnek 5:

Kullanıcı tarafından girilen birbirinden

farklı 10 adet pozitif tam sayı

içerisinden

istenilen bir sayının dizinin kaıçıncı

sırasında olduğunu bulmaya yarayan C

programını yazınız

TEŞEKKÜRLER…

ELEKTRİK ELEKTRONİK

MÜHENDİSLİĞİ

Dr. Öğr.Üyesi Enes KAYMAZ

EEM165 BİLGİSAYAR PROGRAMLAMA I

Ders Notu 7

ELEKTRİK ELEKTRONİK

MÜHENDİSLİĞİ

Dr. Öğr. Üyesi Enes KAYMAZ

❖ Örnek 1 : Klavyeden girilen

pozitif bir tam sayının

faktoriyelini hesaplayan C

programını yazınız.

ÖRNEKLER (KOŞUL İFADELERİ-DÖNGÜLER)

#include<stdio.h>

#include<stdlib.h>

int main(){

int sayi,i;

int sonuc=1;

printf("Bir sayi giriniz:");

scanf("%d",&sayi);

for(i=1;i<=sayi;i++){

sonuc=sonuc*i;

}

printf("%d!=%ld",sayi,sonuc);

return 0;

}

❖ Örnek 2 : Klavyeden girilen

alt ve üst sınır değerleri için,

bu sınır aralıklarında kalan

çift sayıları yazdıran

programın kodunu C dilinde

yazınız.

ÖRNEKLER (KOŞUL İFADELERİ-DÖNGÜLER)

#include<stdio.h>

#include<stdlib.h>

int main(){

int i, alt,ust;

printf("Alt siniri giriniz:");

scanf("%d",&alt);

printf("Ust siniri giriniz:");

scanf("%d",&ust);

for (i=alt;i<=ust;i++){

if(i% 2==0){

printf("%d\t",i);

}

}

return 0;

}

❖ Örnek 3 : Klavyeden taban ve

üs değerleri girilen bir sayinin

kuvvetini hesaplayan C

programını yazınız.

❖ (pow ()komutu kullanmayınız)

ÖRNEKLER (KOŞUL İFADELERİ-DÖNGÜLER)

#include<stdio.h>

#include<stdlib.h>

int main(){

int taban,us,i;

long int sonuc=1;

printf("Taban degerini giriniz:");

scanf("%d",&taban);

printf("Us degerini giriniz:");

scanf("%d",&us);

for(i=1;i<=us;i++){

sonuc=sonuc*taban;

}

printf("%d^%d=%ld\n",taban,us,sonuc);

return 0;

}

❖ Örnek 4 : Kullanıcı tarafından

girilen satır adeti kadar Floyd

Üçgeninin elde edilmesini

sağlayan C programını döngü

kullanarak yazınız

ÖRNEKLER

#include <stdio.h>

#include <stdlib.h>

int main(){

int satir,i,j,sayac=1;

printf("Floyd ucgeni icin satir sayisini giriniz:");

scanf("%d",&satir);

for(i=1;i<=satir;i++){

for(j=1;j<=i;j++){

printf("%d",sayac);

sayac++;

}

printf("\n");

}

return 0;

}

❖ Örnek 5 : Aşağıda ekran

görüntüsü verilen şekildeki gibi

klavyeden girilen bir sayı adeti

kadar ekrana * karakteri

bastıran C programını yazınız.

ÖRNEKLER

#include<stdio.h>

#include<stdlib.h>

int main(){

int sayi,i,j,k;

printf("Bir sayi giriniz:");

scanf("%d",&sayi);

for(i=0;i<sayi;i++){

for(j=0;j<i;j++){

printf(" ");

}

for(k=0;k<sayi;k++){

printf("*");

}

printf("\n");

}

return 0;

}

❖ Örnek 6 : Aşağıda verilen matematiksel

işlemin sonucunun do-while döngü yapısını

kullanılarak elde edilmesini ve elde edilen

toplam sonucunun ekrana gösterilmesini

sağlayan C programını yazınız.

