
siemens.com/sitrain

TIA-MICRO2

SITRAIN
Digital Industry Academy

SIMATIC S7- S7-1200 Advanced Course

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

SITRAIN
Training for Industry

SIMATIC S7 1200
Advanced Course

Course TIA- MICRO2

1 Training Devices

2 Commissioning Hardware and Software

3 Analog Value Processing

4 Data Blocks

5 Introduction to PROFINET

6 Introduction to Industrial Communication

7 Tags and Messages in HMI

8 Technology Objects

Name:

Course from: to:

Instructor:

Location:

This document was produced for training purposes.
SIEMENS assumes no responsibility for its contents.
The reproduction, transmission or use of this document or its
contents is not permitted without express written authority.
Offenders will be liable to damages.

Copyright © Siemens AG 2020. All rights, including rights
created by patent grant or registration of a utility model or
design, are reserved.

SITRAIN course offer on the Internet:www.siemens.com/sitrain

Training Document Version: V16.00.00 (for STEP7 V16)

9 Troubleshooting

10 SCL

11 Training and Support

12

13

14

15

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

SIMATIC S7-1200 Advanced Course

TIA-MICRO2 - Course Contents and Training Devices 1-1
Training Document V16.00.00

Contents 1

1. Presentation of the Course Contents and Training Devices 1-2

1.1. Objectives ... 1-2
1.2. Course Contents ... 1-3

1.3. Training Area with S7-1200 .. 1-5

1.4. Schematic Diagram Industrial Ethernet/ PROFINET Networking ... 1-6

1.5. Configuration of the S7-1214 Training Device .. 1-7

1.6. The Simulator .. 1-8

1.7. The Conveyor Model ... 1-9
1.8. PLC Tags .. 1-10

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

 SIMATIC S7-1200 Advanced Course

1-2 TIA-MICRO2 - Course Contents and Training Devices
 Training Document V16.00.00

1. Presentation of the Course Contents and Training
Devices

1.1. Objectives

At the end of the chapter the participant will ...

... be familiar with the main course contents

… be familiar with the training devices

… be familiar with the networking of the training devices

Objectives
In this chapter, the main course contents and the training devices are presented.

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

SIMATIC S7-1200 Advanced Course

TIA-MICRO2 - Course Contents and Training Devices 1-3
Training Document V16.00.00

1.2. Course Contents

OB

FB

DB

FC

0V

-10V +10V
Poti

Use of S7 block types for the conveyor
model programming

STEP7 Diagnostic
functions

TIA Portal V13
STEP7 Basic

Distributed I/O with
PROFIENT IO

Open CPU-CPU
communication

PID controller

Axis control

Technology objects
Acquiring measured values

with indirect addressing

HMI configuration

Course Contents
The following topics are dealt with in this course:

• Analog value processing
Analog value processing is used to convert process values (for example, the measured
values (measuring points) of a level sensor) into a "tangible" unit (e.g. m³), to then display it
on an HMI, for example.

• S7 block types
In this course, the S7 block types and their use are presented. Differentiation is made
between logic (code) and data blocks. Data blocks are structured, user-defined data memory.
They can be used for simple data storage or as interface to HMI devices. They can also be
used to create complex database structures.
In the section Logic Blocks (FC, FB, OB), the properties and the fields of application are
presented.

• Programming in SCL
SCL is a further IEC programming language, in addition to LAD and FBD, for S7.
Programming in SCL offers decisive advantages in the implementation of complex,
mathematical calculations, as well as in the handling of large amounts of data.

• Indirect addressing
Indirect addressing enables you to dynamically address memory cells within the PLC during
program runtime. For example, measured value series can thus be formed by writing each
new measured value into a different memory cell. Fundamental mechanisms for indirect
addressing are available in LAD and FBD. The complete instruction set is available in SCL.

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

 SIMATIC S7-1200 Advanced Course

1-4 TIA-MICRO2 - Course Contents and Training Devices
 Training Document V16.00.00

• Introduction to PROFINET IO
PROFINET (similar to PROFIBUS) is used to connect distributed I/Os to the CPU. In this
course, the fundamental addressing mechanisms and procedures for configuring distributed
PROFINET field devices are presented.

• Expanded HMI configuration
In addition to the basic functions of an HMI device presented in the Basic Course, the alarm
message system for the display of discrete and analog alarms as well as the creation of
input/output fields and the time-of-day synchronization between HMI device and PLC are
dealt with in this course.

• Integrated CPU technology objects
The S7-1200 offers integrated technology functions for motion control of axes and for PID
control loops. The necessary steps for creating a technology object and the commissioning of
a PID control loop and stepper motor are part of this course.

• Troubleshooting with STEP7 (TIA Portal)
As the diagnostic functions of the TIA Portal are crucial for troubleshooting and system
analysis, the available online and offline functions for quick and efficient elimination of arising
faults are presented in this course.

• Open CPU-CPU Ethernet communication
For data exchange between controllers, the S7-1200 is equipped with Ethernet
communication concepts which are presented in more detail in this course and are also
practiced.

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

SIMATIC S7-1200 Advanced Course

TIA-MICRO2 - Course Contents and Training Devices 1-5
Training Document V16.00.00

1.3. Training Area with S7-1200

Training Area Setup
The training area for this course contains the following components:

• SIMATIC Field PG

• Training case with S7-1214, touchpanel and simulator

• Training case with S7-1211, stepper motor and control loop

• Training setup ET 200S as distributed I/O

• Conveyor model

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

 SIMATIC S7-1200 Advanced Course

1-6 TIA-MICRO2 - Course Contents and Training Devices
 Training Document V16.00.00

1.4. Schematic Diagram Industrial Ethernet/ PROFINET Networking

CPU 1211

CPU 1214

ET 200S Field PG

KTP 600 PNCSMPM

192.168.111.112
192.168.111.111

192.168.111.113

192.168.111.114

Networking of the Individual Components
The components of the training area are all networked to one another via (industrial) Ethernet.
The RJ45 connection technology is the most widely used and can also be found in the home.

A point-to-point connection always exists between the components. This makes it necessary to
use a switch (here in the form of a Compact Switch Module) which is used here as a network
distributor.

The (industrial) Ethernet is the basis for the communication between the components. Depending
on the type of communication, different protocols are used, for example:

• TCP communication between CPU and HMI and

• PROFINET IO communication between CPU and ET 200S

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

SIMATIC S7-1200 Advanced Course

TIA-MICRO2 - Course Contents and Training Devices 1-7
Training Document V16.00.00

1.5. Configuration of the S7-1214 Training Device

CPU 1214CCSM AI4/AO2 DI8/DO8PM

Configuration of the S7-1214 Training Device
The picture shows the central module of the S7-1214 training case. The CPU has two signal
modules (SMs) for digital and analog I/Os, as well as a signal board (SB) with an analog output
as an expansion. The I/O addresses of the modules shown in the picture are already stored in the
start project ( next chapter) and do not have to be parameterized separately.

Module addresses at a glance:

• CPU 1214
− DI14  I 0.0 to I 1.5
− DO10  Q4.0 to Q5.1
− AI2  IW64, IW66
− AO1  QW80

• SM 1234
− AI4  IW96, IW98, IW100, IW102
− AO2  QW96, QW98

• SM1223
− DI8  I 8.0 to I 8.7
− DO8  Q8.0 to Q8.7

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

 SIMATIC S7-1200 Advanced Course

1-8 TIA-MICRO2 - Course Contents and Training Devices
 Training Document V16.00.00

1.6. The Simulator

0V

-10V +10VI 0.1

I 0.2

I 0.3

Q 4.1

I 0.0

DI

DO

P_Operation

Q 4.3P_FaultI 0.7 S_Ackn

Poti

NC contact

NO contact

The Simulator
Together with the touchpanel, the simulator is used to operate the system. It consists of the
following components:

• 14 switches, whereby the I 0.1 switch is an NC contact

• 10 LEDs

• Rotary potentiometer for setting or simulating analog input signals

The digital signals are connected to the I/Os of the CPU. The analog signal is processed by the
SM 1234 analog module.

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

SIMATIC S7-1200 Advanced Course

TIA-MICRO2 - Course Contents and Training Devices 1-9
Training Document V16.00.00

1.7. The Conveyor Model

"P_Horn"
(Q 8.7)

"B_LB"
(I 8.0)

"B_Bay1"
(I 8.5)

"B_Bay2"
(I 8.6)

"B_Bay3"
(I 8.7)

"P_Bay2"
(Q 8.2)

"S_Bay2"
(I 8.2)

"P_Bay1"
(Q 8.1)

"S_Bay1"
(I 8.1)

"P_Bay3"
(Q 8.3)

"S_Bay3"
(I 8.3)

"P_BayLB"
(Q 8.4)

"S_BayLB"
(I 8.4)

"K_Right" (Q 8.5)
"K_Left" (Q 8.6)

The Conveyor Model
The picture shows the sensors and actuators of the conveyor model as well as the I/O addresses
to which they are wired.

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

 SIMATIC S7-1200 Advanced Course

1-10 TIA-MICRO2 - Course Contents and Training Devices
 Training Document V16.00.00

1.8. PLC Tags

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

SIMATIC S7-1200 Advanced Course

TIA-MICRO1 - Commissioning the Hardware and Software
Training Document, V16.00.00 2-1

Contents 02

2. Commissioning the Hardware and Software ... 2-2

2.1. Objectives ... 2-2

2.2. Task Description: The Conveyor Model as Distribution Conveyor 2-3
2.3. Types of Program Blocks .. 2-4

2.4. Possibilities for Program Structuring ... 2-5

2.5. Process Images .. 2-6

2.6. Cyclic Program Execution ... 2-7

2.7. Data Exchange between Touchpanel and CPU ... 2-9

2.8. Task Description: Commissioning the Training Case ... 2-10
2.8.1. Exercise 1: Deleting Old Projects ... 2-11
2.8.2. Exercise 2: Establishing an Online Connection to the CPU ... 2-12
2.8.3. Exercise 3: Resetting the CPU to Factory Settings .. 2-13
2.8.4. Exercise 4: Opening existing Project and save it with new name 2-14
2.8.5. Exercise 5: Checking and, if necessary, adjusting the device configuration 2-15
2.8.6. Exercise 6: Downloading the device configuration and user program into the CPU 2-16
2.8.7. Exercise 7: Setting the IP address of the touchpanel ... 2-17
2.8.8. Exercise 8: Transferring the touchpanel project ... 2-18
2.8.9. Exercise 9: Function test touchpanel project and CPU program .. 2-19
2.8.10. Exercise 10: Selecting the Editing Language ... 2-20
2.8.11. Exercise 11: Runtime Settings .. 2-21
2.9. Additional Information ... 2-22
2.9.1. Industrial Ethernet: IP Address and Subnet Mask .. 2-23
2.9.2. Online Access: Assigning an IP Address for the PG .. 2-24
2.9.3. OB – Organization Blocks ... 2-25
2.9.4. Events which Start an OB ... 2-26
2.9.5. Events which Cannot Start an OB .. 2-27
2.9.6. Interrupting the Cyclic Program .. 2-28
2.9.7. DB – Data Block .. 2-29
2.9.8. FC – Function .. 2-30
2.9.9. FB – Function Block .. 2-31
2.9.10. Adding a New Block .. 2-32
2.9.11. Block programming ... 2-33
2.9.12. Block Calls .. 2-34
2.9.13. Block Groups ... 2-35
2.9.14. Compiling a Block ... 2-36
2.9.15. Downloading Blocks into the CPU .. 2-37
2.9.16. Monitoring a Block .. 2-38
2.9.17. Block Networks ... 2-39

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

 SIMATIC S7-1200 Advanced Course

 TIA-MICRO2 - Commissioning the Hardware and Software
 Training Document, V16.00.00 2-2

2. Commissioning the Hardware and Software
2.1. Objectives

Objectives
Important basics from the TIA-MICRO1 course are first of all repeated in this chapter. Then, an
already configured system with described basic functions is commissioned.

At the end of the chapter the participant will ...

... be familiar with the different S7 block types

... be familiar with the principle of "structured programming"

... be familiar with the meaning of the process image tables (PII, PIQ)

... be able to explain the principle of cyclic program execution

… be able to establish an online connection to the controller

... be able to create a hardware station and parameterize it

… be able to commission an existing PLC project

… be able to commission a touchpanel

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

SIMATIC S7-1200 Advanced Course

TIA-MICRO1 - Commissioning the Hardware and Software
Training Document, V16.00.00 2-3

2.2. Task Description: The Conveyor Model as Distribution Conveyor

Task Description
In this chapter, the conveyor model is commissioned as a distribution conveyor. For this, an
appropriate exercise is carried out at the end of the chapter.

A CPU and touchpanel are already generated in the initial project. The user program of the CPU
is structured as follows:

• "FC_Mode“
Switching on and switching off the operation is implemented in this function.

• "FC_Conveyor"
The control of the conveyor motor for the states Operation ON and Operation OFF is
programmed in this function.

• "FC_Fault"
In this function, the conveyor is monitored for time. If a transport sequence takes longer than
6 seconds, the conveyor is stopped and an error message is triggered.

• "FC_Count"
Counting the already transported parts is programmed in this function. Setpoint and actual
quantity are specified or read out via the touchpanel.

• "FC_Signal"
The control of the indicator lights during operation is programmed in this function.

The conveyor model can be completely controlled via the touchpanel. The functions necessary
for this are already stored in the HMI project.

"FC_Mode": Operation ON/OFF

"FC_Conveyor": Controlling the conveyor motor

"FC_Fault": Monitoring the transport
sequences for time

"FC_Count": Counting the transported parts

"FC_Signal": Controlling the indicator lights
Industrial
Ethernet DI/

DQ
AI /
AQ

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

 SIMATIC S7-1200 Advanced Course

 TIA-MICRO2 - Commissioning the Hardware and Software
 Training Document, V16.00.00 2-4

2.3. Types of Program Blocks

Blocks
The programmable logic controller provides various types of blocks in which the user program
and the related data can be stored. Depending on the requirements of the process, the program
can be structured in different blocks. You can use the entire operation set in all blocks (FB, FC
and OB).

Organization Blocks (OBs)
Organization blocks (OBs) form the interface between the operating system and the user
program. The entire program can be stored in OB1 that is cyclically called by the operating
system (linear program) or the program can be divided and stored in several blocks (structured
program).

Functions (FCs)
A function (FC) contains a partial functionality of the program. It is possible to program functions
as parameter-assignable so that when the function is called it can be assigned parameters. As a
result, functions are also suited for programming frequently recurring, complex partial
functionalities such as calculations.

Function Blocks (FBs)
Basically, function blocks offer the same possibilities as functions. In addition, function blocks
have their own memory area in the form of instance data blocks. As a result, function blocks are
suited for programming frequently recurring, complex functionalities such as closed-loop control
tasks.

FB with
Instance DB

Legend:
OB = Organization block
FB = Function block
FC = Function
DB = Data block

Error

OB

Organization
blocks

Cycle

Time

Process

Operating system

FB The maximum nesting depth
depends on the CPU!

DB DB

FC

FCFB

FB

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

SIMATIC S7-1200 Advanced Course

TIA-MICRO1 - Commissioning the Hardware and Software
Training Document, V16.00.00 2-5

2.4. Possibilities for Program Structuring

Linear Programming
You can solve small automation tasks by writing the entire user program linearly in one cycle OB.
This is only recommended for simple programs.

Partitioned Programming
The program is partitioned into blocks and each block contains individual functions. Inside the
blocks the code may be structured with networks. Usually the cyclic OB1 only calls other blocks.

Structured Programming
Complex automation tasks can be implemented and maintained more easily when they are
divided into smaller partial tasks which reflect the technological functions of the automation
process or if they are to be used repeatedly. In the user program, these partial tasks are
represented by appropriate program parts, the blocks. Each block is an independent segment of
the user program.

Advantages

• Extensive programs can be clearly programmed

• Individual program parts can be standardized

• The program organization is simplified

• Changes to the program can be carried out more easily

• The program test is simplified because it can be made section by section

• Commissioning is made easier

Structured programFunctional partitioned
program

The instructions for the individual
functions are found in individual
blocks. OB 1 calls the individual

blocks one after the other.

Reusable functions are loaded into
individual blocks. OB 1 (or other

blocks) call these blocks and pass on
the pertinent data.

Linear program

All instructions are
found in one block

(usually in Organization
Block OB1)

cyclic
OB

Pump A

Pump B

Mixer

Outlet

Pump

Outlet

Mixer
Pump C

cyclic
OB

cyclic
OB

FBFC FBFC

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

 SIMATIC S7-1200 Advanced Course

 TIA-MICRO2 - Commissioning the Hardware and Software
 Training Document, V16.00.00 2-6

2.5. Process Images

Process Images
To store all input and output states, the CPU has reserved memory areas: the process image
inputs (PII) and process image outputs (PIQ). During program execution, the user program then
accesses these memory areas and not the digital inputs and output modules directly.

Process image inputs (PII)
The process image inputs (PII) is the memory area in which the states of inputs is stored. The PII
is read in from the input modules at the start of the cycle. When an input is linked in the user
program, the state of this input stored in the PII is linked. This cannot change within a cycle,
because the PII can only be updated or read in at the beginning of a cycle.
This ensures that the same result will be obtained if an input is queried several times within a
cycle.

Process image outputs (PIQ)
The process image outputs (PIQ) is the memory area in which the states of outputs are stored.
The PIQ is put out to the output modules at the beginning of the cycle. Outputs can be assigned
as well as queried in the program.
This ensures the process control only takes effect after processing the cycling program.

“Classic error”  double assignment of outputs
If a state is assigned to an output in several locations in the program, then only the state that was
assigned last is transferred to the output module. As a rule, these types of double assignments
are programming errors.

Byte 0
Byte 1
Byte 2

.
:

PII PIQ

Cyclic program

CPU memory area

.
:

1 Byte 0
Byte 1
Byte 2

.
:

CPU memory area

00

on

off

.
:

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

SIMATIC S7-1200 Advanced Course

TIA-MICRO1 - Commissioning the Hardware and Software
Training Document, V16.00.00 2-7

2.6. Cyclic Program Execution

Restart
When you switch ON or switch from STOP --> RUN, the CPU carries out a complete restart
(execution of all Startup OBs). During restart, the operating system deletes the non-retentive
memories and resets all stored hardware and diagnostic interrupts.

Cyclic program execution
Cyclic program execution occurs in an endless loop. After the execution of a program cycle is
completed, the next cycle starts automatically.

In every program cycle, the CPU carries out the following steps:

• The CPU starts the cycle monitoring time

• The CPU transfers the output states from the process image output table to the output
modules

• The CPU scans the states of the input signals and updates the process image input table

• The CPU sequentially processes the instructions of the user program using the process
images, not the inputs and outputs of the input / output modules

• Checking the elapsed cycle time

Startup program: Call and execution of the Startup-OB
(once, after PowerON, for example)

Writing the process image output table
(PIQ) in the output modules

Call and execution of the Cycle OB
(possible interruption by the call of other OBs for events,
such as, time-of-day interrupt, hardware interrupts, etc.)

Reading the input states from the input modules
and saving the states in the process image (PII)

Start the cycle monitoring time

C
PU

 C
yc

le

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

 SIMATIC S7-1200 Advanced Course

 TIA-MICRO2 - Commissioning the Hardware and Software
 Training Document, V16.00.00 2-8

Cycle time and cycle monitoring time
The time that the CPU requires for a complete cycle is the cycle time. It is monitored by the
operating system of the CPU in every cycle.
If the current cycle time exceeds the cycle monitoring time set in the CPU properties, the CPU
starts error handling.
The error OB "Time error interrupt" OB80 is started in the CPU.

• S7-1500 and S7-1200 with firmware ≥V4.0:
If it exists, the CPU continues the cycle processing after the end of OB80
If it is not present, the CPU switches to STOP mode

• S7-1200 with firmware ≤V3.x:
If it exists, the CPU continues the cycle processing after the end of OB80
If it is not present, the CPU will remain in RUN mode

Violation of the maximum cycle time twice does not lead to the calling of an OB, but to the STOP
of the CPU.

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

SIMATIC S7-1200 Advanced Course

TIA-MICRO1 - Commissioning the Hardware and Software
Training Document, V16.00.00 2-9

2.7. Data Exchange between Touchpanel and CPU

Tags
Data is exchanged between SIMATIC S7 and the HMI system via process tags. For this, tags are
created in the configuration of the WinCC system and are then assigned to a data area of the
CPU. The HMI system reads out the value of the tags cyclically and displays it, for example, in an
output field.

Data Areas
For the configuration of the tags, the following global data areas of the CPU can be used:

• Data blocks (DB)

• Bit memories (M)

• Inputs (I) and outputs (Q)

• I/O (peripheral) inputs and I/O (peripheral) outputs

HMI systems also recognize local tags without process connection, these tags are exclusively
processed internally and also do not reserve any communication resources whatsoever.

