

Surfaces and angles

Section I V

Vocabulary

A. Read the text and look at the diagram.

One-dimensional (1D) shapes

Two-dimensional (2D) shapes

A line has only **one dimension**: length (l). For example, the line from Point A to Point B has a length of 4 centimeters (cm). An **arc** is also a one-dimensional shape. It is a curved line between two points.

Some shapes have two dimensions: length and height (h). Squares, rectangles, triangles and circles are two-dimensional shapes. The length around most shapes is called the perimeter but the length around a circle is the circumference. The width of a circle is the diameter. The length from the center to the edge of the circle is called the radius (r).

The space between two lines is an **angle**. Squares and rectangles have four angles of 90 **degrees**. The sign for degrees is a small ° above the line. Some triangles have a 90° angle. These are called **right-angled** triangles. The sign for a right angle in a triangle is a small square. The sign for any other angle is a curved line.

Two-dimensional shapes have **area**. The **formula** for the area of a rectangle is *length* × *height*. For example, a rectangle 4 cm × 3 cm has an area of 12 square centimeters (**cm**²). The formula for the area of a triangle is $\frac{1}{2}$ × length (or **base**) × height. For example, a triangle with base 4 cm and height 3 cm has an area $\frac{1}{2}$ × 4 × 3 = 6 cm².

The formula for the area of a circle is πr^2 , where π , pronounced **pi**, is a constant – roughly 3.142. The area of a circle of radius 4 cm is 3.142 × 4^2 = 50.272 cm². We use π to calculate the length of the circumference too. The formula is $2\pi r$. So the circumference of the same circle of radius 4 cm is $2 \times 3.142 \times 4 = 25.136$ cm.

B. Look at Figure 1. Answer the questions.

- I. What is ABCD?
- 2. What is BCD?
- 3. How many right-angled triangles are there?
- 4. What size is angle BFE?
- 5. What is the curved line from A to B?

C. Look at Figure 2. Match each item to the correct area or length.

12 cm / 18.852 cm / 25 cm² / 16 cm / 6 cm² / 20 cm²

- I. The square is _____.
- 2. The rectangle is _____
- 3. The right-angled triangle is _____.
- **4.** The perimeter of the right-angled triangle is _____.
- 5. The perimeter of the other triangle is ______.
- **6.** The circumference of the circle is _____.

0 CD

Section 2 Reading

There are several kinds of triangles (see Figure 3 on the next page) but there are two rules that apply to all triangles. Firstly, the internal angles of a triangle always add up to 180° (degrees). Secondly, the area of a triangle is always $\frac{1}{2} \times \text{base} \times \text{height}$.

An *equilateral* triangle has three sides that have the same length. It also has three angles that are the same size. An *isosceles* triangle has two sides that are equal and two angles that are equal. A *scalene* triangle has no equal sides or angles.

a a

equilateral triangle isosceles tr

right-angled triangle

The most important kind of triangle is the *right-angled triangle*. It gets its name from the 90° (or *right*) angle, which all of these triangles have. This kind of triangle has one of the most well-known rules in science – Pythagoras's Theorem.

Pythagoras was a Greek philosopher and mathematician, who lived from about 582 to 500 BC. He worked with a group of other mathematicians and developed his theorem which states: the square on the hypotenuse is equal to the sum of the squares on the other two sides. The hypotenuse is the side opposite the right angle. In the right-angled triangle in Figure 3, we could state the theorem as $a^2 + b^2 = c^2$. We can see the theorem in operation in Figure 4.

If a = 3, $a^2 = 9$ If b = 4, $b^2 = 16$ therefore $c^2 = 25$ therefore $c = \sqrt{25}$ therefore c = 5

Figure 4

A. Choose the best answer in each case.

- I. What is the area of a triangle with a base of 16 cm and a height of 9 cm?
 - a. $8 \, \text{cm}^2$
 - b. 17 cm
 - c. 17 cm^2
 - d. 72 cm^2
- 2. Which kind of triangle has no equal angles?
 - a. equilateral -
 - b. isosceles
 - c. scalene
 - d. right-angled
- 3. What is each angle in an equilateral triangle?
 - a. 30°
 - b. 60°

- c. 90°
- d. 180°
- **4.** In the right-angled triangle in Figure 3, the *hypotenuse* is:
 - a. the horizontal line
 - b. the vertical line
 - c. the diagonal line
 - d. the right angle
- 5. If a right-angled triangle has a base of 4 and a height of 5, what is the hypotenuse?
 - a. $\sqrt{41}$
 - b. $\sqrt{20}$
 - c. 41
 - d. $\sqrt{9}$

I. We need a	itable relative p	ronoun			
	new engineer in our section. is about geology, _		un	derstands t	he mechanics of abject at the college.
	ete of Sighs is the m				

A. Listen and complete the summary of the reading text in Section 2. Write one word in each space.

There are several kinds	of: equilateral, isosceles, scalene and
righttr	riangles. However, for all triangles, the internal
add up	to 180° and the area is $\frac{1}{2}$ base times
Pythagoras developed a	a theorem for right-angled triangles which states: the
square on the	is equal to the sum of the squares on the other
two sides.	

B. Listen to the conversation. The man doesn't understand two expressions in mathematics. Circle these two expressions.

addition	multiplication	subtraction	
division	square root	geometry	
formula	squared	trigonometr	

(0)
V CD
III UU

C. Listen again and complete	the summary.	Write one	word,	letter o
number in each space.				

When you see a small number	above the line after a letter or
, it means squared. For ex	cample, A ² means A
In other words, you must	_ A by itself. So if A is 2, A squared
The opposite of squared	is the square The
sign for this looks like a check with a line	the letter or
number. So \sqrt{A} means the square root of	If A is 16, the
square root is	