❖ N ve M değerleri kullanıcı tarafından

girilecektir.

ÖRNEKLER

#include<stdio.h>

#include<stdlib.h>

int main(){

int i,j,N,M,toplam=0;

printf("N sayisini giriniz:"); scanf("%d",&N);

printf("M sayisini giriniz:"); scanf("%d",&M);

i=1;

do{

j=1;

do{

toplam=toplam+((i*i)+(2*i*j)+(j*j));

j++; }

while(j<=M);

i++;

}

while(i<=N);

printf("Sonuc=%d",toplam);

return 0;

}

෍

İ=1

𝑁

෍

𝐽=1

𝑀

𝑖2 + 2𝑖𝑗 + 𝑗2

TEŞEKKÜRLER…

ELEKTRİK ELEKTRONİK

MÜHENDİSLİĞİ

Dr. Öğr. Üyesi Enes KAYMAZ

	EEM164_Sunum_1
	Slayt 1
	Slayt 2: Bilgisayar Nedir?
	Slayt 3: Bilgisayar Donanımı
	Slayt 4: Bilgisayar Yazılımı
	Slayt 5: Bilgisayar Programı
	Slayt 6: Bilgisayar Programı
	Slayt 7
	Slayt 8
	Slayt 9: Sayı Sistemleri
	Slayt 10: Sayı Sistemleri
	Slayt 11: Sayı Sistemleri
	Slayt 12: Sayı Sistemleri
	Slayt 13: Temel Kavramlar ve Matematiksel İşlemler
	Slayt 14: Temel Kavramlar ve Matematiksel İşlemler
	Slayt 15: Temel Kavramlar ve Matematiksel İşlemler
	Slayt 16: ALGORİTMA
	Slayt 17: Algoritmanın Özellikleri
	Slayt 18: Algoritmanın Faydaları
	Slayt 19: Algoritma Geliştirmek
	Slayt 20: Algoritma Geliştirmek
	Slayt 21: Algoritma Geliştirmek
	Slayt 22: Algoritma Geliştirmek
	Slayt 23: Algoritma Geliştirmek
	Slayt 24: AKIŞ DİYAGRAMLARI
	Slayt 25
	Slayt 26
	Slayt 27
	Slayt 28
	Slayt 29
	Slayt 30: Algoritmaların Sınıflandırılması
	Slayt 31: Basit (Lineer) Algoritmalar
	Slayt 32: Basit (Lineer) Algoritmalar
	Slayt 33: Mantıksal Algoritmalar
	Slayt 34: Döngüsel Algoritmalar
	Slayt 35: Döngüsel Algoritmalar
	Slayt 36
	Slayt 37
	Slayt 38
	Slayt 39
	Slayt 40
	Slayt 41:
	Slayt 42

	EEM164_Sunum_2
	Slayt 1
	Slayt 2: Değişkenler ve Veri Girişi-Çıkışı
	Slayt 3: Değişkenler ve Veri Girişi-Çıkışı
	Slayt 4: Değişkenler ve Veri Girişi-Çıkışı
	Slayt 5: Değişkenler ve Veri Girişi-Çıkışı
	Slayt 6: Değişkenler ve Veri Girişi-Çıkışı
	Slayt 7: Nesne-Değişken
	Slayt 8: Veri tipleri
	Slayt 9: Veri Tipleri
	Slayt 10: Veri Tipleri
	Slayt 11: Veri Tipleri
	Slayt 12: Veri tipleri, kapladığı alanlar (size) ve değer aralıkları (range)
	Slayt 13: Değişken isimlendirme
	Slayt 14: Değişken Oluşturma ve Değer Atama
	Slayt 15: Değişken Oluşturma ve Değer Atama
	Slayt 16: Değişken Oluşturma ve Değer Atama
	Slayt 17: Değişken Oluşturma ve Değer Atama
	Slayt 18: Değişken Oluşturma ve Değer Atama
	Slayt 19: Değişken Oluşturma ve Değer Atama
	Slayt 20: Değişken Oluşturma ve Değer Atama
	Slayt 21: Değişken Oluşturma ve Değer Atama
	Slayt 22: Veri Çıkışı ve Metin Yazdırma
	Slayt 23: Veri Çıkışı ve Metin Yazdırma
	Slayt 24: Veri Çıkışı ve Metin Yazdırma
	Slayt 25: C dilinin bazı Anahtar Sözcükleri
	Slayt 26: Kütüphaneler
	Slayt 27