Communication
The HMI devices can communicate with the controller via the bus systems MPI, PROFIBUS DP
or Industrial Ethernet. The S7 protocol is used for this purpose. Communication is handled by the
operating systems of the S7 CPU and the HMI system. No user programming on the S7 is
required for this purpose.
An HMI device can exchange data with more than one controller at the same time.

"S_Left"
(M30.3)

Status '0' / '1'

Push button „Set bit“
Release button „Reset bit“

• PROFIBUS
• Industrial Ethernet

Update e.g. every
500ms

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

 SIMATIC S7-1200 Advanced Course

 TIA-MICRO2 - Commissioning the Hardware and Software
 Training Document, V16.00.00 2-10

2.8. Task Description: Commissioning the Training Case

Task Description
The S7-1214 training case with touchpanel is to be commissioned.

The basic project required for this is already located on your hard drive and must, if necessary, be
adjusted to the existing hardware and loaded into the CPU or the touchpanel.

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

SIMATIC S7-1200 Advanced Course

TIA-MICRO1 - Commissioning the Hardware and Software
Training Document, V16.00.00 2-11

2.8.1. Exercise 1: Deleting Old Projects

Task
Delete all existing projects.

What to Do
1. Start the TIA Portal

2. Switch to the Project view

3. Close any open projects

4. Let the system show you the existing projects and delete them as shown

1. Close currently open
project

3. Select projects to be
deleted

2.

4.

2.

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

 SIMATIC S7-1200 Advanced Course

 TIA-MICRO2 - Commissioning the Hardware and Software
 Training Document, V16.00.00 2-12

2.8.2. Exercise 2: Establishing an Online Connection to the CPU

Task
Establish a connection to the CPU 1214 and use the automatic IP address assignment of the TIA
Portal for this.

What to Do
1. Switch to the Portal view

2. Start the "Accessible devices" function "Online & Diagnostics"  "Accessible devices"

3. Select "PN/IE" for the "Type of the PG/PC interface"

4. Select the respective Ethernet interface of your field PG

 Field PG: This device has 2 Ethernet interfaces! Make sure that you use the correct
interface!

5. After searching, select the CPU 1214  Device type "S7-1200"

 Should more than one S7-1200 be found, you can find out whether you have selected
the correct CPU through the function "Flash LED". The Status LEDs of the respective
CPU flash.

6. Click on "Show" and confirm the follow-up prompt with "Yes".

 The telegram service "TCP/IP" is used to execute certain functions. For this, the CPU
and PG must be in the same IP subnet. The TIA Portal assigns your PG a temporary,
alternative IP address which is in the same subnet as the CPU. That way you can work
freely.

2. Set the interface

4.

3.

1.

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

SIMATIC S7-1200 Advanced Course

TIA-MICRO1 - Commissioning the Hardware and Software
Training Document, V16.00.00 2-13

2.8.3. Exercise 3: Resetting the CPU to Factory Settings

Task
Establish a defined initial state for the following configuration steps by resetting the CPU to
factory settings.

What to Do
1. Navigate to your CPU and open "Online & diagnostics"

2. Open the dialog "Reset to factory settings"

3. Select the item "Delete IP address" and click on "Reset"

Flashing indicates
CPU is being reset

Continuous light,
reset is completed

1.

2.

3.

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

 SIMATIC S7-1200 Advanced Course

 TIA-MICRO2 - Commissioning the Hardware and Software
 Training Document, V16.00.00 2-14

2.8.4. Exercise 4: Opening existing Project and save it with new name

Task
Open the basic project and save it using the name "My Project".

What to Do
1. Switch to the Portal view and select the menu item "Open existing project"

2. Click on "Browse" and navigate to the basic project folder. Open the project.
<Drive>:_Archive\TIA-MICRO2[version]\MICRO2_A  Double-click on MICRO2_A.ap16

3. Open the Project view

4. Save your project using the name "My_Project"
Project  Save as…  "My_Project"

1.

3.
2.

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

SIMATIC S7-1200 Advanced Course

TIA-MICRO1 - Commissioning the Hardware and Software
Training Document, V16.00.00 2-15

2.8.5. Exercise 5: Checking and, if necessary, adjusting the device configuration

Task
Check the already existing device configuration and the set I/O addresses.

What to Do
If necessary, exchange deviating modules and check the I/O addresses of the CPU and SMs
shown in the picture.

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

 SIMATIC S7-1200 Advanced Course

 TIA-MICRO2 - Commissioning the Hardware and Software
 Training Document, V16.00.00 2-16

2.8.6. Exercise 6: Downloading the device configuration and user program into
the CPU

Task

Transfer the PLC_1 (hardware and software) to the S7-1214

What to Do
1. Open the context menu of the CPU and then the Download dialog

Right-click on "PLC_1"  "Download to device"  "Hardware and Software"

2. Make the same PG/PC interface settings as in Exercise 2

 A first search starts automatically. The CPU with the configured IP address is searched
for. Since there is currently no station with this address, no results are shown.

3. Check the option "Show all compatible devices"

4. Select the device "S7-1200 | ISO | MAC address". If this applies to more than one station, you
can use the function "Flash LED" (see Exercise 2)

5. Confirm the follow-up prompt with "Yes"

6. In the following dialog, click on "Load"

After resetting to factory
settings, the CPU no longer has
an IP address  Transfer to
MAC address of CPU

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

SIMATIC S7-1200 Advanced Course

TIA-MICRO1 - Commissioning the Hardware and Software
Training Document, V16.00.00 2-17

2.8.7. Exercise 7: Setting the IP address of the touchpanel

Task
On the touchpanel, set the IP address stored in the project.

What to Do
1. Stop the current Runtime

2. Follow the instructions shown in the picture

Control Panel

IP - Address

Specify an IP address

IP address 192 168 111 111

Subnet Mask 255 255 255 0

Profinet Settings OK

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

 SIMATIC S7-1200 Advanced Course

 TIA-MICRO2 - Commissioning the Hardware and Software
 Training Document, V16.00.00 2-18

2.8.8. Exercise 8: Transferring the touchpanel project

Task
Download the existing HMI project into the touchpanel.

What to Do
1. Select the touchpanel in the Project tree

2. Click on the "Download to device" button as shown in the picture

3. Check the option "Overwrite all" and then click on "Load"

1.

2.2.

1.

3.

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

SIMATIC S7-1200 Advanced Course

TIA-MICRO1 - Commissioning the Hardware and Software
Training Document, V16.00.00 2-19

2.8.9. Exercise 9: Function test touchpanel project and CPU program

What to Do
Check the system functions described in the following.

Operation
The system can be switched on and off via the buttons "Operation ON" and "Operation OFF".

Operation OFF
The conveyor can be moved in the appropriate direction via the buttons "Jog Right" and "Jog
Left".

Operation ON
A value > 0 must be entered via the input field "Setpoint (quantity)".

When the conveyor is standing, the indicator lights show with a continuous light at Bays 1and 2
that a new part can be placed on the conveyor. If this has happened, the indicator light at the
particular bay shows with a 1Hz flashing light that the transport sequence can be started by
pressing the bay pushbutton. The part is transported until it has passed through the light barrier.
During transport, the bay indicator lights show a 2Hz flashing light.

If a transport sequence takes longer than 6 seconds, the conveyor is automatically stopped and
the fault is indicated with a flashing light on the touchpanel and the simulator LED "P_Fault"
(Q5.0). Only after the fault has been acknowledged via the appropriate touchpanel button or via
the simulator pushbutton "S_Acknowledge" (I 1.0), a new transport sequence can be started.

The transported parts are counted as they pass through the light barrier and the number is
displayed on the output field "Actual". If the number, which has been input via the input field
"Setpoint", is reached, it is indicated via the conveyor indicator light "P_BayLB" (Q 8.4). Only after
this is acknowledged via the conveyor pushbutton "S_BayLB" (I 8.4), can a new transport
sequence be started.

 The output field "Weight" does not yet display any values with the present program state.
The associated programming is done in the chapter "Analog Value Processing".

Switches system Off 
Q4.0 = FALSE

Jog conveyor to the right
when Operation is switched

off

Display of the parts
transported so far during

operation

Stop HMI Runtime

Operating state display
Switches system On 

Q4.0 = TRUE

Input and output of the
parts to be transported

Jog conveyor to the left
when Operation is

switched off

Acknowledge conveyor
faults which have

occurred

Display of a conveyor
fault which has occurred
(conveyor time ≥ 6sec)

Display of the current part
weight

Does not yet work with
present program state

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

 SIMATIC S7-1200 Advanced Course

 TIA-MICRO2 - Commissioning the Hardware and Software
 Training Document, V16.00.00 2-20

2.8.10. Exercise 10: Selecting the Editing Language

Task
Activate the project languages as shown in the picture to enable a language switch in the panel.

What to do
1. Open the folder „Languages & resources“ in the project tree and select the point “Project

languages”

2. Activate the languages “English (United States” and “German (Germany)”

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

SIMATIC S7-1200 Advanced Course

TIA-MICRO1 - Commissioning the Hardware and Software
Training Document, V16.00.00 2-21

2.8.11. Exercise 11: Runtime Settings

Task
The two shown languages should be available in the touch panel

What to do
1. Open the runtime settings and select “Languages &font”

2. Activate the both shown languages. Check the order of the languages

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

 SIMATIC S7-1200 Advanced Course

 TIA-MICRO2 - Commissioning the Hardware and Software
 Training Document, V16.00.00 2-22

2.9. Additional Information

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

SIMATIC S7-1200 Advanced Course

TIA-MICRO1 - Commissioning the Hardware and Software
Training Document, V16.00.00 2-23

2.9.1. Industrial Ethernet: IP Address and Subnet Mask

Internet Protocol
The Internet Protocol (IP) is the basis for all TCP/IP networks. It creates the so-called datagrams
(data packets specially tailored to the Internet protocol) and handles their transport within the
local subnet or their "routing" (forwarding) to other subnets.

IP Addresses
IP addresses are not assigned to a specific computer, but rather to the network interfaces of the
computer. A computer with several network connections (for example routers) must therefore be
assigned an IP address for each connection.

IP addresses consist of 4 bytes. With the dot notation, each byte of the IP address is expressed
by a decimal number between 0 and 255. The four decimal numbers are separated by dots
(see picture).

MAC Address
Every Ethernet interface is assigned a fixed address by the manufacturer that is unique
worldwide. This address is referred to as the hardware or MAC address (Media Access Control).
It is stored on the network card and uniquely identifies the Ethernet interface in a local network.
Cooperation among the manufacturers ensures that the address is unique worldwide.

Subnet Mask
The subnet mask separates the IP address into network and device (computer) address.
Only IP addresses which network part is identically can be reached.

MAC Address: 08 00 06 01 74 10

Subnet Mask: 255.255.255.0

IP Address: 192.168.111.50

MAC Address: 08 00 06 01 74 20

Subnet Mask: 255.255.255.0

IP Address: 192.168.111.112

Subnet Device Subnet Device

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

 SIMATIC S7-1200 Advanced Course

 TIA-MICRO2 - Commissioning the Hardware and Software
 Training Document, V16.00.00 2-24

2.9.2. Online Access: Assigning an IP Address for the PG

IP Address of the Programming Device
You can set the IP address of the PG as shown in the picture.

If an online connection between the programming device and the CPU is to be established, the
same subnet mask must be assigned to the two devices. The assigned IP addresses have to be
located in the same subnet.

→ 192.168.111.90

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

SIMATIC S7-1200 Advanced Course

TIA-MICRO1 - Commissioning the Hardware and Software
Training Document, V16.00.00 2-25

2.9.3. OB – Organization Blocks

OBs
Organization blocks form the interface between the user program and the CPU’s operating
system.

Organization blocks are called exclusively by the operating system. There are various start
events (time interrupt, hardware interrupt, ...see picture).

Startup Program
After a restart, a startup program is executed. In the startup OBs you can, for example, carry out
a pre-assignment of communication connections.

Cyclic program execution
The program stored in the cyclic OB is executed cyclically, after it is executed completely it is
executed again. With this cyclic program execution, the reaction time results from the execution
time for the CPU’s operating system and the sum of the command runtimes of all executed
instructions. The reaction time, that is, how fast an output can be switched in relation to an input
signal, amounts to a minimum of one time and a maximum of two times the cycle time.

Periodic Program Execution
This makes it possible to interrupt the cyclic program execution at fixed intervals. With the cyclic
interrupts, an organization block (for example OB30) is executed after an adjustable time base
(for example, every 100ms) has expired. In these blocks, closed-loop control blocks with their
sampling time are called.

Event-driven program execution
In order to be able to react quickly to a process event, the hardware interrupt can be used. After
an event occurs, the cycle is immediately interrupted and an interrupt program is executed.

With time-delay interrupts, a freely definable event can be reacted to with a time-delay; with an
error OB, the user can influence the behavior of the controller in case there is an error.

Cyclic

Startup

Op Sys

In
te

rr
up

t p
ro

ce
ss

in
g

Hardware

Hardware

Diagnostic

Time

OB1,
>=123

OB
100,

>=123

OB20,
21, …

OB40,
41, …

OB
82

FC

FC

FC

Global

FC Global

FB

Instance

FC

FC

FB

Instance

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

 SIMATIC S7-1200 Advanced Course

 TIA-MICRO2 - Commissioning the Hardware and Software
 Training Document, V16.00.00 2-26

2.9.4. Events which Start an OB

Events
The operating system of S7-1200-CPUs is based on events. There are two types of events:

• Events which can start an OB

• Events which cannot start an OB

An event which can start an OB triggers the following reaction:

• If you have assigned an OB to the event, this OB is called
If it is currently not possible to call this OB, the event is entered into a queue according to its
priority.

• If you have not assigned an OB to the event, the predefined default system reaction is carried
out.

An event which cannot start an OB triggers the predefined default system reaction for the
associated event class.

The user program cycle is therefore based on events, the assignment of OBs to those events,
and on the code which is either contained in the OB or called in the OB.

The table above gives an overview of the events which can start an OB. It is sorted according to
OB priority. 1 is the lowest priority.

OB Priority
With the exception of the startup and cyclic OBs, all OBs have a priority which can be changed
between 2 and 24. In all, the priorities are staggered from 1 - 27, whereby 1 is the lowest priority
and 27 is the highest priority.

Event Class OB No. Number Start Event Priority
Cyclic Program 1, >= 123 >= 1 End of startup or End of last cycle OB 1
Startup 100, >= 123 >=0 STOP-RUN transition 1
Time-of-day interrupt >= 10 Max. 2 Start time has been reached 2
Time-delay interrupt >= 20 Max. 4 Time-delay expired 3
Cyclic interrupt >= 30 Constant bus cycle time expired 8

Hardware interrupt >= 40

Max. 50
(more can be

used with
DETACH and

ATTACH)

•Positive (rising) edge (max. 16)
•Negative (falling) edge (max. 16) 18

•HSC: Count value= Reference value (max. 6)
•HSC: Count direction changed (max. 6)
•HSC: External reset (max. 6)

18

Status interrupt 55 0 or 1 CPU has received status interrupt 4
Update interrupt 56 0 or 1 CPU has received update interrupt 4
Manufacturer or profile-
specific interrupt 57 0 or 1 CPU has received manufacturer interrupt or profile-

specific interrupt 4

Diagnostic interrupt 82 0 or 1 Module has detected an error 5

Pull/Plug interrupt 83 0 or 1 Removal / Insertion of modules of distributed I/O 6

Rack error 86 0 or 1 Error in the input/output system of the distributed I/O 6

Time error 80 0 or 1

Cycle monitoring time exceeded, Called OB is still
being executed, Time-of-day interrupt missed, Time-of-
day interrupt missed during STOP, Queue overflowed,
Interrupt loss due to high interrupt load

22

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

SIMATIC S7-1200 Advanced Course

TIA-MICRO1 - Commissioning the Hardware and Software
Training Document, V16.00.00 2-27

2.9.5. Events which Cannot Start an OB

Compare to previous chapter.

Event Class Event Event Priority System Reaction
Insert / Remove central
modules Insert / Remove a module 21 STOP

I/O access error during
process image update I/O access error during process image update 22 Ignore

Programming error

Programming error in a block for which you
use the system reactions provided by the
operating system (Note: If you have activated
the local error handling, the error handling
routine programmed in the block takes effect.)

23 RUN

I/O access error

I/O access error in a block for which you use
the system reactions provided by the
operating system (Note: If you have activated
the local error handling, the error handling
routine programmed in the block takes effect.)

24 RUN

Maximum cycle time
exceeded twice Cycle monitoring time was exceeded twice 27 STOP

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

 SIMATIC S7-1200 Advanced Course

 TIA-MICRO2 - Commissioning the Hardware and Software
 Training Document, V16.00.00 2-28

2.9.6. Interrupting the Cyclic Program

Interruption of OBs
Every OB program execution can be interrupted between instructions by an event (OB) with a
higher priority if this is set in the properties of the CPU. (CPU > Properties > Startup > OBs
should be interruptible).

Queue
If the OBs (with the exception of cyclic OBs) are not parameterized as interruptible or have the
same or a lower priority, then this event is entered into a queue according to its priority. The start
events of a queue are processed at a later point in time in the order they occurred.

Interruption of the Cycle Program
Cyclic OBs have the lowest priority and are therefore interrupted when there are call requests
from all other OBs, even if the OBs are not parameterized as interruptible in the CPU properties.

Write
PIQ
Read
PII

Begin
OB1

Interruption
Begin

OB2xy
End

Resume
OB1

Interruption
Begin

OB2xy
Begin
OB80
End

Resume
OB2xy

End

Resume
OB1
End

Begin
OB2xy

End

.

.

Op Sys

In
te

rr
up

t e
xe

cu
tio

n

Hardware

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

SIMATIC S7-1200 Advanced Course

TIA-MICRO1 - Commissioning the Hardware and Software
Training Document, V16.00.00 2-29

2.9.7. DB – Data Block

Overview
Data blocks are used to store user data. Data blocks occupy memory space in the user memory
of the CPU. Variable data (e.g. numeric values) with which the user program works is in the data
blocks.

The user program can access the data of a data block via bit, byte, word or double-word
operations. Access can occur symbolically or absolutely.

Applications
Data blocks can be used in different ways by the user depending on their contents. Differentiation
is made between:

• Global data blocks: they contain information which can be accessed by all logic (code)
blocks in the user program

• Instance data blocks: they are always assigned to an FB. The data of this DB should only be
processed by the associated FB

Creating DBs
Global DBs are created either via the Program editor or according to a previously created "PLC
data type".

Instance data blocks are generated when a function block is called.

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

 SIMATIC S7-1200 Advanced Course

 TIA-MICRO2 - Commissioning the Hardware and Software
 Training Document, V16.00.00 2-30

2.9.8. FC – Function

Overview
Functions represent parameter-assignable blocks without memory. In STEP 7 they can have as
many input parameters, output parameters and in/out parameters as are required.

Functions have no memory; no separate, permanent data area for storing results exists.
Temporary results that occur during function execution can only be stored in the temporary
variables of the respective local data stack.

Application
Functions are primarily used when function values are to be returned to the calling blocks (for
example, mathematical functions, single control with binary logic operation).

IEC-61131-Conforming Functions

• Functions can have as many input parameters as is required. They can, however, only return
one result to the output parameter RET_VAL

• Global operands can neither be read nor written within functions

• No instances of function blocks can be called within functions

• Because of the missing "memory", the returned result of a norm-conforming function is solely
dependent on the values of the input parameter. For identical values of the input parameter,
a function always returns the identical result

It is therefore up to the programming person to create norm-conforming functions or to
individually do the block programming and block structuring in STEP 7.

 If the last three points are fulfilled, then this is recognized in the Properties under the
attribute “Block can be used as know-how protected library element” after compilation and the
block can be used in every other project.

Must assignment

"Motor"
EN ENO

Start
Setpoint

E_STOP

Motor_On
StopInput

parameters

In/Out
parameters

Speed

Output
parameters

FC

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

SIMATIC S7-1200 Advanced Course

TIA-MICRO1 - Commissioning the Hardware and Software
Training Document, V16.00.00 2-31

2.9.9. FB – Function Block

Overview
Function blocks (FB) are blocks of the user program and represent logic blocks with memory
according to the IEC Standard 61131-3. They can be called by all blocks.

Function blocks can each have as many input, output and in/out parameters as well as static and
temporary variables as are required.

Unlike FCs, FBs are instantiated, i.e. an FB is assigned its own data area in which the FB can
"remember" process states from call to call, for example. In the simplest form, this private data
area is its own DB (Instance DB).

"Memory"
You can declare static variables in the declaration section of a function block. The function block
can remember information from call to call in these variables.

The ability of a function block to remember information over several calls is the essential
difference to functions.

Application
With the help of this "memory", a function block can implement counter and timer functions or
control process units, such as processing stations, drives, boilers etc., for example.

Function blocks are well suited for controlling all those process units whose performance
depends not only on outside influences but also on internal states, such as processing step,
speed, temperature etc.

When controlling such units, the internal status data of the process unit are then copied to the
static variables of the function block.

 If no global variables are used and only multiple instances are used for FB calls, then this is
recognized in the properties under the attribute “Block can be used as know-how protected library
element” after compilation and the function block can be used in every other project.

Temp

L - Stack

Can assignment

FB

Instance
DB

Does not use any memory space (can also be declared and used within FCs and OBs)

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

 SIMATIC S7-1200 Advanced Course

 TIA-MICRO2 - Commissioning the Hardware and Software
 Training Document, V16.00.00 2-32

2.9.10. Adding a New Block

Inserting a Block
A new block is created as shown in the picture. When you create a block, the type of block (OB,
FB, FC or DB), the programming language, the symbolic name and number, among other things,
must be defined. The block numbers can be assigned automatically or manually.

In "Additional information", the block can be documented in more detail, among other things, with
a version number and an author.

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

SIMATIC S7-1200 Advanced Course

TIA-MICRO1 - Commissioning the Hardware and Software
Training Document, V16.00.00 2-33

2.9.11. Block programming

Block programming
The instructions within a block can be programmed as follows:

• using drag & drop from the favorites or the instructions catalog to anywhere in the program

• by first selecting the location in the program and then double-clicking on the desired
instruction in the favorites or the instructions catalog

Operands can be entered with an absolute or a symbolic address. If a tag table or a data block is
highlighted (not opened!) in the project tree, tags (variables) can also be pulled from the details
view using drag & drop to the appropriate location in the program.

Favorites
Frequently used LAD (FBD) elements are available in the symbol bar which can be expanded
individually using drag & drop from the Instructions catalog.

Display Favorites
On/Off

Add further input

Insert network

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

 SIMATIC S7-1200 Advanced Course

 TIA-MICRO2 - Commissioning the Hardware and Software
 Training Document, V16.00.00 2-34

2.9.12. Block Calls

Block Calls
If one block calls another block, the instructions of the called block are executed. Only when the
execution of the called block is completed, is the execution of the calling block taken up again
and continues with the instruction that follows the block call.

The block call can be programmed using drag & drop or copy & paste.

Drag & Drop

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

SIMATIC S7-1200 Advanced Course

TIA-MICRO1 - Commissioning the Hardware and Software
Training Document, V16.00.00 2-35

2.9.13. Block Groups

Block Groups
To achieve more clarity, large programs with many blocks can be divided into different block
groups. The groupings can, for example, be related to the structure of the system to be
controlled. Even if the blocks are managed in different groups, each block must have a unique
symbolic name. Regardless of the groupings, the sum of all blocks represents the user program
of the controller.

The blocks can simply be shifted between the block groups using drag & drop.

1xR

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

 SIMATIC S7-1200 Advanced Course

 TIA-MICRO2 - Commissioning the Hardware and Software
 Training Document, V16.00.00 2-36

2.9.14. Compiling a Block

Compiling a Block
With the compile icon, all changes of whatever is selected (highlighted) in the project tree are
compiled (in the example shown, all changes of the entire program are compiled). The changes
of individual blocks (select relevant block), the changes of the entire program or the changes of
the entire station with software and hardware ("Station" is selected) can be compiled.

To completely compile the blocks or the station, the context menu (right click) of the folder
"Program blocks" or the station is opened and the function "Software (rebuild all blocks)" or the
function "Hardware (rebuild all)" is selected in the menu "Compile".

In the Inspector window "Info -> Compile", the status of the compilation is displayed. If errors
occurred during compilation, you can jump directly from the error entry to the error location by
double-clicking.

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

SIMATIC S7-1200 Advanced Course

TIA-MICRO1 - Commissioning the Hardware and Software
Training Document, V16.00.00 2-37

2.9.15. Downloading Blocks into the CPU

Downloading into the CPU
The project data which is downloaded into the devices is divided into hardware and software
project data.

Hardware project data results from configuring the hardware, networks, and connections. The first
time you download the data using the icon "Download to device" the hardware project data is
completely loaded. In subsequent downloads, only configuration changes are downloaded.

To once more download the entire configuration, you open the context menu of the station and
select the function "Download to device > Hardware configuration".

Software project data involves the blocks of the user program. The first time you download, the
software project data is completely loaded. In subsequent downloads, either by means of the icon
"Download to device" or via the context menu, only changes are downloaded.

What is to be downloaded?
Selection via: Context menu of device > Download to device

• Hardware and Software (only changes): Download all new and modified software project data
as well as the new and modified hardware configuration

• Hardware configuration: Download the entire hardware configuration

• Software (only changes): Download all new and modified software project data

 If the changes to the objects to be downloaded were not compiled before the loading,
 then the compilation is automatically carried out before the download.

 The download is only carried out if the compilation is error-free.

1.

3

1

1.2

1.3

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

 SIMATIC S7-1200 Advanced Course

 TIA-MICRO2 - Commissioning the Hardware and Software
 Training Document, V16.00.00 2-38

2.9.16. Monitoring a Block

Monitoring blocks
The test function monitor block is used to be able to follow the program execution within a block.
The status or contents of the operands used in the block at the time of program execution are
displayed on the monitor.

Monitoring
Blocks can only be monitored if an online connection to the CPU exists. Furthermore, the offline
block must be identical to the online block. If the offline opened block does not match the block
stored online in the CPU, either the online stored block must be opened, or the offline opened
block must be downloaded into the CPU before you can monitor the block.

Examples:

Status fulfilled  "Element is represented with a green color"

Status not fulfilled  "Element is represented with a blue color"

Monitor Block
On / Off

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

SIMATIC S7-1200 Advanced Course

TIA-MICRO1 - Commissioning the Hardware and Software
Training Document, V16.00.00 2-39

2.9.17. Block Networks

Block networks
Just like the user program, a single block can be separated in different networks. Each network
can have a headline and comment. Inside a network, free comments can be assigned to
instructions.

Networks Insert / Delete

Open / Close
all networks

Free comments On / Off

Absolute / Symbolic
operands

Shows tag information On / Off

Network comments On / Off

Favorites On / Off

Update inconsistent block calls

Open / Close
a network

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

SIMATIC S7-1200 Advanced Course

TIA-MICRO2 - Analog Value Processing 3-1
Training Document V16.00.00

Contents 3

3. Analog value processing ... 3-2

3.1. Objectives ... 3-2
3.2. Task description .. 3-3

3.3. Principle of analog value processing .. 3-4

3.4. Properties of analog input modules .. 3-6

3.5. Properties of analog output modules .. 3-8

3.6. Analog value representation and measured value resolution ... 3-10

3.7. Analog value representation of different measuring ranges ... 3-11
3.8. Analog value representation for the analog outputs ... 3-12

3.9. Scaling analog inputs with NORM_X and SCALE_X (1) .. 3-13
3.9.1. Scaling analog inputs with NORM_X and SCALE_X (2) .. 3-14

3.10. Controlling analog outputs with NORM_X and SCALE_X .. 3-15

3.11. Comparator operations: IN_RANGE and OUT_RANGE .. 3-16
3.12. Cyclic interrupts... 3-17
3.12.1. Phase offsets for cyclic interrupts ... 3-18

3.13. Task description: Fault evaluation on the analog channel .. 3-19
3.13.1. Exercise 1: Parameterizing the Analog Module SM 1234 .. 3-20
3.13.2. Exercise 2: Hardware diagnostics for diagnostic interrupt .. 3-21
3.13.3. Exercise 3: Evaluating the diagnostics buffer of the CPU .. 3-22
3.14. Task description: Converting the analog value and outputting it on the touchpanel 3-23
3.14.1. Exercise 4: Inserting "OB_Cyclic interrupt" ... 3-24
3.14.2. Exercise 5: Programming Analog Value Processing and Lock Outs 3-25
3.14.3. Exercise 6: Downloading blocks into the CPU and testing the display on the touchpanel . 3-26

3.15. Additional Information ... 3-27
3.15.1. Additional exercise: Return of reject parts .. 3-28

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

 SIMATIC S7-1200 Advanced Course

3-2 TIA-MICRO2 - Analog Value Processing
 Training Document V16.00.00

3. Analog value processing
3.1. Objectives

At the end of the chapter the participant will ...

… be familiar with the principle of analog value processing
... be able to assign parameters to an analog module
... be able to address an analog module
... be able to interpret the resolution of a module
… be familiar with the operations for the analog value conversion
… be able to program a simple analog value conversion
... be able to evaluate the diagnostics interrupt of the analog module
… be familiar with the principle of interrupt processing
… be able to generate and program a cyclic interrupt

Objectives
In this chapter, the principle of analog value processing is presented. The goal is that the
participant can parameterize an analog module and of interpreting the resolution.

Furthermore, the necessary conversion operations are presented to be able to process an analog
value. The participant should be able to program a simple analog value conversion and be able to
interpret a diagnostics interrupt of an analog module.

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

SIMATIC S7-1200 Advanced Course

TIA-MICRO2 - Analog Value Processing 3-3
Training Document V16.00.00

3.2. Task description

AI1

Weight: 0 to 500kg

V

0 10

Simulator

EW 96

AI module

MW36

Weckalarm-OB

285
Act. Weight

Weight display on
the touchpanel

Evaluate fault on the
analog channel

0…10V 0… 27648

0… 500 kg

Task description
In this chapter, the conversion and processing of analog signals is handled.

For this, a voltage is to be set and read in on the simulator potentiometer. This voltage simulates
part weight values. It will be your task to convert the read in values every 250ms in the cyclic
interrupt into weight values between 0 kg and 500 kg using the operations NORM_X and
SCALE_X. The weight is only valid in the range of 100kg to 400kg. If the weight of the part
exceeds or falls below these limits, the part is considered invalid and no further transport
sequence can be started (Bay LEDs remain dark and conveyor movement to the right cannot be
started).

As well, you will learn how you must proceed when there is a channel fault of an analog module
to get detailed information on the fault event.

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

 SIMATIC S7-1200 Advanced Course

3-4 TIA-MICRO2 - Analog Value Processing
 Training Document V16.00.00

3.3. Principle of analog value processing

Physical
quantity

Physical
quantity

Standard
analog signal

• Pressure
• Temperature
• Flow
• Speed
• pH value
• Viscosity
• etc.

± 500mV
± 1V
± 5V
± 10V
± 20mA
4 to 20mA
etc.

Standard
analog signal

ADC

Result
memory

DAC

27648

0
IW96:P

0

27648
IW96#temp #temp

#temp #temp
0.0

1.0
QW80:P QW80

Read in the result memory into the Process
image input table (PII) at the beginning of the

cycle

Direct I/O access

Direct I/O access

Output the Process image output table (PIQ) at
the end of the cycle to the analog output

module

Analog output module

Analog input module User programProcess

Conversion
memory

Sensor Transducer

0.0

1.0

Principle of analog value processing

In a production process, there are a variety of physical quantities (such as pressure, temperature,
speed, rotational speed, pH value, and viscosity etc.) that need to be processed in the PLC for
automation purposes.

Sensor
Measuring sensors respond to changes in the quantity to be measured by such things as linear
expansion, angular ductability, and alteration of electrical conductivity.

Transducer
Measuring transducers convert these above-mentioned changes into standard analog signals,
such as: ± 500mV, ± 10V, ± 20mA, 4 to 20mA.

These signals are supplied to the analog input modules.

ADC
Before these analog values can be processed in the CPU, they must be converted to digital form.
The ADC (Analog-to-Digital Converter) on the analog input module handles this conversion.

The analog-to-digital conversion is performed sequentially. This means the signals are converted
for each analog input channel in turn.

Result memory
The result of the conversion is stored in the result memory and remains there until it is overwritten
by a new value.

You can use the "IW...:P” addressing to read the converted analog value directly from the I/O.

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

SIMATIC S7-1200 Advanced Course

TIA-MICRO2 - Analog Value Processing 3-5
Training Document V16.00.00

Analog output
The (MOVE) transfer instruction is used to write the analog values the user program calculated to
an analog output module, where a DAC (Digital-to-Analog Converter) converts them to standard
analog signals.

Analog Actuators
You can connect standard actuators directly to the analog output modules.

Analog value conversion <-> physical unit
For this purpose there are system blocks in converters in the task card "instructions”: NORM_X,
SCALE_X,

Direct peripheral access ":P"
Direct peripheral access is identified by the ":P" addition, which can be programmed in
conjunction with the absolute address or symbolic name of the analog channel.

• Reading: current instantaneous value of the analog channel is read

• Writing: output value to the analog channel becomes process effective immediately

Access via process image

• Reading: The value "frozen for one cycle" from the process image of the inputs is read. This
is the value on the AI module at the beginning of the CPU cycle or start of an OB.

• - Writing: The present value is written into the process image of the outputs. This value is only
written to the AA module after the cycle or the parameterized OB has ended and only then is
it effective in the process.

sa

br
iuz

un
er

 @
 d

uz
ce

.e
du

.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

 SIMATIC S7-1200 Advanced Course

3-6 TIA-MICRO2 - Analog Value Processing
 Training Document V16.00.00

3.4. Properties of analog input modules

Analog input modules

In STEP7, analog input modules are configured and assigned parameters in the Device
configuration of the respective PLC. The settings or parameters of all modules are downloaded
into the CPU. The CPU must be in the STOP state to do this. In a subsequent CPU warm restart,
the CPU transfers these parameters to the relevant modules.

Parameters
For the respective module, differentiation is made between module parameters and channel
parameters.

Module parameters

• General
Name and comment for the integrated analog inputs of the CPU.

• Noise Reduction
In the noise reduction, the noise frequencies of the specified frequency (in Hz) are
suppressed by the integration time which is set.

• I/O Addresses and Hardware Identifier
The address space of the entry addresses as well as the process image is defined. The
hardware identity of the device is displayed.

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

SIMATIC S7-1200 Advanced Course

TIA-MICRO2 - Analog Value Processing 3-7
Training Document V16.00.00

Channel parameters

• Measurement type
The type of measurement, such as voltage, is set with this parameter. An unused channel
must then be deactivated since it is otherwise also converted which would result in a longer
total conversion time of the module.

• Measuring Range (in the picture – Voltage range)
With this parameter, the measuring range of the selected type of measurement is set.

• Smoothing
The smoothing of analog values generates a stable analog signal for further processing.
Smoothing the analog values is recommended in case of fast signal changes (measured
value changes), for example, in the level measurement of fluctuating liquids.

• Underflow Diagnostics
Through this parameter, the underflow diagnostics is activated. If the measured value falls
below the underflow range of the channel, a diagnostic interrupt is triggered.

• Overflow Diagnostics
Through this parameter, the overflow diagnostics is activated. If the measured value exceeds
the overflow range of the channel, a diagnostic interrupt is triggered.

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

 SIMATIC S7-1200 Advanced Course

3-8 TIA-MICRO2 - Analog Value Processing
 Training Document V16.00.00

3.5. Properties of analog output modules

Analog output modules
In STEP7, analog output modules are configured and assigned parameters in the Device
configuration of the respective PLC. The settings or parameters of all modules are downloaded
into the CPU. The CPU must be in the STOP state to do this. In a subsequent CPU warm restart,
the CPU transfers these parameters to the relevant modules.

Parameters
For the respective module, differentiation is made between module parameters and channel
parameters.

Module parameters

• General
Name and comment for the integrated analog outputs of the CPU.

• Reaction to CPU STOP
− Use substitute value

The peripheral device outputs the value previously set for the channel.
− Keep last value

The peripheral device retains the value last put out before STOP.

Caution!
Make sure that the system is always in safe mode in the case of "Keep last value"!

• I/O Addresses and Hardware Identifier
The address space of the entry addresses as well as the process image is defined. The
hardware identity of the device is displayed.

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

SIMATIC S7-1200 Advanced Course

TIA-MICRO2 - Analog Value Processing 3-9
Training Document V16.00.00

Channel Parameters

• Output Type
The type of output, such as voltage, is set with this parameter. Unused outputs must be
deactivated since these are otherwise also converted which would result in a longer total
conversion time of the module.

• Output Range (in the picture – Voltage range)
The output range of the selected type of output is set with this parameter.

• Broken Wire Diagnostics (in Current mode)
With this parameter, the diagnostic Wire break is generated when there is a wire break. This
diagnostic is not noticeable in the zero range.

• Short-circuit Diagnostics (in Voltage mode)
With this parameter, a diagnostic is generated when there is a short-circuit of the output wire.
This diagnostic is not noticeable in the zero range.

• Overload Diagnostics
With this parameter, a diagnostic is generated when there is an overload.

• Substitute value
With this parameter, a substitute value is specified which the module is to output when the
CPU goes into STOP. The substitute value must be in the rated range, the over range or the
under range.

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

 SIMATIC S7-1200 Advanced Course

3-10 TIA-MICRO2 - Analog Value Processing
 Training Document V16.00.00

3.6. Analog value representation and measured value resolution

20212223242526272829210211212213214VZ

0123456789101112131415

Hex.Bit value Dec.

Bit no. min. units

Reso-
lution
in bits
+ sign
(VZ)

1 *1 ******** * * * * * * *15

* = 0 or 1

80 0000000*128 ********8

40

20

10

8

4

000000

00000

0000

000

00

02

*64

*32

*16

*8

*4

*2

******** *

******** * *

******** * * *

******** * * * *

******** * * * * *

******** * * * * * *

9

10

11

12

13

14

Representation
Negative analog values are represented as the two's complement.
The value is positive if bit No. 15=0 and negative if bit No.15=1.

Resolution
If the resolution of an analog module is less than 16 bits, the analog value is written into the
accumulator (module result memory) left-justified. The unused less significant bit positions are
filled with "0"s.

Accuracy
Resolutions of between 8 and 16 bits are possible, depending on the type of module.

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

SIMATIC S7-1200 Advanced Course

TIA-MICRO2 - Analog Value Processing 3-11
Training Document V16.00.00

3.7. Analog value representation of different measuring ranges

Range

Overflow

Over range

Rated range

Under range

Underflow

Meas.range
± 10V

Voltage
such as:

>= 11.76

11.7589
:

10.0004

10.00
7.50
:

-7.5
-10.00

- 10.0004
:

- 11.759

<= - 11.76

Units

32767

32511
:

27649

- 27649
:

- 32512

- 32768

Meas.range
4 to 20mA

>= 22.815

<= 1.1845

Current
such as:

22.810
:

20.0005

20.000
16.000

:
:

4.000

3.9995
:

1.1852

Units

32767

32511
:

27649

27648
20736

:
:

0

- 1
:

- 4864

- 32768

Meas.range
-200 to+850ºC

Temperature
e.g. Pt100 (Standard)

Units

32767

10000
:

8501

8500
:
:
:

-2000

- 2001
:

- 2430

- 32768

>= 1000.1

1000.0
:

850.1

850.0
:
:
:

-200.0

- 200.1
:

- 243.0

<= - 243.1

Meas.range
0 to300Ohm

Resistance
such as:

>=352.778

352.767
:

300.011

300.000
225.000

:
:

0.000

negative
values
not
possible

Units

32767

32511
:

27649

27648
20736

:
:

0

- 32768

- 1
:

- 4864

27648
20736

:
-20736
-27648

Voltage, Current (Symmetrical)
Converting the symmetrical voltage or current ranges results in a rated range of -27648 to
+27648.

• ± 80mV • ± 2,5 V • ± 3,2 mA
• ± 250 mV • ± 5V • ± 10 mA
• ± 500 mV • ± 10V • ± 20 mA
• ± 1 V

Voltage, Current (Asymmetrical)
Converting the asymmetrical voltage or current ranges results in a rated range of 0 to +27648.

• 0 ... 2 V • 0 ... 20 mA
• 1 ... 5 V • 4 ... 20 mA

Resistance
Converting the resistance ranges results in a rated range of 0 to +27648.

• 0 to 150 Ohm
• 0 to 300 Ohm
• 0 to 600 Ohm

Temperature
Temperatures are measured with resistance thermometers or thermocouples. Converting results
in a rated range of ten times the temperature range

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

 SIMATIC S7-1200 Advanced Course

3-12 TIA-MICRO2 - Analog Value Processing
 Training Document V16.00.00

3.8. Analog value representation for the analog outputs

Range

Overflow

Over range

Rated range

Under range

Underflow

Units

>=32767

32511
:

27649

27648
:

0
:

- 6912

- 6913
:
:
:

- 27648

- 27649
:

- 32512

<=- 32513

Output ranges:

Voltage

0

11.7589
:

10.0004

10.0000
:
0

0 to 10V 1 to 5V

0

5.8794
:

5.0002

5.0000
:

1.0000

0

11.7589
:

10.0004

10.0000
:
0
:
:
:
:
:
:
:

-10.0000

- 10.0004
:

- 11.7589

0

± 10V

0 0.9999

0

0

Output ranges:

Current

0

23.515
:

20.0007

20.000
:
0

0 to 20mA 4 to 20mA

0

22.81
:

20.005

20.000
:

4.000

0

23.515
:

20.0007

20.000
:
0
:
:
:
:
:
:
:

-20.000

- 20.007
:

- 23.515

0

± 20mA

0 3.9995

0

0

Voltage, Current (Symmetrical)
For symmetrical voltage or current ranges, a rated range of -27648 to +27648 is converted to:

• ± 10V

• ± 20mA

Voltage, Current (Asymmetrical)
For asymmetrical voltage or current ranges, a rated range of 0 to +27648 is converted to:

• 0 to 10V

• 1 to 5V

• 0 to 20mA

• 4 to 20mA

Overflow
If the value to be converted reaches the overflow range, the analog output module is disabled
(0V, 0mA).