	EEM164_Sunum_3
	Slayt 1
	Slayt 2: Kütüphaneler
	Slayt 3: Kütüphaneler
	Slayt 4: Kütüphaneler
	Slayt 5: Kütüphaneler
	Slayt 6: Kütüphaneler
	Slayt 7: Kütüphaneler
	Slayt 8: Kütüphaneler
	Slayt 9: Kütüphaneler
	Slayt 10
	Slayt 11
	Slayt 12
	Slayt 13
	Slayt 14
	Slayt 15
	Slayt 16
	Slayt 17
	Slayt 18
	Slayt 19
	Slayt 20
	Slayt 21
	Slayt 22
	Slayt 23
	Slayt 24
	Slayt 25
	Slayt 26
	Slayt 27
	Slayt 28
	Slayt 29
	Slayt 30
	Slayt 31
	Slayt 32

	EEM164_Sunum_4
	Slayt 1
	Slayt 2: Kütüphaneler
	Slayt 3: Kütüphaneler
	Slayt 4: Kütüphaneler
	Slayt 5: Kütüphaneler
	Slayt 6: Kütüphaneler
	Slayt 7: Kütüphaneler
	Slayt 8: Kütüphaneler
	Slayt 9: Kütüphaneler
	Slayt 10: Kütüphaneler
	Slayt 11: Kütüphaneler
	Slayt 12: Kütüphaneler
	Slayt 13: Kütüphaneler
	Slayt 14: Kütüphaneler
	Slayt 15
	Slayt 16
	Slayt 17
	Slayt 18
	Slayt 19
	Slayt 20
	Slayt 21
	Slayt 22
	Slayt 23
	Slayt 24
	Slayt 25
	Slayt 26

	EEM164_Sunum_5
	Slayt 1
	Slayt 2: Kütüphaneler
	Slayt 3: Kütüphaneler
	Slayt 4: Kütüphaneler
	Slayt 5
	Slayt 6
	Slayt 7
	Slayt 8
	Slayt 9
	Slayt 10
	Slayt 11
	Slayt 12: Kütüphaneler
	Slayt 13: Kütüphaneler
	Slayt 14
	Slayt 15
	Slayt 16
	Slayt 17
	Slayt 18: Kütüphaneler
	Slayt 19: Kütüphaneler
	Slayt 20: Kütüphaneler
	Slayt 21: Kütüphaneler
	Slayt 22: Kütüphaneler
	Slayt 23: Kütüphaneler
	Slayt 24: Kütüphaneler
	Slayt 25: Kütüphaneler
	Slayt 26

	EEM164_Sunum_6
	Slayt 1
	Slayt 2: Kütüphaneler
	Slayt 3: Kütüphaneler
	Slayt 4: Kütüphaneler
	Slayt 5: Kütüphaneler
	Slayt 6: Kütüphaneler
	Slayt 7: Kütüphaneler
	Slayt 8: Kütüphaneler
	Slayt 9
	Slayt 10
	Slayt 11
	Slayt 12
	Slayt 13
	Slayt 14

	EEM164_Sunum_7
	Slayt 1
	Slayt 2
	Slayt 3
	Slayt 4
	Slayt 5
	Slayt 6
	Slayt 7
	Slayt 8