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

SIMATIC S7-1200 Advanced Course

TIA-MICRO2 - Analog Value Processing 3-13
Training Document V16.00.00

3.9. Scaling analog inputs with NORM_X and SCALE_X (1)

27648

MAX = 1.0

MIN = 0.0

0

Sensor supplies only positive voltages

A

OUT

Valuex x+1

Δ

MAX = 1.0

MIN = 0.0

-27648

Sensor also supplies negative voltage

B

Value

OUT

x x+1

Δ

A B

NORM_X scales the input
signal at input “Value” in
the limits “MIN and MAX”
to the signal range 0.0 to
1.0

Norm_X
The analog module converts the voltage range of -10V to +10V into the value range of -27648 to
+27648. The "Normalize" instruction scales a value by mapping it to a linear scale. You can use
the MIN and MAX parameters to define the limits of a value range that is applied to the scale.
Depending on the position of this value to be scaled in the value range, the result is calculated
and stored as a floating-point number. If the value to be scaled is equal to the value at the MIN
input, the instruction returns the value "0.0" as the result. If the value to be scaled is equal to the
value at the MAX input, the instruction supplies the result "1.0".

Resolution
In example B, the measurement occurs with twice the resolution or with half as much measuring
tolerance Δ, since the measured value is mapped to the greater units range of -27648 to +27648.

Data Types

• The parameters on the input-side can be one of the following data types:
SINT, INT, DINT, USINT, UINT, UDINT or REAL

• The parameter OUT can be one of the following data types: REAL or LREAL

Parameters

• VALUE: Value which is scaled

• MIN: Lower limit of the value range

• MAX: Upper limit of the value range

• OUT: Scaled signal 0.0 to 1.0

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

 SIMATIC S7-1200 Advanced Course

3-14 TIA-MICRO2 - Analog Value Processing
 Training Document V16.00.00

3.9.1. Scaling analog inputs with NORM_X and SCALE_X (2)

Sensor supplies only positive voltages

1.0

300

0

0.0

A

OUT

VALUE

0.0 1.0
VALUE

OUT

300

-300

B

0

A B

Sensor also supplies negative voltage

SCALE_X
The "Scale" instruction scales the value at the VALUE input linearly by mapping it to a specified
value range. When the "Scale" instruction is executed, the floating-point value at the VALUE input
is scaled to the value range which was defined by the MIN and MAX parameters. The result of
the scaling is an integer which is stored at the OUT output.

Example
In the example shown, the value at the VALUE input is scaled within the limits 0 to 300 for case
A. In case B, VALUE is scaled to the limits -300 to 300.

 The VALUE input may only be within the limits 0.0 to 1.0!

Parameters

• VALUE: Value which is scaled

• MIN: Lower limit of the value range

• MAX: Upper limit of the value range

• OUT: Result of scaling

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

SIMATIC S7-1200 Advanced Course

TIA-MICRO2 - Analog Value Processing 3-15
Training Document V16.00.00

3.10. Controlling analog outputs with NORM_X and SCALE_X

Example: Control valve 0 to 100%

Calculated valve position in the
limits 0 to 100% is scaled to the

signal 0.0 to 1.0.

Normalized signal is scaled to the
corresponding rated range, here 0 to

27648, of the actuator.

100

1.0

0.0

0

OUT

VALUE
1.0

27648

0
0.0

OUT

VALUE

Controlling analog outputs (Example)

An analog value (valve position) calculated by the user program in the range 0 to 100% is
converted to the range 0 to +27648 through the combination of NORM_X and SCALE_X. In
outputting the unscaled value to an analog output module, it will control the analog actuator (for
example, a servo valve) with, for example, 0V to +10V (depending on the output range set).

The example shows the scaling for an actuator that is to be controlled with the value 0 (0V or
0mA) when the program value is 0%, and with the maximum value (for example, +10V or 20mA)
when it is 100%.

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

 SIMATIC S7-1200 Advanced Course

3-16 TIA-MICRO2 - Analog Value Processing
 Training Document V16.00.00

3.11. Comparator operations: IN_RANGE and OUT_RANGE

IN_RANGE
100 500

OUT_RANGE

IN_RANGE
With the "Value within range" instruction you can query whether the value at the VAL input is
within a specific value range. You define the limits of the value range with the parameters MIN
and MAX. In executing the query, the "Value within range" instruction compares the value at the
VAL input with the values of the parameters MIN and MAX and assigns the result to the box
output. If the value at the VAL input fulfills the comparison MIN <= VAL <= MAX, the box output
has signal state "1". When the comparison is not fulfilled, the box output has signal state "0".

The compare function is only executed if the values to be compared are of the same data type
and the box output is used.

OUT_RANGE
With the "Value outside range" instruction you can query whether the value at the VAL input is
outside of a specific value range. The limits of the value range are defined through the
parameters MIN and MAX. In executing the query, the "Value outside range" instruction
compares the value at the VAL input with the values of the parameters MIN and MAX and
assigns the result to the box output. If the value at the VAL input fulfills the comparison MIN >
VAL or VAL > MAX, the box output has signal state "1". When the comparison is not fulfilled, the
box output has signal state "0".

The compare function is only executed if the values to be compared are of the same data type
and the box output is used.

OK / NOT_OK
The OK (NOT_OK) instruction checks whether the value of the variable specified through the box
corresponds to a valid REAL or LREAL. If this is the case, the box supplies RLO '1' at its output.

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

SIMATIC S7-1200 Advanced Course

TIA-MICRO2 - Analog Value Processing 3-17
Training Document V16.00.00

3.12. Cyclic interrupts

RUN

Prio 1

Prio 7RUN OB200 OB200 OB200
Interval time

OOB1 B1OB1 OB1 OB1 OB1 OB1 O B1 Prio 1

Interval time Interval time

Execution of cyclic interrupts:

Prio 7

Description
Cyclic interrupt OBs are used to start programs in equidistant intervals regardless of the cyclic
program execution.

The time interval defines the intervals in which the cyclic interrupt OB is started and is an integral
multiple of the basic clock of 1ms. The phase offset is the time by which the start time is shifted
vis-à-vis the basic clock. When several cyclic interrupt OBs are used, you can use this offset to
prevent a simultaneous starting time should the time intervals of the cyclic interrupt OBs have a
common multiple. You can specify a period between 1 ms and 60000 ms as the time interval.

Note
The runtime of every cyclic interrupt OB must be considerably less than its time interval. If a cyclic
interrupt OB is not yet completed but is once again pending for processing because the clock has
run out, the time error interrupt OB is started. After that, the error-causing cyclic interrupt is
carried out or discarded.

Example
You have inserted two cyclic interrupt OBs into your program:

• cyclic interrupt OB1

• cyclic interrupt OB2

For cyclic interrupt OB1, you have set a time interval of 20 ms and for cyclic interrupt OB2, a time
interval of 100 ms. After the time interval of 100 ms has run out, cyclic interrupt OB1 reaches its
starting time for the fifth time, cyclic interrupt OB2 for the first time. In order to nevertheless
process the cyclic interrupt OBs with a time delay, enter a phase offset for one of the two cyclic
interrupt OBs.

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

 SIMATIC S7-1200 Advanced Course

3-18 TIA-MICRO2 - Analog Value Processing
 Training Document V16.00.00

3.12.1. Phase offsets for cyclic interrupts

1000 ms
Phase offset

OB 202

OB 204

Phase offset

With cyclic interrupt OBs, you can start programs at regular (equidistant) intervals. For this, you
have to enter a time interval and a phase offset for every cyclic interrupt OB used.

Note
When you assign parameters to several cyclic interrupt OBs, you must give each cyclic interrupt
OB a different cyclic time or phase offset in order to prevent a simultaneous execution or a
queue. When a cyclic interrupt OB is created, the cyclic time of 100 and the phase offset of 0 are
entered as the start value.

Procedure
To enter a time interval (cyclic time) and a phase offset for a cyclic interrupt OB, please proceed
as follows:

• in the Project tree, open the folder "Program blocks"

• right-click on an existing cyclic interrupt OB

• in the context menu select the command "Properties"

• the dialog "<Name of the cyclic interrupt OB>" is opened

• in the area tree, click on the group "Cyclic interrupt"

• the input fields for the time interval (cyclic time) and the phase offset are displayed

• enter the time interval and the phase offset

• confirm the entries with "OK"

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

SIMATIC S7-1200 Advanced Course

TIA-MICRO2 - Analog Value Processing 3-19
Training Document V16.00.00

3.13. Task description: Fault evaluation on the analog channel

AI0

Weight: 0 to 500kg

0
10

Simulator

≥ 11.759 IW 96

Analog module

V

Task description

You are to provoke a channel fault on analog channel 0 of the AI4/AO2 module and then evaluate
it. For this, the measuring range of the analog input is first to be set to ± 5V and then you are to
set an input voltage which is too high on the simulator potentiometer.

You are to investigate the fault condition which occurs using the STEP7 online functions.

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

 SIMATIC S7-1200 Advanced Course

3-20 TIA-MICRO2 - Analog Value Processing
 Training Document V16.00.00

3.13.1. Exercise 1: Parameterizing the Analog Module SM 1234

Task

Parameterize the analog module SM 1234.

What to Do
Make the settings for the analog module as shown in the picture.

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

SIMATIC S7-1200 Advanced Course

TIA-MICRO2 - Analog Value Processing 3-21
Training Document V16.00.00

3.13.2. Exercise 2: Hardware diagnostics for diagnostic interrupt

Task
After you have assigned parameters to your analog module in the previous exercise and have
activated the diagnostics interrupt, you are now to initiate a diagnostic interrupt by knowingly
setting the voltage too high.

After the CPU signals an ERROR because the voltage is too high at the input of the analog
module, you are to localize the "error" that occurred by using a simple online connection and, in
the next step, read out detailed information from the CPU (see picture).

What to Do
1. On the simulator, set a voltage which is either too low or too high

(voltage < -11.759V or voltage > +11.759V)

2. Establish an online connection to the CPU
 My_Project  select Station  Go online

3. Open the list of Local modules
 My_Project  PLC_1  Local modules

4. Open the faulty analog module
Double-click on the module

5. In the Inspector window, display the "Diagnostics" tab and click the link in "Details".  The
diagnostics buffer of the CPU opens.

 The Diagnostic Interrupt OB 82 can be programmed to give you detailed information
about the error event. (evaluation of the OB 82 start information).

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

 SIMATIC S7-1200 Advanced Course

3-22 TIA-MICRO2 - Analog Value Processing
 Training Document V16.00.00

3.13.3. Exercise 3: Evaluating the diagnostics buffer of the CPU

Event class with
indication whether

coming or done event

Error details

Task

Evaluate the information highlighted in the picture. sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

SIMATIC S7-1200 Advanced Course

TIA-MICRO2 - Analog Value Processing 3-23
Training Document V16.00.00

3.14. Task description: Converting the analog value and outputting it
on the touchpanel

OB235

Analog value
processing

0V

-10V +10V
Poti

MW36

1. Set the “part weight”
on the potentiometer

2. Convert the analog value
into weight values

3. Display the set part
weight on the touchpanel

Task Description
An analog value processing is to be programmed in a cyclic interrupt. The converted analog value
(part weight: 0 to 500kg) is stored in memory word "MW_Weight" (MW36) and is then to be
displayed on the touchpanel.

Furthermore, the part weight is to be checked for validity and the result is to be assigned to bit
memory "M_Weight_OK" (M35.0):

• 100kg ≤ MW36 ≤ 400kg  "M_Weight_OK" = TRUE

• otherwise  "M_Weight_OK" = FALSE

The bit memory is already linked to the I/O field "Act. Weight" on the touchpanel and influences
its background color.

If "M_Weight_OK” delivers the value FALSE, the bay indicator lights on the conveyor must remain
dark and no new transport sequence can be started. The lock outs in "FC_Signal” and
"FC_Conveyor” necessary for this must be programmed by you.

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

 SIMATIC S7-1200 Advanced Course

3-24 TIA-MICRO2 - Analog Value Processing
 Training Document V16.00.00

3.14.1. Exercise 4: Inserting "OB_Cyclic interrupt"

2xL

1xL

Task
Insert the Cyclic interrupt OB into your user program.

What to Do
1. Open the "Add new block" dialog

My_Project  PLC_1  Program blocks  Double-click on "Add new block"

2. Select the OB type "Cyclic interrupt"

3. Assign the block name "OB_Cyclic interrupt"

4. Set a cyclic time of 250ms

5. Click on OK

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

SIMATIC S7-1200 Advanced Course

TIA-MICRO2 - Analog Value Processing 3-25
Training Document V16.00.00

3.14.2. Exercise 5: Programming Analog Value Processing and Lock Outs

OB

Task
Program the analog value processing represented in the picture in "Cyclic_interrupt” and then the
lock outs dependent on the part weight in "FC_Signal” and "FC_Conveyor”.

What to Do
1. Activate the instructions NORM_X and SCALE_X and assign the parameters as shown in the

picture.

 #tempReal is a local, temporary tag variable of the type REAL

 PLC tags are already created for the tag variables "S_Weight" and "MW_Weight".

2. Program the comparison to find out whether the weight is within the limits 100 to 400 kg. For
this, use the instruction "IN_Range" and assign the RLO to "M_Weight_OK”.

3. Insert "M_Weight_OK" as a lock out in the correct locations in "FC_Signal" and
"FC_Conveyor".

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

 SIMATIC S7-1200 Advanced Course

3-26 TIA-MICRO2 - Analog Value Processing
 Training Document V16.00.00

3.14.3. Exercise 6: Downloading blocks into the CPU and testing the display on the
touchpanel

For invalid / valid weight, the bay
indicator lights are off / on and the
conveyor cannot / can be started

1xR Download
in PLC

Task
Check the functions you previously programmed.

What to Do
1. Download all modified blocks into the CPU

Right-click on PLC_1  Download to device  Software

2. On the touchpanel, check whether the weight value is displayed correctly and whether the
background color changes when there is an invalid weight

3. Switch the operation on and enter a setpoint quantity

4. Set an invalid weight and check whether the bay indicator lights on the conveyor model
remain dark and whether the conveyor motor can no longer be started

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

SIMATIC S7-1200 Advanced Course

TIA-MICRO2 - Analog Value Processing 3-27
Training Document V16.00.00

3.15. Additional Information

 sa

br
iuz

un
er

 @
 d

uz
ce

.e
du

.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

 SIMATIC S7-1200 Advanced Course

3-28 TIA-MICRO2 - Analog Value Processing
 Training Document V16.00.00

3.15.1. Additional exercise: Return of reject parts

Potentiometer to set (simulate) the weight:

0 to 10V 0 to 500kg

Good part when weight OK (M35.0 = '1')

100kg <= Weight <= 400kg

Removal point

Reject parts Good parts

Return of reject parts:

when M_Weight_OK = '0' return part to Bay 3 ("B_Bay3", I 8.7)

0V

-10V +10V

Function up until now
Parts are transported from Bay 1 or 2 through the light barrier. A transport sequence is started as
soon as a part is placed on the conveyor at Bay 1 or 2 and the associated bay pushbutton is
pressed. The transport sequence ends as soon as the part has passed through the light barrier.

The acquisition of the weight (to be set on the potentiometer) of the transported parts is already
programmed in "Cyclic_interrupt". If the part weight is outside the allowed range of 100 to 400kg,
the bit memory "M_Weight_OK" (M35.0) is assigned the status '0'.

Task
Parts whose weights lie outside of the allowable range are to be returned to Bay 3 ("B_Bay3",
I8.7). As well, these parts are not to be counted.

What to Do
1. Expand the block "FC_Conveyor" to include the described return function

2. Expand the block "FC_Count" in such a way that the reject parts are not counted

3. Save your project and download all blocks into the CPU

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

SIMATIC S7-1200 Advanced Course

TIA-MICRO2 - Data Blocks 4-1
Training Document V16.00.00

Contents 4

4. Data Blocks ... 4-2

4.1. Objectives ... 4-2
4.2. Data blocks (DBs) ... 4-3

4.3. Overview of data types in S7-1200 ... 4-4
4.3.1. Elementary data types for S7-1200 .. 4-5
4.3.2. Data types for Timers, Date and Time-of-day ... 4-6
4.3.3. Complex data types for S7-1200 .. 4-8

4.4. Creating a data block .. 4-10
4.5. Block access for DBs without the attribute "Optimized block access" 4-11

4.6. Block access for DBs with the attribute "Optimized block access" 4-12

4.7. Start value, monitor value, retain (retentivity) ... 4-13

4.8. Editing and monitoring a data block .. 4-14

4.9. Function for modifying tags in data blocks .. 4-15
4.10. Retentivity in system FBs (1): Separate instance DBs ... 4-16
4.10.1. Retentivity in system FBs (2): Storage in global DB ... 4-17
4.10.2. Retentivity in system FBs (3): Multiple instance in the FB .. 4-18

4.11. Accessing DB variables .. 4-19

4.12. Task description: DB_Parts .. 4-20
4.12.1. Exercise 1: Creating and declaring DB_Parts .. 4-21
4.12.2. Exercise 2: Replacing bit memories with DB variables... 4-22
4.12.3. Exercise 3: Making the IEC-Counter retentive (Global DB) .. 4-23
4.12.4. Exercise 4: Transferring the modified program into the CPU and monitoring "DB_Parts" . 4-24
4.12.5. Exercise 5: Updating the HMI tag interfacing and transferring it to the Touchpanel 4-25

4.13. Task Description: Archiving part weights in "DB_Parts" using "FieldWrite" 4-26
4.13.1. Indirect addressing of Array elements with "FieldRead" and "FieldWrite" (1) 4-27
4.13.2. Indirect addressing of Array elements with "FieldRead" and "FieldWrite" (2) 4-28
4.13.3. Exercise 6: Creating a re-usable function "FC_Ind_Weight" and declaring the interface .. 4-29
4.13.4. Exercise 7: Programming the DB access as re-usable using "FieldWrite" 4-30
4.13.5. Exercise 8: Calling the new function in "FC_Count" ... 4-31
4.13.6. Exercise 9: Monitoring "DB_Parts" ... 4-32
4.14. Additional Information ... 4-33
4.14.1. Additional exercise: Reading back the setpoint (quantity) and adopting it as the start value4-34
4.14.2. Type conversion .. 4-35

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

 SIMATIC S7-1200 Advanced Course

 TIA-MICRO2 - Data Blocks
4-2 Training Document V16.00.00

4. Data Blocks
4.1. Objectives

At the end of the chapter the participant will ...

... understand the purpose of global data blocks

... be familiar with elementary and complex data types

... be able to monitor a data block

... be familiar with the possibilities for addressing data block variables

… understand the principle of retentiveness in data blocks

… be able to indirectly address Array elements in FBD/LAD

Objectives
In this chapter, the purpose of data blocks and the S7 data types are presented. The goal is that
the participant can create a data block and declaring it.

In this context, the term retentiveness is also presented and the possibilities of using it.

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

SIMATIC S7-1200 Advanced Course

TIA-MICRO2 - Data Blocks 4-3
Training Document V16.00.00

4.2. Data blocks (DBs)

FB with
Instance DB

Legend:
OB = Organization block
FB = Function block
FC = Function
DB = Data block

The maximum nesting depth
depends on the CPU!

Operating system
DB DB

FC

FCFB

FB

FB

Error

Cycle

Time

Process

OB

Organization
blocks

Overview
Data blocks are used for storing user data and take up space in the user memory of the CPU.
Data blocks contain variable data (for example, numeric values) with which the user program
works.

The user program can access the data in a data block with bit, byte, word or double-word
operations. The access can be either symbolic or absolute.

Area of application
You can use data blocks in different ways, depending on their contents. You differentiate
between:

• Global data blocks: These contain information that all the logic (code) blocks in the user
program can access.

• Instance data blocks: These are always assigned to a particular FB. The data of these
instance DBs should only be processed by the associated FB.

Creating DBs
Global DBs are created either with the Program Editor or according to a previously created "user-
defined data type" (UDT).

Instance data blocks are generated when a function block is called.

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

 SIMATIC S7-1200 Advanced Course

 TIA-MICRO2 - Data Blocks
4-4 Training Document V16.00.00

4.3. Overview of data types in S7-1200

Elementary
data types

(up to 64 bits)

Complex
data types

User-defined
data types

• Bit data types
BOOL, BYTE, WORD, DWORD, CHAR, WCHAR (as of FW 4.1)

• Mathematical data types
SINT, INT, DINT, USINT, UINT, UDINT, REAL, LREAL

• Time types
TIME, DATE, TIME_OF_DAY

• Time type (DTL)

• Array (ARRAY[x..y])

• Structure (STRUCT)

• Character string (STRING, WSTRING)

• PLC-data types (User Data Type UDT)

Overview

Variables are used to store data. The data type of a variable determines the amount of memory
space it requires, its value range and the presentation of the variable value in the editor.
Furthermore, the possible operations with which a variable can be processed arise from the data
type.

Elementary data types
Elementary data types are predefined in accordance with IEC 61131-3. They always have a
length less than or equal to 64 bits.

Complex data types
Complex data types contain data structures that can be made up of elementary and/or complex
data types.

Complex data types can be used for the declaration of variables only in global data blocks and
within blocks for the declaration of local variables (TEMP, STAT) as well as parameters (IN, OUT
and INOUT).

Variables of complex data types cannot be processed completely with instructions (such as
comparator), but only the components of elementary data types.

User-defined data types (UDT)
UDTs are templates for declaring variables of complex data types or structure variables. UDTs
are created with the Data Block Editor and contain a data structure that is made up of elementary
and/or complex data types. In the declaration of a variable according to data type UDTx, a
structure variable is created whose inner data structure is defined by UDTx.

UDTs can be used for the declaration of variables in global data blocks and within blocks for the
declaration of local variables (TEMP, STAT) as well as parameters (IN, OUT and INOUT).

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

SIMATIC S7-1200 Advanced Course

TIA-MICRO2 - Data Blocks 4-5
Training Document V16.00.00

4.3.1. Elementary data types for S7-1200

Data type Length (in bits) Constants Variables

BOOL 1 1 or 0 I 1.0
BYTE 8 B#16#A9 MB70
WORD 16 W#16#12AF MW72
DWORD 32 DW#16#ADAC1EF5 QD40

CHAR 8 ' w ' DBB4
WCHAR(as of FW 4.1) 16 WCHAR#'a' MW50

INT 16 123 #Value
DINT 32 L#65539 MD80
REAL 32 1.2 or 34.5E-12 DBD60
SINT 8 +/-50 MB24
USINT 8 50 MB24
UINT 16 12654 IW22
UDINT 32 4875678 DBD64
LREAL 64 LREAL#1.0e-5

BOOL, BYTE, WORD, DWORD, CHAR, WCHAR
Variables of the data type BOOL consist of one bit. Variables of the data types BYTE, WORD,
DWORD are bit sequences of 8, 16 or 32 bits. The individual bits are not evaluated in these data
types. Special forms of these data types are the BCD numbers and the count value as it is used
in conjunction with the count function as well as the data type CHAR which represents a
character in the ASCII code and as of FW 4.1 WCHAR for representing characters in the
extended character set (Format Unicode).

INT, DINT, REAL
Variables with these data types represent numbers with which relevant mathematical operations
can be carried out.

Extensions of INT, DINT, REAL

• U – Unsigned
Variables with the extension U represent an integer without sign.
Data types: USINT, UINT, UDINT

• S – Short
Variables with the extension S represent an integer with a length of 8 bits.
Data types: SINT, USINT

• L – Long
Variables with the extension L represent a number with a length of 64 bits of the data type.
Data types: LREAL

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

 SIMATIC S7-1200 Advanced Course

 TIA-MICRO2 - Data Blocks
4-6 Training Document V16.00.00

4.3.2. Data types for Timers, Date and Time-of-day

Data type Length (in bits) Example

Timers

TIME 32 T#2h46m30s630ms

Date and Time-of-day

DATE 32 D#1984-01-01
TIME_OF_DAY (TOD) 32 TOD#18:15:18:999

DTL 96 DTL#1984-01-01-18:00:30:250000000
(see next picture)

TIME
A variable of the data type TIME (duration in [ms]) occupies a double word. This variable is used,
for example, for specifying time values in IEC timer functions. The contents of the variable are
interpreted as a DINT number in milliseconds and can be either positive or negative (for example:
T#1s=L#1 000, T#24d20h31m23s647ms = L#2147486470).

DATE
A variable of the data type DATE is stored in a word in the form of an unsigned integer. The
contents of the variable represent the number of days since 01.01.1990 (for example: D#2003-
10-31 = W#16#13BB).

Time_Of_Day
The data type TIME_OF_DAY (TOD) occupies a double word and stores the number of
milliseconds since the beginning of the day (0:00 o’clock) as an unsigned integer.

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

SIMATIC S7-1200 Advanced Course

TIA-MICRO2 - Data Blocks 4-7
Training Document V16.00.00

4.3.2.1. Complex data type: DTL

Data type

DTL

The data type DTL represents a point in
time which consists of information on date

and time-of-day. The individual
components can be accessed directly.

#Date_Time.HOUR

12Hour

DTL
The data type DTL has a length of 12 bytes and stores information on date and time-of-day
precise to the nanosecond since 1.1.1970 in a pre-defined structure.

The structure of the data type DTL is made up of several components which, in each case, can
have a different data type and value range. The data type of a specified value must be compatible
with the data type of the respective component.

The following table shows the structure components of the data type DTL and their properties:

Byte Component Data type Value range

0 - 1 Year UINT 1970 to 2554
2 Month USINT 1 to 12
3 Day USINT 1 to 31

4 Weekday USINT 1 (Sunday) to 7 (Saturday)
The weekday is not considered in the value entry.

5 Hour USINT 0 to 23

6 Minute USINT 0 to 59

7 Second USINT 0 to 59

8 -11 Nanosecond UDINT 0 to 999 999 999

Advantage: the individual values (day, hour, etc.) are easier to read out.

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

 SIMATIC S7-1200 Advanced Course

 TIA-MICRO2 - Data Blocks
4-8 Training Document V16.00.00

4.3.3. Complex data types for S7-1200

Data type Length (in bits) Example
STRING 8 * (number of ´This is a String´
(character string with characters +2) ´SIEMENS´
max. 254 characters)

WSTRING (as of FW 4.1) 16 * (number of WSTRING#´A String in the extended
(character string with characters +2) format UNICODE´
max. 254 characters)

ARRAY User-
(Group of components defined Measured values: ARRAY[1..20] of INT
of the same data type)

STRUCT User- Motor: STRUCT
(Structure, Group of defined Speed : INT
components of different Current : REAL
data types) END_STRUCT

PLC-data type (UDT) UDT as block UDT as array element
(User Defined Data Type) User-
"Template" consisting of defined STRUCT Drive: ARRAY[1..4]
elementary or complex Speed : INT of UDT1
data types Current: REAL

END_STRUCT

Complex Data Types
Complex data types (arrays and structures) consist of groups of elementary or complex data
types.

They enable you to create data types suitable for your problem with which you can structure large
quantities of data and process it symbolically.

Complex data types cannot be processed directly with STEP 7 instructions all at once. Only one
component at a time can be processed.

The lengths of complex data types are defined by the user.

Variables with complex data types can only be declared within global data blocks and as
parameters or local variables of logic (code) blocks.

PLC-Data Type/User-defined Data Type (UDT)
User-defined data types represent self-defined structures. This structure is stored in UDT blocks
and can be used as a "template" in another variable ‘s data type. You can save typing time when
you input a data block if you need the same structure several times.

Example
You need the same structure 10 times in a data block. First, you define the structure and save it,
for example, as Userdatatype_1.
In the DB, you then define a variable "Addresses" as an array with 10 elements of the type
Userdatatype_1:

Addresses: array[1..10] Userdatatype_1

That way, you have created 10 data ranges with the structure that is defined in Userdatatype_1
without "typing".

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

SIMATIC S7-1200 Advanced Course

TIA-MICRO2 - Data Blocks 4-9
Training Document V16.00.00

4.3.3.1. Array, STRUCT, PLC-datatypes

Array
Array (or field) represents a data structure that consists of a fixed number of components of the
same data type.

STRUCT
STRUCT (or structure) represents a data structure that consists of a fixed number of components
of different data types. The structure must be reassembled at each point of use. If a structure is to
be used more than once, it is advantageous to create a PLC data type.

PLC-datatype
User-defined data types that serve as templates for declaring parameters and variables of
complex data types (e.g. structure variables). UDTs are created with the data block editor and
contain a data structure consisting of elementary and/or complex data types. When a variable is
declared according to data type UDTx, a structured variable is created whose internal data
structure is defined by UDTx. UDTs can be used to declare variables in global data blocks and
within blocks to declare local variables (TEMP, STAT) and parameters (IN, OUT and INOUT).

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

 SIMATIC S7-1200 Advanced Course

 TIA-MICRO2 - Data Blocks
4-10 Training Document V16.00.00

4.4. Creating a data block

Select the DB type:
Global DB,
Instance DB for FB or
DB of PLC-Data type
to be generated

2xL

Creating a DB

A new data block can be inserted – as shown in the picture.
You can create a new data block in the Portal view as well as in the Project view of the respective
project.

Global DB
Global data blocks are used to store global data, that is, to store general data which can be
accessed by every logic (code) block (OB, FC, FB).

You must edit global data blocks yourself by declaring the necessary variables for storing the
data in the data block.

Instance DB
Instance data blocks serve as "private memory area" or as "memory" for a function block (FB). In
the instance DB of an FB, its parameters and static variables are managed.

Instance data blocks are never edited by you, rather are generated by the Editor.

DB of Type
Data blocks can also be generated according to a PLC-data type by the Editor. For this the PLC-
data type, which you must first edit just like a data block, is used as a template.

The PLC-data type can be used as a template to create further data blocks and / or also in
general to declare variables and block parameters.

Type of Access
The type of access is defined as "Optimized block access" when the block is created. It is
possible to change this later through the Properties of the block in "Attributes".

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

SIMATIC S7-1200 Advanced Course

TIA-MICRO2 - Data Blocks 4-11
Training Document V16.00.00

4.5. Block access for DBs without the attribute "Optimized block
access"

BOOL
BOOL

BOOL
BOOL
BOOL

14 bits
unused

INT

INT

13 bits
unused

DB in CPU

DB is copied
unchanged into
the CPU  no
optimization

BOOL
BOOL

BOOL
BOOL
BOOL

14 bits
unused

INT

INT

13 bits
unused

DB in the offline project
Access with absolute addresses is possible.

Data Block without the Attribute "Optimized block access"
When a data block does not have the attribute "Optimized block access", it has the following
properties:

• Variable addressing

Data blocks with standard access have a fixed structure. In the declaration, the data elements
contain a symbolic name as well as a fixed address within the block. The address is displayed in
the column "Offset".

• Retentivity

Only the entire DB can be defined as retentive or non-retentive  poorer utilization of the
retentive memory of the CPU

• Use (for example)

- “PUT“ and “GET“ calls
So that the DBs in an S7-1200 can be addressed by a remote S7 controller (such as,
S7-300) with the blocks PUT/GET, the DB variables must be addressed absolutely.

- HMI with SIMATIC WinCC flexible
When WinCC flexible is used for the configuration of (older) HMI devices (such as,
TP170B), DB accesses are always absolute.

- T_Communication
Even for the configured/programmed open T_Communication (between S7-1200 and S7-
300/400), DB accesses (for example, to Send/Receive buffers) must be made absolutely.

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

 SIMATIC S7-1200 Advanced Course

 TIA-MICRO2 - Data Blocks
4-12 Training Document V16.00.00

4.6. Block access for DBs with the attribute "Optimized block
access"

BOOL
BOOL

BOOL
BOOL
BOOL

14 bits
unused

INT

INT

13 bits
unused

BOOL
BOOL
BOOL
BOOL
BOOL
11 bits
unused

INT

INT

2 bytes

2 bytes

2 bytes

2 bytes

8 bytes

2 bytes

2 bytes

2 bytes

6 bytes

DB in the offline project DB in CPU
Access with absolute addresses is not possible.

During generation, variables are arranged
memory-optimized.

Data block with the attribute "Optimized block access"
With the attribute "Optimized block access", you can optimally store the variables in the DB.

Variable Addressing
Data blocks with optimized access have no fixed defined structure. In the declaration, the data
elements are only given a symbolic name, no fixed address within the block. The elements are
automatically arranged in the available memory area of the block in such a way that its capacity is
optimally exploited.

Variables in these data blocks can only be addressed symbolically.

Retentivity
The retentivity can be selected separately for each DB variable  optimum utilization of the
retentive memory of the CPU.

Advantages
The optimized access provides the following advantages:

• The data is structured and stored in a way that is optimum for the CPU used. In that way, you
increase the performance of the CPU

• Access errors, for example, from the HMI, are not possible

• You can specifically define individual variables as retentive

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

SIMATIC S7-1200 Advanced Course

TIA-MICRO2 - Data Blocks 4-13
Training Document V16.00.00

4.7. Start value, monitor value, retain (retentivity)

Load

If the DB‘s attribute "Optimized block access" is activated, the retentivity for all variables can be selected
separately. If the attribute is not activated, either all variables are retentive or none are.

Retentive
Not retentive

M
odify

Stop/Run

Retain
To prevent data loss when there is a power loss, you can identify certain data as retentive. These
are stored in a retentive memory area. A retentive memory area is an area whose contents are
retained after a restart (warm restart), that is, after switching off the supply voltage and after
switching on during a transition from STOP to RUN.

You can define the following data as retentive:

• Bit memories:
You can define the exact length of the retentive memory area for bit memories in the PLC tag
table or in the assignment list.

• Variables of a function block (FB):
You can define individual variables as retentive in the interface of an FB if the symbolic
addressing of the variable is activated for this block. If the symbolic addressing for an FB is
not activated, retentive settings can only be made in the associated instance data block.

• Variables of a global data block:
In a global data block, you can define either individual or all variables of the block as retentive
depending on the setting of the symbolic addressing.

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

 SIMATIC S7-1200 Advanced Course

 TIA-MICRO2 - Data Blocks
4-14 Training Document V16.00.00

4.8. Editing and monitoring a data block

Add new line

Retentive
For Optimized block access
it can be individually
changed

Can be used in the HMI

Start value:
Value after first STOP-RUN
when variable retentive or
value with each STOP-
RUN when variable is not
retentive

Is displayed in the WinCC
tag selection dialog

Structures and Arrays can
be minimized  better
overview

Monitor DB

Editing a data block
The settings shown in the picture can be made for the individual DB variables.

Start value
Value which the variable is to adopt during every startup when the variable is not retentive.
Value which the variable is to adopt only during the first startup when the variable is retentive.

Start value for FBs for static variables:
In creating a data block, the default values defined in the FB are used as start values. These
adopted values can be replaced here with instance-specific start values.

The specification of a start value is optional. If no value is defined, the variable adopts the default
value during startup. If a default value is also not defined, the standard value valid for the data
type is used. For BOOL, for example, the standard value "FALSE" is defined.

Monitor values
Current data value in the CPU.

The column appears when an online connection exists, and you select the button "Monitor".

Snapshot
Displays values which were loaded from the device at a specific point in time.

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

SIMATIC S7-1200 Advanced Course

TIA-MICRO2 - Data Blocks 4-15
Training Document V16.00.00

4.9. Function for modifying tags in data blocks

Download without reinitialization

Expanded mode

Reset start values (to default values)

Update interface (instance DB and PLC-data types)

all / only setpoints

Snapshots of actual values

Load snapshots as actual values

all / only setpoints

Securing a snapshot
Under certain circumstances it is necessary to read back the monitor values of a data block from
the controller.

With the "Snapshot of actual values" function, the current monitor values of the online DB are
stored in your offline DB.

With the “load snapshot as actual values”, the saved snapshot is put back into the block (actual
value).

Copy snapshot to start values

Then, the secured values can be adopted into the start value column using the button (for all

snapshots highlighted in the Setpoint column) or the button (for all snapshots), whereby the
secured values are adopted as start values the next time the DB is transferred.

Load start values as actual values
The monitored values (actual values) can be reset (initialized) to their start value with this
function. The function is available for all variables or only for the setpoint values (marked in the
setpoint column).

Keep actual values
With the function (Activate memory reserve) blocks can be extended without existing monitor
values (actual values) being lost. The extensions are inserted into a previously created memory
reserve.

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

 SIMATIC S7-1200 Advanced Course

 TIA-MICRO2 - Data Blocks
4-16 Training Document V16.00.00

4.10. Retentivity in system FBs (1): Separate instance DBs

Instance DBs of system FBs are stored in the Program resources folder 
User program remains uncluttered

Retentivity: Either all variables are
retentive or none are

Retentivity
In function blocks which are provided by the system, such as:

• Counters

• Timers

• communication etc.

the instance data can be declared retentive (all or none).

Storage
Instance DBs of system FBs are stored in the program resources folder. That way, the user
program remains uncluttered.

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

SIMATIC S7-1200 Advanced Course

TIA-MICRO2 - Data Blocks 4-17
Training Document V16.00.00

4.10.1. Retentivity in system FBs (2): Storage in global DB

Retentivity: Can be set separately for
variables, Arrays and Structures

Optimized Global DB

Instance data of system FBs (here:
IEC counter) are declared as variable

in the Global DB

Storage in global DBs
The data from function blocks provided by the system can be combined in a higher-level global
data module. The retentivity can be set there, as for all other variables. The variables to be
defined are of type:

• IEC_Counter

• IEC_Timer etc.

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

 SIMATIC S7-1200 Advanced Course

 TIA-MICRO2 - Data Blocks
4-18 Training Document V16.00.00

4.10.2. Retentivity in system FBs (3): Multiple instance in the FB

Instance data of the counter is created as static
variable of the calling FB.

With optimized block call, retentivity can be
set separately for every variable of the

interface.

Multiple instance in the FB
Like the global DB, static variables, for example, of the type IEC_COUNTER can also be created
in the interface of an FB. If such a variable is assigned a corresponding block call (for example, a
counter) in the instruction part, you speak of a multi instance.

The retentivity of the variables in an FB can be set or not set under certain conditions:

• In the higher-level function block, the optimized block access is activated:
For parameters and static variables, the property "Retain" can be individually activated or
deactivated.

• In the higher-level function block, the standard block access is activated:
In the interface of the FB, the property "Retain" cannot be activated.
In the associated instance DB, the property "Retain" can only be activated or deactivated for
the entire DB.

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

SIMATIC S7-1200 Advanced Course

TIA-MICRO2 - Data Blocks 4-19
Training Document V16.00.00

4.11. Accessing DB variables

… using drag & drop
directly from the DB

Access via Symbol
selection or…

Accessing DB variables

Basically, there are two ways of accessing a DB variable:

• Access via Symbol Selection

With the symbolic selection of a DB variable, the individual elements of the DB are accessed via
dot notation. The same holds true for variables of complex data types.

An access could look something like this:
"DB_Optimized".Motor_Data.speed

• Access via Drag & Drop

For this, a DB variable is clicked with the mouse and held and dragged to the appropriate position
in the user program and there let go.

This function is particularly practical when you divide the Editor area in such a way that the DB is
displayed next to the logic (code) block.

Local name of the variable within the structure
Local name of the structure-variable within the DB
Global name of the data block

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

 SIMATIC S7-1200 Advanced Course

 TIA-MICRO2 - Data Blocks
4-20 Training Document V16.00.00

4.12. Task description: DB_Parts

Situation up until now
To manage the setpoint and actual quantities, the memory variables "MW_SET" (MW22) and
"MW_ACT" (MW20) are used. These are linked with the corresponding I/O fields on the
touchpanel.

Task description
For the later management of part weights, a data block "DB_Parts" is to be created. For this, a
Structure variable "WeightStore" and an Array variable "PartWeights" are created. In
"WeightStore", the elements "SetpointNo" and "ActualNo" replace the present memory variables
"MW_SET" (MW22) and "MW_ACT" (MW20) in "FC_Count".

The weight values of transported parts will be stored in the Array variable "PartWeights" using
indirect addressing.

Furthermore, a variable of the type "IEC_COUNTER" is to be created in this data block. The
instance of the IEC_COUNTER in "FC_Count" should be replaced by the new variable. The
variable is to be made retentive.

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

SIMATIC S7-1200 Advanced Course

TIA-MICRO2 - Data Blocks 4-21
Training Document V16.00.00

4.12.1. Exercise 1: Creating and declaring DB_Parts

Task
You are to create and declare a data block "DB_Parts".

What to do
1. Create a new data block with optimized access as well as the settings shown above

2. Declare the DB variables shown in the picture

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

 SIMATIC S7-1200 Advanced Course

 TIA-MICRO2 - Data Blocks
4-22 Training Document V16.00.00

4.12.2. Exercise 2: Replacing bit memories with DB variables

Drag & Drop

Task
In "FC_Count", replace the memory variables "MW_SET" and "MW_ACT" with the previously
created DB variables "WeightStore.setpointNo" and "WeightStore.actualNo".

What to Do
1. Open data block "DB_Parts"

2. Now open the function "FC_Count"

3. Display the editor area split either horizontally or vertically

click or

4. Using drag & drop, drag the DB variable "WeightStore.setpointNo" onto the parameter "PV"
of the counter in "FC_Count"

5. Using drag & drop, drag the DB variable "WeightStore.actualNo" onto the parameter "CV" of
the counter in "FC_Count"

6. Save the changes you made

Result
Setpoint number and Actual number are now managed in DB_Parts. The Setpoint has the start
value "5".

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

SIMATIC S7-1200 Advanced Course

TIA-MICRO2 - Data Blocks 4-23
Training Document V16.00.00

4.12.3. Exercise 3: Making the IEC-Counter retentive (Global DB)

Drag&Drop

What to do
1. Open data block "DB_Parts"

2. Now open the function "FC_Count"

3. Display the Editor area split either horizontally or vertically.

click or

4. Using drag & drop, drag the DB variable "Part_Counter" onto the IEC_COUNTER in
"FC_Count"

Result
The IEC_COUNTER retentively manages its instance data in "DB_Parts". That way, the current
count value exists even after a CPU (warm) restart.

 You can also achieve the same behavior by activating the retentivity of the previously
used instance DB.

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

 SIMATIC S7-1200 Advanced Course

 TIA-MICRO2 - Data Blocks
4-24 Training Document V16.00.00

4.12.4. Exercise 4: Transferring the modified program into the CPU and monitoring
"DB_Parts"

Task
Save the changes you made previously and then transfer the entire user program into the CPU.

What to do
1. Save your project

click

2. Transfer the user program into the CPU

Select the Program blocks folder  click to start the transfer.

3. Monitor the Setpoint and Actual of "DB_Parts".

4. Test the retentiveness of the counter by producing at least one part and then restarting the

CPU with, for example, the buttons and .

5. Save your project

Result
The count (ActualNo) is retained even after a CPU (warm) restart.

What Doesn’t Work Yet
At the moment, the I/O fields on the touchpanel are still linked with the old memory variables and
therefore do not show the correct values. This behavior will be corrected in the next exercise.

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

SIMATIC S7-1200 Advanced Course

TIA-MICRO2 - Data Blocks 4-25
Training Document V16.00.00

4.12.5. Exercise 5: Updating the HMI tag interfacing and transferring it to the
Touchpanel

New interface necessary

Task
To adjust the HMI project to the previously modified PLC program, the HMI tags used must be
linked to the data block variables "DB_Parts".WeightStore.actualNo and
"DB_Parts".WeightStore.setpointNo used in the PLC program.

What to do
1. Open the HMI project and there the screen "Conveyor"

 My_Project HMI_1  Screens  Conveyor

2. Open the General Properties of the I/O field "Setpoint"

 Click on I/O field  Inspector window  Properties  General

3. As shown in the picture, exchange the present process tag with the DB variable
"DB_Parts".WeightStore.setpointNo
Process  Tag  "…"  navigate to "DB_Parts"  "WeightStore"  select "setpointNo"

4. Repeat Step 3 for the I/O field "Actual".

5. Transfer the modified project to the touchpanel.

6. Monitor whether the Setpoint is written into the variable "DB_Parts".WeightStore.setpointNo
when you specify a new value on the panel.

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

 SIMATIC S7-1200 Advanced Course

 TIA-MICRO2 - Data Blocks
4-26 Training Document V16.00.00

4.13. Task Description: Archiving part weights in "DB_Parts" using
"FieldWrite"

187

235
398
129
285
0
0

Part_Weight Array[1..100] INT

…

[1]

[2]

[3]
[4]
[5]
[6]

[7]

DB_Parts

285

Act. (Weight)

Storing the current part weight in the Array
element, depending on the actual quantity

Count event (positive edge), e.g.
for Part No.5

&
"P_Operation"

“K_Right"

Situation up until now
In the operation, parts are placed on Bay 1 or 2 and after they have passed through the light
barrier, they are counted with the IEC-counter "DB_Parts".Part_Counter. As well, the weight of
the relative part is determined using analog value conversion and is tested for validity.

Task description
The individual weights of the transported parts are now to be stored in the components of the
Array variable "DB_Parts".PartWeight whenever a part has passed through the light barrier during
operation. For this, use the instruction "FieldWrite".

The variable "DB_Parts".WeightStore.actualNo specifies which Array component is to be written.

For this, program all necessary instructions in the re-usable function "FC_Ind_Weight".

In the function, declare the following parameters

• IN

- "NewWeight" BOOL "Trigger to save the weight"

- "Weight" INT "Transfer parameter of weight value"

- "ActualNo" INT "Transfer parameter of actual quantity"

• OUT

- "WeightStore" ARRAY[1..100] of INT "Transfer parameter for DB-Array"

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

SIMATIC S7-1200 Advanced Course

TIA-MICRO2 - Data Blocks 4-27
Training Document V16.00.00

4.13.1. Indirect addressing of Array elements with
"FieldRead" and "FieldWrite" (1)

Number of the Array
element to be written

Value which is written
in the indexed Array

element

Specification of the
first Array element

FieldWrite
The instruction "FieldWrite" transfers the contents of the variable at input VALUE into a certain
component of the Array variable at output MEMBER. The parameter INDEX specifies which Array
component is written.

The first component of the field into which is written is specified at output MEMBER.

Example
In the example shown, the weight value "127" is written in the 4th component of the Array
"PartWeights". This, in turn, is in "DB_Parts".

"127"  "DB_Parts".PartWeights[4]

 The data types of the Array component specified at output MEMBER and the variable at
input VALUE must match.

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

 SIMATIC S7-1200 Advanced Course

 TIA-MICRO2 - Data Blocks
4-28 Training Document V16.00.00

4.13.2. Indirect addressing of Array elements with
"FieldRead" and "FieldWrite" (2)

Number of the Array
element to be read

Specification of the
first Array element

Read-out value of the
indexed Array

element

FieldRead
With the instruction "FieldRead", a certain component can be read out of the Array specified at
the parameter MEMBER and its contents transferred into the variable at the parameter VALUE.
You define the Index of the field components to be read at the parameter INDEX.

The first component of the field which is read is specified at input MEMBER.

Example
In the example shown, the third element of the variable "DB_Parts".PartWeights is read-out and
assigned to the variable #Weight_read.

 The data types of the Array component specified at input MEMBER and the variable at
output VALUE must match.

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

SIMATIC S7-1200 Advanced Course

TIA-MICRO2 - Data Blocks 4-29
Training Document V16.00.00

4.13.3. Exercise 6: Creating a re-usable function "FC_Ind_Weight" and declaring
the interface

"FC_Ind_Weight"

Task
Create the new function "FC_Ind_Weight" and declare the parameters and local variables shown.

What to do
1. Create a new function “FC_Ind_Weight”

2. Declare local variables as shown in the picture

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

 SIMATIC S7-1200 Advanced Course

 TIA-MICRO2 - Data Blocks
4-30 Training Document V16.00.00

4.13.4. Exercise 7: Programming the DB access as re-usable using "FieldWrite"

Task
Program the saving of the part weight values as shown in the picture.

What to do
1. Program the instruction "CONV" in order to convert the local variable #ActualNo into a

variable of the type DINT.
Basic instructions  Conversion operations  CONVERT

 This is necessary because the parameter INDEX of "FieldWrite" must be assigned with a
variable of the type DINT.

2. Program the call of "FieldWrite" as shown in the picture.

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

SIMATIC S7-1200 Advanced Course

TIA-MICRO2 - Data Blocks 4-31
Training Document V16.00.00

4.13.5. Exercise 8: Calling the new function in "FC_Count"

Network 1

Network 2

Task
Call "FC_Ind_Weight" in "FC_Count" and pass it the actual parameters shown above.

The saving of weights is triggered under the same conditions as the counting of parts. To "pick
up" the signal, use an assignment and a temporary variable.

What to do
1. Open the function "FC_Count" and in it call the function "FC_Ind_Weight"

2. In Network 1, insert an assignment after the AND-query and assign the RLO to the temporary
variable #temp_store_weight

3. Pass the current weight ("MW_Weight"), the actual quantity
("DB_Parts".WeightStore.actualNo), as well as the Array variable "DB_Parts".PartWeights to
the function "FC_Ind_Weight"

4. Save your project and download the modified program blocks into the CPU.
("FC_Ind_Weight" and "FC_Count")

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

 SIMATIC S7-1200 Advanced Course

 TIA-MICRO2 - Data Blocks
4-32 Training Document V16.00.00

4.13.6. Exercise 9: Monitoring "DB_Parts"

SITRAIN © Siemens AG 2019
Seite 32

TIA-MICRO2
Data Blocks

Exercise 9: Monitoring "DB_Parts"

After the 5th Part
Weight, Array

elements remain
unchanged.

Example: Setpoint = 5

Task
Test the new function by monitoring the DB "DB_Parts".

What to do
1. On the touchpanel, switch on the operation

2. Enter a Setpoint on the touchpanel, such as, 3

3. Open and monitor the DB "DB_Parts"

4. Produce parts until the Actual is equal to the Setpoint and in the process change the weight
on the rotary potentiometer for every part

5. Press the pushbutton at the light barrier bay ("S_BayLB") to reset

6. Now, once again change the weight on the rotary potentiometer

7. Produce a further part

Result
The weight values of the parts are entered one after the other in the individual Array components
until the Setpoint is reached.

If a further part is produced after the Actual is reset, the old weight values are overwritten.

What doesn’t work yet
When the Setpoint (quantity) is reached and before the new weight values can be saved, all Array
components are to be initialized, i.e. written with a certain value, for example, "0". The function
will be implemented in the next chapter.

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

SIMATIC S7-1200 Advanced Course

TIA-MICRO2 - Data Blocks 4-33
Training Document V16.00.00

4.14. Additional Information

 sa

br
iuz

un
er

 @
 d

uz
ce

.e
du

.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

 SIMATIC S7-1200 Advanced Course

 TIA-MICRO2 - Data Blocks
4-34 Training Document V16.00.00

4.14.1. Additional exercise: Reading back the setpoint (quantity) and adopting it as
the start value

1

2

3

Change the Setpoint
(quantity) on the

touchpanel, e.g. “10”

Create Snapshot of the
Monitor values

Adopt Snapshot of the
Setpoint as the Start
value using Copy &

Paste

Situation up until now
After every CPU (warm) restart, the DB variable "DB_Parts".WeightStore.setpointNo is
overwritten with the Start value "5" (non-retentive). If the production processes have changed and
now, for example, 10 instead of the 5 parts up until now must be transported, a new value must
be specified after every CPU (warm) restart.

Task
Read back the changed monitor value from "Setpoint" from the online DB and adopt this value as
the new start value.

What to do
1. Open and monitor "DB_Parts".

My_Project  PLC_1  Program blocks  Double-click "DB_Parts"  click

2. Create a Snapshot of the current Monitor values.

click

 You can also display the "Snapshot" column as follows:
Right-click on "Start value", for example  show/hide column  Snapshot

3. Copy the snapshot value for "Setpoint" to the clipboard.
Right-click  Copy

4. Insert the copied value in the Start value field of "Setpoint".
Right-click  Paste

5. Transfer the modified block to the CPU and carry out a (warm) restart. The value that was
read back should now be adopted as the Start value.

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

SIMATIC S7-1200 Advanced Course

TIA-MICRO2 - Data Blocks 4-35
Training Document V16.00.00

4.14.2. Type conversion

DInt

Int

Real

SInt

?

Risky type conversion (gr/w)
for example, REAL -> INT

?

?

Unproblematic type conversion (gr/gr)
for example, INT -> DINT

Type conversions and
calculation (e.g. no

overflow) OK?

More than
2 inputs!

Display in the online status

Implicit Type Conversion
Basically, math operations are only possible with operands of the same data type. If, for example,
two variables of different data types are to be processed mathematically (e.g. addition,
multiplication...), the data types of the two variables must be adapted to one another with explicit
data type conversions.

In S7-1200/1500, with the math instructions in LAD and FBD, data type conversions are implicit,
that is, possibly necessary data type conversions are integrated in the math instruction.

The programming editor identifies operands that are implicitly converted with a gray rectangle. A
dark gray rectangle signals that an implicit conversion without the loss of accuracy is possible, for
example, when you convert the data type SINT to INT. A light gray rectangle signals that an
implicit conversion is possible but during runtime errors could occur (only without IEC check). If,
for example, you convert the data type DINT to INT and an overflow results, the enable output
ENO is set to "0".

The example shows an integer addition of "INT_Value" and "REAL_Value". For this,
"REAL_Value" is implicitly converted from REAL to INT and then added to "INT_Value". The
integer result of the addition is converted in an implicit type conversion from INT to DINT and
assigned to "DINT_sum".

Attention
For data type conversions into a data type with a smaller value range – in the example the
conversion of the value of the variable "REAL_Value" from REAL to INT – is in this respect risky,
in that an overflow leads to an invalid conversion result. Accordingly, the result of the integer
addition would then also be invalid. By evaluating the ENO output, errors that result in this way
can be discovered.

Note
If you monitor such a risky data type conversion online, then you can see by way of color whether
the current conversion of data occurs without error or not.
Red indicates that the data type conversion is faulty and green that the conversion is without
errors.

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

SIMATIC S7-1200 Advanced Course

TIA-MICRO2 - Introduction to PROFINET 5-1
Training Document V16.00.00

Contents 5

5. Introduction to PROFINET ... 5-2

5.1. Objectives ... 5-2
5.2. Task Description: Replacing a central I/O module with distributed I/O 5-3

5.3. Industrial Ethernet: IP address and subnet mask ... 5-4

5.4. PROFINET IO Device types ... 5-5

5.5. Fieldbus Systems for SIMATIC S7 ... 5-6
5.5.1. Identification of distributed I/O devices ... 5-7

5.6. PROFINET device addressing .. 5-8
5.7. Inserting distributed I/O into the project (Network view) ... 5-10

5.8. Configuring a connection to the CPU and setting the address parameters 5-11

5.9. Configuring distributed I/Os (Device view) .. 5-12

5.10. Writing the device name in the IO device (Device initialization) ... 5-13

5.11. Task description: Controlling the conveyor model via the ET 200S 5-15
5.11.1. Exercise 1: Inserting the ET 200S in the project and networking it 5-16
5.11.2. Exercise 2: Configuring the ET 200S and setting the PROFINET address parameters 5-17
5.11.3. Exercise 3: Changing the I/O addresses .. 5-18
5.11.4. Exercise 4: Writing the device name in the IO device (Device initialization) 5-20
5.11.5. Exercise 5: Compiling the modified device configuration and testing the program 5-21

5.12. Additional information ... 5-22
5.12.1. Topology editor ... 5-23
5.12.2. Topologies ... 5-25
5.12.3. Topology View - Topology comparison ... 5-27
5.12.4. PROFINET proxy concept .. 5-28
5.12.5. PROFINET Communications model ... 5-29
5.12.6. The MAC Address ... 5-30
5.12.7. The partitioning of the IP Address... 5-31
5.12.8. Detecting decentral devices automatically .. 5-32

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

 SIMATIC S7-1200 Advanced Course

 TIA-MICRO2 - Introduction to PROFINET
5-2 Training Document V16.00.00

5. Introduction to PROFINET
5.1. Objectives

Objectives
In this chapter, the basics of PROFINET are handled. This includes not only the addressing
procedure and the device types, but also the configuration of distributed field devices in
TIA Portal.

At the end of the chapter the participant will ...

… be familiar with the PROFINET IO device types
… understand the term "Switched Ethernet"
… be able to explain the principle of PROFINET IO device

addressing
… be familiar with the procedure and necessary editors for

configuring a PROFINET IO device
… be able to commission a distributed I/O (peripheral) with

PROFINET IO

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

SIMATIC S7-1200 Advanced Course

TIA-MICRO2 - Introduction to PROFINET 5-3
Training Document V16.00.00

5.2. Task Description: Replacing a central I/O module with
distributed I/O

Situation up until now
The conveyor is controlled through the 8DI/8DO module of the central rack.

Goal
You are to commission the PROFINET system for your training device in such a way that the
conveyor model can be controlled via the ET 200S with the same functionality without having to
change the S7 program.

Distributed I/O

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

 SIMATIC S7-1200 Advanced Course

 TIA-MICRO2 - Introduction to PROFINET
5-4 Training Document V16.00.00

5.3. Industrial Ethernet: IP address and subnet mask

Internet Protocol
The Internet Protocol (IP) is the basis for all TCP/IP networks. It creates the so-called datagrams
(data packets specially tailored to the Internet protocol) and handles their transport within the
local subnet or their "routing" (forwarding) to other subnets.

IP Addresses
IP addresses are not assigned to a specific computer, but rather to the network interfaces of the
computer. A computer with several network connections (for example routers) must therefore be
assigned an IP address for each connection.

IP addresses consist of 4 bytes. With the dot notation, each byte of the IP address is expressed
by a decimal number between 0 and 255. The four decimal numbers are separated by dots
(see picture).

Subnet Mask
The subnet mask (also net mask or network mask) is (in binary notation) a sequence of ones
followed by a sequence of zeros. The partition between ones and zeros marks the separation
between the network part and the computer (host) part of the IP address.

MAC Address: 08-00-06-01-74-10

Subnet Mask: 255.255.255.0

IP Address: 192.168.111.10

MAC Address: 08-00-06-01-74-20

Subnet Mask: 255.255.255.0

IP Address: 192.168.111.12

Subnet Device Subnet Device

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

SIMATIC S7-1200 Advanced Course

TIA-MICRO2 - Introduction to PROFINET 5-5
Training Document V16.00.00

5.4. PROFINET IO Device types

PROFINET IO Controller
The IO controller (typically the PLC) establishes a logical connection to the connected IO devices
after Power-On and subsequently parameterizes these (module parameters, address, etc.). (This
corresponds to the function of a Class 1 Master in PROFIBUS).

PROFINET IO Device
An IO device is a distributed IO device that is connected via PROFINET IO (this corresponds to
the function of a slave in PROFIBUS).

Differentiation is made for the following IO device types:

• Compact IO device: Fixed degree of expansion

• Modular IO device: Variable degree of expansion; can be expanded or reduced as required

• Intelligent IO device: A PLC is configured not as an IO controller but as an IO device and
provides a higher-level controller with I/O data

IO Supervisor
This can be a programming device (PG), personal computer (PC) or Human Machine Interface
(HMI) for commissioning or diagnostic purposes. (This corresponds to a Class 2 Master in
PROFIBUS).

Ethernet Switch
PROFINET is based on Ethernet. For that reason, switches are always used as "network
distributors". Every node device is connected to a switch via a so-called "point-to-point"
connection. This is also referred to as a "Switched Ethernet". In most PROFINET devices, a 2 or
multi-port switch is already integrated so that it is very easy to establish a line structure
(comparable to PROFIBUS).

PROFINET IO Controller

PROFINET IO Devices

Intelligent IO Device
(i-Device)

Compact
IO Device Modular

IO Device

Ethernet
Switch

PROFINET IO
Supervisor

S7-1200

S7-400

PG

S7-300 ET200eco ET200S

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

 SIMATIC S7-1200 Advanced Course

 TIA-MICRO2 - Introduction to PROFINET
5-6 Training Document V16.00.00

5.5. Fieldbus Systems for SIMATIC S7

Fieldbus systems for SIMATIC S7
To connect distributed I/Os, there are different bus systems.
The most important for SIMATIC S7 are:

• PROFINET
As the standard for communication applications at the field level it enables the connection of
distributed field devices via Industrial Ethernet.
The Industrial Ethernet network is a local area network (LAN) according to the international
Standard IEEE 802.3 (Ethernet) and is designed for the industrial sector. It enables open and
comprehensive network solutions with a high transmission performance.

• PROFIBUS
It is the bus system for local area networks (LANs) with only a few participants. Through its
fulfillment of requirements according to EN 50170, PROFIBUS ensures openness for the
connection of standard-conforming components of all manufacturers.

Due to the physical and communication-related differences of the two bus systems, there are
various criteria which are used for the selection of the most suitable bus system.

Cable length, segment length
For PROFIBUS, a module line must be reinforced after 100-1000m (depending on the
transmission speed used); otherwise, the maximum bus length is reached.

For PROFINET, every connected component takes over this function. For that reason, only the
cable length between two modules is relevant here.

PROFINET

PROFIBUS

......

...

Most important selection criteria:
PROFINET PROFIBUS

Topology (wiring) Line, Star, Ring Line
Max. transmission speed 100Mbit/s 12Mbit/s
Max. cable length 100m ÷
Max. segment length ÷ 1000m
Max. number of segments ÷ 10
Max. number of devices/slaves

per interface 512 125

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

SIMATIC S7-1200 Advanced Course

TIA-MICRO2 - Introduction to PROFINET 5-7
Training Document V16.00.00

5.5.1. Identification of distributed I/O devices

Distributed I/O devices
During start-up, the CPU searches the configured PNIO devices or DP slaves and parameterizes
these according to the loaded device configuration.

Both fieldbus systems use different methods for identifying I/O modules:

• PROFIBUS
The set PROFIBUS address is used to search for the configured DP slave.
The setting is typically made through the DIP switch on the slave.

• PROFINET
The assigned device name is used to search for the configured PNIO device.
The assignment of the device name (device initialization) is done from SIMATIC STEP 7
engineering platform through an online function.
The parameterized IP address is then assigned to the PNIO device by the PNIO controller
(CPU).

PROFINET
Device name: e.g. ET 200SP
→ Assignment online with STEP 7

PROFIBUS

PROFIBUS address: e.g. 19
→ Setting using DIP switch on the slave

PROFIBUS - Slave

PROFINET - I/O Device

PROFINET
I/O Controller

PROFIBUS
Master

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

 SIMATIC S7-1200 Advanced Course

 TIA-MICRO2 - Introduction to PROFINET
5-8 Training Document V16.00.00

5.6. PROFINET device addressing

PROFINET device addressing
So that the IO devices are accessible for the IO controller, they must be supplied with unique
address parameters. After the addressing, every IO device has three address parameters

• MAC Address
In its factory settings, every PROFINET device already has a fixed, world-wide unique MAC
address. As a rule, this cannot be changed. It is required for the Real-Time communication.

• Device Name
Before an IO device can be addressed by an IO controller it must have a device name. This
procedure was chosen for PROFINET because names are easier to handle than complex IP
addresses.
So that the individual devices are accessible during the IO controller’s system power-up, they
are given device names. This occurs through the Supervisor. The device names which were
given for the individual IO devices offline must match the online device names. This is
comparable with setting the PROFIBUS address. If errors are made here, the IO controller
cannot reach the IO device.
The rules for the converted names are listed in the following. If the converted name is not to
be different from the name of the module, then the name of the module must comply with
these rules.

− The name consists of one or more labels which are separated by a dot [.]
− Total length of the name: 1 to 240 characters
− Length of a label: 1 to 63 characters
− A label consists of the characters [a-z; 0-9]
− Labels must not begin or end with the characters "-"
− The first label must not begin with "port-xyz" or "port-xyz-abcde" (a,b,c,d, e,x,y,z=0-9)
− The name must not have the following format: n.n.n.n (n=0-999)

Factory setting

MAC Address: e.g. 08:00:06:01:57:3C

During system power-up, the IO controller
writes the IP address into the IO-Device

e.g.:192.168.111.27

The IO supervisor (commissioner) writes the
device name into the PN device e.g.: finalassembly-1

(comparable with setting the PROFIBUS address)

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

SIMATIC S7-1200 Advanced Course

TIA-MICRO2 - Introduction to PROFINET 5-9
Training Document V16.00.00

• IP Address
In addition to the device name and the MAC address, an IO device also requires an IP
address so that acyclic Read/Write services can be executed, for example. During system
power-up, the IO controller assigns the IP addresses stored in the device configuration to the
IO devices after checking the device names.

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

 SIMATIC S7-1200 Advanced Course

 TIA-MICRO2 - Introduction to PROFINET
5-10 Training Document V16.00.00

5.7. Inserting distributed I/O into the project (Network view)

Inserting distributed I/O into the project
PROFINET IO devices are added in the Network view. Here, you can insert the relevant devices
into the project by dragging & dropping them from the Hardware catalog.

In the beginning, the added device is not assigned to any controller and therefore appears in the
Project tree as (an) "Unassigned devices" in the same level as the PLCs and HMIs.

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

SIMATIC S7-1200 Advanced Course

TIA-MICRO2 - Introduction to PROFINET 5-11
Training Document V16.00.00

5.8. Configuring a connection to the CPU and setting the address
parameters

Configuring the connection to the CPU
IO devices must be assigned to an IO controller. This is done by dragging & dropping the
PROFINET interface of the IO device onto the PROFINET interface of the IO controller.
The IO controller now recognizes the assignment and, during system power-up, queries the IO
device with the configured device name.

Address parameters

• Device Name
The PROFINET device name is entered in the General part of the PROFINET interface of the
respective IO device.

• IP Address
The IP address is automatically assigned (first free subnet address) through the assignment
of the IO device to the IO controller. It can be changed later in the Properties of the
PROFINET interface of the IO device.

PROFINET IO device
name

IP address of IO device

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

 SIMATIC S7-1200 Advanced Course

 TIA-MICRO2 - Introduction to PROFINET
5-12 Training Document V16.00.00

5.9. Configuring distributed I/Os (Device view)

Configuring distributed I/Os
Distributed I/Os are configured in the device view by dragging the desired components from the
hardware catalog onto the individual module slots.

If the checkmark at "filter" is set, only the compatible modules are automatically displayed.

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

SIMATIC S7-1200 Advanced Course

TIA-MICRO2 - Introduction to PROFINET 5-13
Training Document V16.00.00

5.10. Writing the device name in the IO device (Device initialization)

Device initialization
The assignment of the device name to an IO device is the most important step in PROFINET
addressing. The device name configured offline and the device name that exists online must
match since the IO controller first checks the device names of the connected IO devices and then
assigns the configured IP addresses during system power-up. If an IO device is not accessible
under its configured device name, the IO controller cannot establish a connection to the IO
device.

 The IP address does not have to be assigned manually. It is assigned by the IO
controller during system power-up (after checking the device name). If, however, an IP
address is assigned manually, it is then overwritten by the IO controller.

Ways of assigning a name
In principle, there are three ways of writing (assigning) the device name in an IO device, whereby
only two of the three ensure that the offline configured device name really gets written into the IO
device without errors.

• Version 1 and 2 (sure)  if possible, use one of these procedures!

The assignment of the device name is triggered from the device configuration of the IO device.

Device configuration of IO device  Right-click on the Interface module (Slot 0)  Online &
diagnostics  Functions  Assign name (see picture)

Or

Device configuration of IO device  Right-click on the Interface module (Slot0)  Assign device
name

For both versions, the IO device is selected based on the MAC address and, to be sure that you
have selected the right one, you can make the LEDs on the selected IO device flash by checking
“LED flashes”. Since the configured device name is adopted, you can’t make any typing errors.

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

 SIMATIC S7-1200 Advanced Course

 TIA-MICRO2 - Introduction to PROFINET
5-14 Training Document V16.00.00

• Version 3 (possible typing errors)

The assignment of the device name is triggered via "Accessible devices" or "Online accesses".

Project view  Online accesses  Ethernet interface  IO device  Online & diagnostics 
Functions  Assign name

Here, any device name you choose can be assigned. This procedure can be used if you do not
have the original project. The disadvantage vis-à-vis Version 1 or 2 is that you can make typing
errors, that is, the device name does not match the offline configuration. In this way, the IO device
is no longer accessible to the IO controller.

More than one PROFINET device of the same type
Should several nameless PROFINET devices of the same type be available on the network, they
can only be differentiated by their MAC address. This is printed on the Interface modules.

Alternatively, the function "LED flashes" can also be used to differentiate the PROFINET devices
from one another. For this, a device is selected and the function "LED flashes" is started.

The LINK-LED(s) of the selected device always flash. This/These LED(s) normally show(s) that
there is a physical connection between the device and the next switch.

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

SIMATIC S7-1200 Advanced Course

TIA-MICRO2 - Introduction to PROFINET 5-15
Training Document V16.00.00

5.11. Task description: Controlling the conveyor model via the
ET 200S

Task description
The control of the conveyor model through the central 8DI/8DO module is now to be replaced by
the I/O modules of the ET 200S.

For this, you must insert the new IO device in your project and configure it. Furthermore, the
current I/O addresses of the conveyor model are to be used (QB8 and IB8) so that the user
program doesn’t have to be changed.

Distributed I/O

Change I/O addresses

Control conveyor model
via distributed I/O

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

 SIMATIC S7-1200 Advanced Course

 TIA-MICRO2 - Introduction to PROFINET
5-16 Training Document V16.00.00

5.11.1. Exercise 1: Inserting the ET 200S in the project and networking it

Task
Insert the Interface module of your ET 200S into your project and network it with the CPU Station
"PLC_1".

What to do
1. Open the Network view of your project.

My_Project  Devices & networks  Network view

2. From the Hardware catalog, select the head module of your ET 200S and drag it onto the
network plan using drag & drop.

3. Network ET 200S with the CPU.
Drag the PROFINET interface of the ET 200S to the PROFINET interface of the CPU and
drop it there.

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

SIMATIC S7-1200 Advanced Course

TIA-MICRO2 - Introduction to PROFINET 5-17
Training Document V16.00.00

5.11.2. Exercise 2: Configuring the ET 200S and setting the PROFINET address
parameters

Task
Configure the modules of the ET 200S and set the address parameters.

What to do
1. Open the Device view of the ET 200S.

2. Equip the ET 200S with the modules according to the order number on the individual
modules.

3. Set "et200s-conveyor" as the PROFINET device name
Select the Interface module (Slot 0)  Inspector window  Properties  General  Name

4. Set the IP address 192.168.111.103 for the IO device.
Select the Interface module (Slot 0)  Inspector window  Properties  PROFINET interface 
Ethernet addresses  IP protocol

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

 SIMATIC S7-1200 Advanced Course

 TIA-MICRO2 - Introduction to PROFINET
5-18 Training Document V16.00.00

5.11.3. Exercise 3: Changing the I/O addresses

Situation up until now
The binary input signals of the conveyor model are in IB8; the output signals in QB8. Currently,
QB8 and IB8 are processed by the central 8DI/8DO module.

Task
QB8 and IB8 are to be assigned to the I/O modules of the ET 200S.

What to do
1. Open the Device view of "PLC_1" and navigate to the address properties of the 8DI/8DO

module and assign the following addresses:
Module  8DI/8DQ  I/O addresses
Input addresses  Start address: 88
Output addresses  Start address: 88

2. In the pop-up message, select "Do not change tags", since the PLC tags of IB8 or QB8 are
otherwise rewired to IB88 or QB88.

Distributed I/OCentral module

QB8 and IB8

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

SIMATIC S7-1200 Advanced Course

TIA-MICRO2 - Introduction to PROFINET 5-19
Training Document V16.00.00

3. Open the Device view of the ET 200S.

4. For the input and output addresses of the ET 200S, configure the addresses IB8 and QB8.

 So that the 8 channels of a module are in one and the same byte, you must pack the
addresses. For this, select both modules, right-click on one of the modules and then click
on "Pack addresses"

 sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

 SIMATIC S7-1200 Advanced Course

 TIA-MICRO2 - Introduction to PROFINET
5-20 Training Document V16.00.00

5.11.4. Exercise 4: Writing the device name in the IO device (Device initialization)

Task
Assign the device name "et200s-conveyor" to your ET 200S.

What to Do
1. Open the device configuration of the ET 200S

2. Open the context menu of the Interface module and select "Online & diagnostics"

 Right-click on the Interface module (Slot 0)  "Online & diagnostics"

3. Navigate to "Assign name"

 "Online & diagnostics"  Functions  Assign name

4. From the list of accessible devices select the device of the type "IM151-3" and click on "Assign
name"

5. Check whether the device name was assigned correctly by updating the list of accessible
devices.

 The ET 200S still doesn’t have an IP address. This will be assigned by the IO controller
after you have transferred the modified hardware configuration of "PLC_1" and the IO
controller (CPU 1214) starts up again.

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

SIMATIC S7-1200 Advanced Course

TIA-MICRO2 - Introduction to PROFINET 5-21
Training Document V16.00.00

5.11.5. Exercise 5: Compiling the modified device configuration and testing the
program

Preparation
Remove the conveyor cable connector from the central training device and insert it in the
ET 200S’ socket.

Task
Download the modified hardware configuration of "PLC_1" into the controller and test whether
your user program behaves as usual.

What to do
1. Transfer the modified hardware configuration of "PLC_1" into the controller.

2. Test your user program by producing at least 1 part and test whether the conveyor model can
be jogged to the left and the right when "P_Operation" = FALSE.

Distributed I/O

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

 SIMATIC S7-1200 Advanced Course

 TIA-MICRO2 - Introduction to PROFINET
5-22 Training Document V16.00.00

5.12. Additional information

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

SIMATIC S7-1200 Advanced Course

TIA-MICRO2 - Introduction to PROFINET 5-23
Training Document V16.00.00

5.12.1. Topology editor

Topology editor
The configuration of the network topology is required for certain PROFINET functions. This
includes, for example, the functions "Enabling device replacement without exchangeable
medium" or "PROFINET IRT".

Functions of the topology view
The Topology view is one of three work areas of the Devices & networks editor. The following
tasks can be carried out:

• Display Ethernet topology
− Display all PROFINET devices and passive Ethernet components of the project

including ports
− Display interconnections between the ports
− Display associated logical networks
− Display diagnostic information of all ports

• Configure Ethernet topology
− Create, change and delete port interconnections
− Rename stations, devices, interfaces, ports
− Add PROFINET devices and passive Ethernet components to the project from the

Hardware catalog

Caution!
The planned topology is loaded into the IO controllers involved. If the real topology is
changed later, the functions that are built up on it are no longer executed correctly. The
LEDs "BF" and/or "MAINT" light up.

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

 SIMATIC S7-1200 Advanced Course

 TIA-MICRO2 - Introduction to PROFINET
5-24 Training Document V16.00.00

• Determine and minimize differences between the setpoint topology and the actual topology
− Carry out offline/online comparison of Ethernet modules, Ethernet ports and Ethernet

port interconnections
− Adopt topology information existing online into the offline project

Differences between Network View and Topology View

• The Network view displays all logical subnets of the project.

• The Topology view displays all Ethernet components of the project. This also includes
passive components such as switches and media converters and cables.

• The position of a device in the Network view and its position in the Topology view are
independent of one another, that is, as a rule, one and the same device is in a different
position in each of the two views.

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

SIMATIC S7-1200 Advanced Course

TIA-MICRO2 - Introduction to PROFINET 5-25
Training Document V16.00.00

5.12.2. Topologies

Star Structure
The simplest network structure is a central Switch that enables the data transmission between the
connected devices.

• Advantages
− Easy managing, monitoring and diagnosis in the network
− Flexible adding and removing of connections

• Disadvantages:
− Single point of failure (one single critical point in case of error)
− Wiring costs

• Appropriate for:
− Small production areas
− Individual production machines
− Host system of a larger system

Line

Tree

Star

Ring

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

 SIMATIC S7-1200 Advanced Course

 TIA-MICRO2 - Introduction to PROFINET
5-26 Training Document V16.00.00

Line Structure
The devices are arranged in series.

• Advantages:
− Cable cost savings for larger installations
− Traditional fieldbus structure

• Disadvantages:
− The transmission time can be influenced by the routing

Tree Structure
In principle, the tree structure is a combination of the line and star structure.

• Advantages:
− The system is very transparent
− Little data traffic since local data is restricted to the source location
− Greater safety since local data remains in the originating area
− Is also used to divide complex systems into logical subsystems

• Disadvantages:
− Single point of failure (one single critical point in case of error)
− Wiring costs

Ring Structure
The ring structure is the result of connecting the ends of a line structure.

An internal interruption of the ring at a switch ensures that data packages do not circulate. With
an interruption at another location, it is automatically closed.

The redundant path should not be combined with the outgoing path.

• Advantages:
− Additional failure security

• Disadvantages:
− Increased expenditures for hardware

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

SIMATIC S7-1200 Advanced Course

TIA-MICRO2 - Introduction to PROFINET 5-27
Training Document V16.00.00

5.12.3. Topology View - Topology comparison

In the topology view, you carry out the following tasks:

• Display Ethernet topology
− Display all PROFINET devices and passive Ethernet components of the project including

ports
− Display interconnections between the ports
− Display associated logical networks
− Display the diagnostic information of all ports

• Configure Ethernet topology
− Create, change and delete interconnections of ports
− Rename stations, devices, interfaces, ports
− Adding PROFINET devices and passive Ethernet components to the project from the

Hardware catalog

• Determine differences between the offline and online topology and repair them
− Carry out offline/online comparisons of Ethernet modules, Ethernet ports and Ethernet port

interconnections
− Adopt topology information existing online in the offline project

The "Topology Overview" tab offers the following functions:

• Display of configured topology

• Display of the diagnostic status of hardware components

The "Topology Comparison" tab offers the following function:

• Determine and repair the difference between the offline and online topology

- In the "Actual” column, you specify which OFFLINE-ONLINE differences are to be
adopted. All differences to be adopted are activated via the context menu (Apply > Apply
all).
Then the selected differences can be adopted with the "Synchronize” button.

Synchronize

Update

Compare

Adopt position of devices
as in Network view

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

 SIMATIC S7-1200 Advanced Course

 TIA-MICRO2 - Introduction to PROFINET
5-28 Training Document V16.00.00

5.12.4. PROFINET proxy concept

PN proxy concept
Using Proxies/Gateways/Links, it is possible to integrate existing bus systems in a PROFINET
network. For this, the manufacturers offer different solutions, for example the "IE/PB-Link" from
Siemens for the integration of PROFIBUS devices.

From the point of view of PROFINET, a proxy is an IO device. For the connected PROFIBUS
slaves, the proxy represents the PROFIBUS master.

PROFINET

PROFIBUS

Proxy

INTERBUS

Proxy

Field bus systems such as PROFIBUS or INTERBUS can be integrated in
PROFINET systems via Proxies.

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

SIMATIC S7-1200 Advanced Course

TIA-MICRO2 - Introduction to PROFINET 5-29
Training Document V16.00.00

5.12.5. PROFINET Communications model

Real-time channel
To be able to fulfill real-time requirements in automation, an optimized real-time communication
channel, the Realtime Channel (RT Channel), was specified in PROFINET. It uses Ethernet
(Layer 2) as a base.

The addressing of the data packets does not take place in this case via an IP address, rather by
means of the MAC addresses of the participating devices. Such a solution minimizes the
throughput times in the communications stack considerably and leads to an increase in
performance with regards to the updating rate of automation data.

IRT channel
Isochronous Real-time (IRT) as a further development with the following features:

• Clock-synchronous data transmission

• Cycle times <1ms with jitter accuracy <1µs

• Typical field of application is Motion Control

IT standards
The design of PROFINET WEB Integration focuses on commissioning and diagnostics. Access to
a PROFINET device from the Internet or Intranet is done with standard protocols (for example,
http). The data is transmitted in standard formats such as HTML or XML and can be presented
with standard browsers such as Opera or Internet Explorer.

This worldwide accessibility makes it easy for the application manufacturer to support the user
with commissioning, device diagnostics etc. Access to the data is done via Web servers which
are integrated in the modules.

Ethernet Protocol

TCP/UDP

Re
al

 ti
m

e

PROFINET applications

1

IT appli-
cations
e.g.
 HTTP
 SNMP
 DHCP...

2

Standard
data

Fast, cyclic
process data

Internet Protocol (IP)
Realtime

Data exchange between IO
controller and IO device

PROFINET based on
Industrial Ethernet!

e.g. Call Web server
on the CPU

e.g. Read-out diagnostic data or
program download
by means of a PG

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

 SIMATIC S7-1200 Advanced Course

 TIA-MICRO2 - Introduction to PROFINET
5-30 Training Document V16.00.00

5.12.6. The MAC Address

MAC address
Every Ethernet device (node) requires, for the identification in the network on Layer 2 of the
ISO/OSI model, a unique address as a network access point for the layers above it. For that
reason, each device has a fixed, world-wide unique address which is given by the factory. This is
called the MAC (Media Access Control) address or MAC for short.

A MAC address has a length of 48 bits and is usually depicted in "canonical representation" (LSB
format) (e.g. with "ipconfig /all"). For the transmission of data, it is defined that the least significant
bit of an octet (LSB) is sent first.

Ethernet address
The Ethernet address is 6 bytes long in hexadecimal notation. It is divided into a manufacturer-
specific part and a consecutive number. For smaller companies it may make sense to use the
PNO Ethernet address. That way, they don’t have to apply for their own Ethernet address. The
OUI (Organizationally Unique Identifier) of the PNO is 00-0E-CF.

Examples

• 00-0E-CF PROFIBUS User Organization

• 00-0E-8C Siemens AG A&D ET

• 08-00-06 Siemens AG IT Solutions

• 00-01-E3 Siemens AG

• 00-0E-F0 Festo AG & Co. KG

MAC Address

Network
Adapter

MAC

TCP/IP Model
4 Application layer

3 Transport layer

2 Internet layer

1 Network access layer

47 40 39 32 31 24 23 16 15 8 7 0

0 E C F X X X X X X

Manufacturer-specific part Consecutive number

0 0

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

SIMATIC S7-1200 Advanced Course

TIA-MICRO2 - Introduction to PROFINET 5-31
Training Document V16.00.00

5.12.7. The partitioning of the IP Address

The partitioning of the IP address
The IP address is divided into a device part (Host-ID) and a network part (Network-ID). Originally,
5 different network classes were defined worldwide (A,B,C,D,E). For the network classes A to C,
it was uniquely defined which part of the IP address represents the Network-ID and which part
represents the Host-ID.

Attention!
Today, IP addresses are no longer divided into classes. So that the partition between
Network-ID and Host-ID can still be determined, a subnet mask is also specified.

Network size
If you shift the partition between Network part and Host part to the left, you have fewer networks
with many devices per network. If, however, you shift it to the right, you have many networks with
few devices per network.

Network-ID Host-ID

The partition between network
and host part is determined by
the specification of the subnet

mask.

31 0

Fewer networks, many
hosts per network More networks, fewer

hosts per network

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

 SIMATIC S7-1200 Advanced Course

 TIA-MICRO2 - Introduction to PROFINET
5-32 Training Document V16.00.00

5.12.8. Detecting decentral devices automatically

Automatic detection
Via the function "Online>Hardware detection>PROFINET devices from network..." you can
automatically detect IO-devices. This is especially interesting for modular devices, since the
firmware of the individual modules is inserted correctly here.

1

2

3

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

SIMATIC S7-1200 Advanced Course

TIA-MICRO2 - Introduction to Industrial Communication 6-1
Training Document V16.00.00

Contents 6

6. Introduction to industrial communication .. 6-2

6.1. Objectives ... 6-2
6.2. Task Description: Creating an "ISO-on-TCP" connection ... 6-3

6.3. S7-1200 ethernet communication services in the ISO/OSI communication model 6-4
6.3.6. Data flow-oriented and message-oriented communication .. 6-5
6.3.7. Combined blocks for the connection programming .. 6-6
6.3.8. Connection parameterization via block properties (sending station with TSEND_C) 6-8
6.3.9. Parameterized send block TSEND_C .. 6-10
6.3.10. Connection parameterization via block properties (receiving station with TRCV_C) 6-12
6.3.11. Parameterized receive block TRCV_C ... 6-13

6.4. Task description: Program CPU-CPU communication and send 200 Bytes of data 6-14
6.4.1. Exercise 1: Preparing the CPU 1211C ... 6-15
6.4.2. Exercise 2: Calling TSEND_C ("PLC_1": "FC_Send") ... 6-16
6.4.3. Exercise 3: Calling "FC_Send" ... 6-17
6.4.4. Exercise 4: Calling TRCV_C ("PLC_2": "FC_Receive") ... 6-18
6.4.5. Exercise 5: Function test ... 6-20

6.5. Additional Information ... 6-21
6.5.1. UDP Communication .. 6-22
6.5.2. TCP Communication ... 6-23
6.5.3. ISO-on-TCP communication ... 6-24
6.5.4. S7 Communication .. 6-25
6.5.5. Connections .. 6-26
6.5.6. Connection resources ... 6-27
6.5.7. Diagnosing the Open User Communication ... 6-28

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

 SIMATIC S7-1200 Advanced Course

6-2 TIA-MICRO2 - Introduction to Industrial Communication
 Training Document V16.00.00

6. Introduction to industrial communication
6.1. Objectives

At the end of the chapter the participant will ...

… understand the principle of CPU-CPU communication.
… be familiar with the features of the transport protocol "ISO-on-

TCP".
… understand the difference between packet-oriented and data

flow-oriented communication.
… be able to create a communications connection between 2 CPUs.

Objectives
In this chapter, the industrial communication via Ethernet between two S7-1200 CPUs is dealt
with. The available communication services are compared. In a concluding exercise, an ISO-on-
TCP connection between the two CPUs of the training area is programmed.

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

SIMATIC S7-1200 Advanced Course

TIA-MICRO2 - Introduction to Industrial Communication 6-3
Training Document V16.00.00

6.2. Task Description: Creating an "ISO-on-TCP" connection

CPU 1214C CPU 1211C

ISO-on-TCP

200 bytes

DB_Parts
DB_Receive

Task description
An ISO-on-TCP connection between the CPUs of your training area is to be programmed. Via this
connection, the ARRAY variable "DB_Parts".PartWeights is to be sent from the controller
"PLC_1" to the still to be configured controller "PLC_2" and stored there in the DB "DB_Receive"
in the ARRAY variable "Receivebuffer".

To minimize data traffic, sending is not to be continuous. Instead, sending is to occur under the
same conditions as the saving of weight values in "DB_Parts".

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

 SIMATIC S7-1200 Advanced Course

6-4 TIA-MICRO2 - Introduction to Industrial Communication
 Training Document V16.00.00

6.3. S7-1200 ethernet communication services in the ISO/OSI
communication model

Ethernet

Internet protocol
TCP UDP

RFC 1006 (ISO)
S7 protocol

La
ye

r

2

1

3
4
4*

5-7

S7 communication (PUT/GET)
ISO-on-TCP

TCP
UDP

1
2

3

ISO/OSI model
Communication tasks are divided for international comparison in 7 layers according to the
ISO/OSI model. Included are also, among other things, the types of communication shown in the
picture which are supported by the S7-1200.

Every layer has an exactly defined task area and, in each case, a defined interface to the higher-
level and the subordinate layer.

Abbreviation
ISO:

International Organization for Standardization

OSI: Open Systems Interconnection Reference Model

Ethernet communication services
For communication via (industrial) ethernet, there are various services in the SIMATIC
environment. These differ about:

• Data security

• Amounts of data

• Data handling

• Routing capability and

• Engineering effort

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

SIMATIC S7-1200 Advanced Course

TIA-MICRO2 - Introduction to Industrial Communication 6-5
Training Document V16.00.00

6.3.6. Data flow-oriented and message-oriented communication

220 bytes

130 bytes50 bytes

200 bytes

100 bytes

Ethernet

50 bytes

200 bytes

100 bytes 50 bytes

200 bytes

100 bytes

Input blocks =
Output blocks

Input blocks ≠
Output blocks

Ethernet

TCP TCP TCP TCP

RFC1006 RFC1006

TCP communication ISO-on-TCP communication

Data flow-oriented and packet-oriented communication
When data is transferred with the Transmission-Control-Protocol (TCP), the transmission takes
place in the form of a data flow. Neither information on length nor information about the beginning
and end of a message is transferred. The receiver, however, cannot recognize where a message
ends in the data flow and where the next one begins in the data flow. A read task of the receiver
thus only supplies as much data as is currently found in the receive buffer. This means that
possibly more than one data block can be found in the receive buffer.
This process is well suited for communicating with third-party systems or computer systems.

Behavior of the RFC 1006 protocol expansion
In most automation applications it is, however, essential to work message-oriented. Self-
contained message blocks are sent via a connection which is also recognized as such by the
receiver. In order to ensure this, RFC 1006 specifies which information (in the form of a header)
must be added to the data to be transferred.

RFC 1006 thus provides applications which are based on the data flow-oriented TCP protocol
with a message-oriented transmission.

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

 SIMATIC S7-1200 Advanced Course

6-6 TIA-MICRO2 - Introduction to Industrial Communication
 Training Document V16.00.00

6.3.7. Combined blocks for the connection programming

Sends the data range of parameter
"DATA" to a target station with the

connection data of parameter
"CONNECT"

Receives data from a Send station
and stores it in the data range
specified at parameter "DATA".

PLC_1

PLC_2

Open User Communication
If the integrated Ethernet interface of the CPU is used for the Ethernet communication, the so-
called "Open User Communication" is used.
Included in the "open" communication services, that is those whose inner structure is open, are
TCP, UDP and ISO-on-TCP. Connections between SIMATIC controllers which use one of these
services are not configured in the Network view of STEP7 (such as connections to HMI devices)
but are programmed. For this, there are various blocks available in the Instruction Catalog.

Connection-oriented and connectionless services
Connection-oriented services, this includes TCP and ISO-on-TCP, first establish a connection to
the communication partner and then send the data (also bidirectional). If the transmission process
is completed, the connection is disconnected. All data is acknowledged by the receiver. The
sender resends all unacknowledged telegrams. This is comparable to telephoning with a
telephone. First, a connection is established (dial number + pick up), then, information is
exchanged, and, in the end, you hang up, that is, the connection is disconnected.

Connectionless services, such as UDP, send their data without first establishing a connection,
like a "walkie-talkie" (blocks: TUSEND / TURCV). It can therefore not be ensured whether the
data is received by the receiver. The advantage lies here in the speed, since less administrative
data for flow control must be sent and interpreted.

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

SIMATIC S7-1200 Advanced Course

TIA-MICRO2 - Introduction to Industrial Communication 6-7
Training Document V16.00.00

Combined connection blocks
Connection-oriented communication services can be used in two ways:

• Single blocks
With the single blocks, targeted connection actions can be executed.
− TCON / TDISCON: connect and disconnect a connection
− TSEND / TRCV: send or receive data after establishing a connection

• Combined connection blocks
− TSEND_C: Connect a connection (when Active connection establishment is active) , Send

data and disconnect the connection (when Active connection establishment is active)
− TRCV_C: Connect a connection (when Active connection establishment is active), Receive

data and disconnect the connection (when Active connection establishment is active)

With combined connection blocks, a connection to the communication partner is established, data
is sent/received, and the connection is disconnected with just one call.

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

 SIMATIC S7-1200 Advanced Course

6-8 TIA-MICRO2 - Introduction to Industrial Communication
 Training Document V16.00.00

6.3.8. Connection parameterization via block properties (sending station with
TSEND_C)

Select the target station

IP addresses of stations

DB for connection data in target
station (is automatically generated)
DB for connection data in sending
station (is automatically generated)

Establishment of TSAPs

Select the connection type

Connection parameterization via block properties
The TSEND_C block works connection-oriented, that is, a partner CPU must first be configured.
After the block is called, this can be done very easily in the Inspector window under Properties >
Configuration > Connection parameter.

Connection parameters

• End point
Here, the partner CPU is configured. It can be in the same project (here: "PLC_2"), or a "not
specified" partner is created. In both cases, the addressing of the partner occurs via its IP
address.

• Address
Here, the IP address of the partner is specified. If a specified partner was selected before, its
IP address is automatically adopted. For not specified partners, it must be entered manually.

• Connection type
Via the connection type, a communication service is selected and thus the properties of the
communication.

• Connection ID (dec)
Via the connection ID, the number of the connection within the CPU is specified. Depending
on the CPU used, several simultaneous connections are mastered. The connection ID must
be unique within the CPU. The exact number of simultaneously possible Ethernet connections
can be found in the manual.

• Connection data
The connection data, which the "TSEND_C" block accesses, is stored in a DB. This DB
contains the configured information on the connection type and the partner CPU (IP address
etc.). The DB is automatically created when "New" is selected in the field "Connection data".

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

SIMATIC S7-1200 Advanced Course

TIA-MICRO2 - Introduction to Industrial Communication 6-9
Training Document V16.00.00

Address details

• TSAP (ASCII)
The Transport Service Access Point (TSAP) is used for ISO-on-TCP communication in order
to address the transmitted data at the receiver. In the network, the receiver is addressed by
means of the MAC address. At the receiver, the received data is first stored in the receive
buffer of the Ethernet interface and then fetched from there by the operating system of the
CPU. The application within the CPU is addressed via the TASP-ID.

This type of addressing is comparable to a multiple family dwelling with a collective mailbox
and a caretaker who distributes the mail. In order to now address an occupant, the house
number (MAC address) must first be specified. The letter (data) first lands in the mailbox
(receive buffer of the Ethernet interface). So that the caretaker can deliver the letter, the name
of the occupant (TSAP-IP) must also be on the letter.

• TSAP-ID
The TASP-ID is automatically generated from the entered TSAP.

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

 SIMATIC S7-1200 Advanced Course

6-10 TIA-MICRO2 - Introduction to Industrial Communication
 Training Document V16.00.00

6.3.9. Parameterized send block TSEND_C

TSEND_C
The TSEND_C block processes send tasks as follows:

1. Establish connection to the communication partner

2. Send data at parameter DATA

3. Disconnect connection

Parameterized Send Block TSEND_C
The TSEND_C block has several parameters which are explained in the following.

• REQ
If a rising edge is detected at input REQ, a send task is started

• CONT
The input CONT controls the communication connection
FALSE: The connection is disconnected
TRUE: The connection is established

• LEN
The parameter LEN specifies the maximum number of bytes which can be sent with the task.
If purely symbolic values are specified at parameter DATA, the parameter LEN must have the
value "0"

• CONNECT
In order to parameterize the communication connections for TCP, UDP and ISO-on-TCP, a
connection describing DB with a fixed structure is used. The data structure contains the
necessary parameters which are required to establish the connection. The connection
describing DB is automatically created for a new connection by the connection
parameterization of the Open User Communication when using the instructions TSEND_C,
TRCV_C or TCON

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

SIMATIC S7-1200 Advanced Course

TIA-MICRO2 - Introduction to Industrial Communication 6-11
Training Document V16.00.00

• DATA
The send data range is specified via the parameter DATA. The addressing takes place via a
pointer to the send range which contains the address and the length of the data to be sent (for
example, "P#DB80.DBX0.0 byte 20" (pointer to a data range of 20 bytes in DB80, beginning
from bit 0.0)) or symbolically, in order to address, for example, ARRAYs or structures (for
example, ""DB_Parts".WeightStore" (pointer to the structure variable "WeightStore" in
"DB_Parts"))

• COM_RST
Causes a restart of the instruction:
FALSE: Irrelevant
TRUE: Complete restart of the instruction whereby the existing connection is disconnected,
and a new connection is established

• DONE
The status parameter DONE indicates the processing status of the current send task
FALSE: Task has not yet started or is still being processed
TRUE: Task was executed without error

• BUSY
The status parameter BUSY indicates whether the current call of the block has already been
completed or is not active since "TSEND_C" is executed asynchronously. As long as BUSY =
"TRUE", no new send task is accepted

• ERROR
The status parameter ERROR indicates with "TRUE" whether errors occurred during the send
task. Error details can be queried at the parameter STATUS

• STATUS
The parameter STATUS delivers a 2-byte HEX code which contains information on the send
state or errors that have occurred

 sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

 SIMATIC S7-1200 Advanced Course

6-12 TIA-MICRO2 - Introduction to Industrial Communication
 Training Document V16.00.00

6.3.10. Connection parameterization via block properties (receiving station with
TRCV_C)

Connection parameterization via block properties
The TRCV_C block, as well, works connection-oriented, that is, a partner CPU must first be
configured. After the block is called, this can be done very easily in the Inspector window under
Properties > Configuration > Connection parameter.

If the partner CPU was already programmed beforehand, and both stations are in the same
project, only the "connection data" DBs still must be selected. The rest of the connection
parameters are automatically entered.

Connection Parameters
See page "Parameterized Send Block TSEND_C"

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

SIMATIC S7-1200 Advanced Course

TIA-MICRO2 - Introduction to Industrial Communication 6-13
Training Document V16.00.00

6.3.11. Parameterized receive block TRCV_C

TRCV_C
The TRCV_C block processes send tasks as follows:

1. Establish connection to the communication partner

2. Receive data when EN_R = TRUE. When receiving data, the parameter CONT must have the
value TRUE in order to maintain the existing connection

3. Disconnect connection

Parameterized send block TRCV_C
In the following, the differences to the "TSEND_C" block are presented:

• EN_R
The receiving of data is enabled (EN_R = TRUE) via the parameter EN_R

• DATA
At the parameter DATA, the data range is specified in which the received data is to be stored

• RCVD_LEN
This parameter outputs the number of received bytes after successful receipt

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

 SIMATIC S7-1200 Advanced Course

6-14 TIA-MICRO2 - Introduction to Industrial Communication
 Training Document V16.00.00

6.4. Task description: Program CPU-CPU communication and send
200 Bytes of data

CPU 1214C CPU 1211C

187
235
398
129
285
0
0

Array[1..100] INT

…

[1]
[2]
[3]
[4]
[5]
[6]
[7]

DB_Parts
DB_Receive

187
235
398
129
285
0
0

Array[1..100] INT

…

[1]
[2]
[3]
[4]
[5]
[6]
[7]

Situation up until now
The individual weight values of the produced, valid parts are stored in the ARRAY variable
"DB_Parts".PartWeights whenever the part has passed through the light barrier.

Task description
A connection between the CPUs of your training area is to be programmed. Via this connection,
the ARRAY variable "DB_Parts".PartWeights is to be sent from the controller "PLC_1" to the still
to be configured controller "PLC_2" and stored there in the DB "DB_RECEIVE" in the ARRAY
variable "Receivebuffer".

To minimize data traffic, sending is not to be continuous. Instead, sending is to occur under the
same conditions as the saving of weight values in "DB_Parts".

Blocks

• PLC_1
FC_Send (FC30)  Call in FC_Count (FC18)

• PLC_2
FC_Receive (FC31)  Call in MAIN (OB1)
DB_RECEIVE (DB31)

Note
The "PLC_2" controller is given the IP address 192.168.111.114

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

SIMATIC S7-1200 Advanced Course

TIA-MICRO2 - Introduction to Industrial Communication 6-15
Training Document V16.00.00

6.4.1. Exercise 1: Preparing the CPU 1211C

Task

Configure and network the so far unused controller of your training area.

What to do
1. Reset the controller of your training area that hasn’t been used up until now to the factory

settings to establish a defined initial state.

2. Add a CPU of the type S7-1211C to your project and assign the name "PLC_2".

3. In the Network view of your project, network the new station with the rest of the components.

4. Assign "PLC_2" the IP address 192.168.111.114.

5. Activate the clock memory (MB10) in "PLC_2".

6. Generate a new DB with the name "DB_Receive" and in it create the ARRAY variable
"Receivebuffer" (ARRAY[1..100] of INT).

 7. Download the modified hardware and software into the controller.

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

 SIMATIC S7-1200 Advanced Course

6-16 TIA-MICRO2 - Introduction to Industrial Communication
 Training Document V16.00.00

6.4.2. Exercise 2: Calling TSEND_C ("PLC_1": "FC_Send")

Task
In PLC_1, create a new function "FC_Send" and in it program the call of "TSEND_C".

What to do
1. Add the new function "FC_Send" to your user program.

2. Call the block "TSEND_C".
Instructions  Communication  Open User Comm.  TSEND_C

3. Implement the connection parameter settings as shown in the following:

4. Parameterize the block call as shown in the picture above.

NEW

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

SIMATIC S7-1200 Advanced Course

TIA-MICRO2 - Introduction to Industrial Communication 6-17
Training Document V16.00.00

6.4.3. Exercise 3: Calling "FC_Send"

PLC_1:

FC_Count

Task
Call the new block "FC_Send" in "FC_Count" and assign the parameter "Send" the same RLO as
the counter input "CU".

What to do
1. Open "FC_Count" and call "FC_Send"

2. Assign the input "Send" the RLO of the counter input "CU"

3. Download the entire user program into the controller "PLC_1"

 In the call of "FC_Send" pay attention to the call sequence within "FC_Count"! In NW2,
"FC_Ind_Weight" is called. Only after the current part weight has been stored in
DB_Parts, can "PartWeights" be sent to PLC_2.

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

 SIMATIC S7-1200 Advanced Course

6-18 TIA-MICRO2 - Introduction to Industrial Communication
 Training Document V16.00.00

6.4.4. Exercise 4: Calling TRCV_C ("PLC_2": "FC_Receive")

Temp

PLC_2: FC_Receive

Task
In PLC_2, create a new function "FC_Receive" and in it program the call of "TRCV_C". Then call
"FC_Receive" in OB1 and transfer the entire user program.

What to do
1. Add the new function "FC_Receive" to your user program

2. Call the block "TRCV_C"
Instructions  Communication  Open User Comm.  TRCV_C

3. Implement the connection parameter settings as shown in the following:

Select
PLC_2_Receive_DB

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

SIMATIC S7-1200 Advanced Course

TIA-MICRO2 - Introduction to Industrial Communication 6-19
Training Document V16.00.00

4. Parameterize the block call as shown in the picture above

5. Call "FC_Receive" in OB1

6. Download the entire user program into PLC_2

7. Save your project

Result
Due to the TRUE signal at EN_R, receiving is continuous. The received data is stored in the DB
variable "Receivebuffer".

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

 SIMATIC S7-1200 Advanced Course

6-20 TIA-MICRO2 - Introduction to Industrial Communication
 Training Document V16.00.00

6.4.5. Exercise 5: Function test

Task
Check whether the communication between PLC_1 and PLC_2 works. For this, monitor
"DB_Receive" of PLC_2. First, no data is displayed. Only after a part has passed through the light
barrier is a send sequence triggered and the 200 bytes in total of data is sent to PLC_2.

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

SIMATIC S7-1200 Advanced Course

TIA-MICRO2 - Introduction to Industrial Communication 6-21
Training Document V16.00.00

6.5. Additional Information

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

 SIMATIC S7-1200 Advanced Course

6-22 TIA-MICRO2 - Introduction to Industrial Communication
 Training Document V16.00.00

6.5.1. UDP Communication

Ethernet

Internet protocol
TCP

S7 protocol

La
ye

r

2

1

3
4

5-7

S7 communication (PUT/GET)

TCP

RFC 1006 (ISO)4*

ISO-on-TCP

UDP

UDP

User Datagram Protocol
The UDP protocol was introduced to transfer data quickly and straightforward. The UDP protocol
is in Layer 4 (transport layer) of the ISO-OSI reference model and thus is also based on the IP
layer. The receiver of data is therefore addressed with the help of IP addresses. The data packet
to be sent is only increased by a minimum of administrative information so that a higher data
throughput compared to TCP/IP results.

Because of the demand that data be transferred quickly, the UDP protocol merely provides basic
functions. Hence, data can be exchanged between communicating partners with a minimum of
effort. Security mechanisms as they exist for TCP/IP are thereby dispensed with. The UDP
protocol is connectionless and packet-oriented.

Advantages of UDP

• Very fast data transmission

• Very flexible, ideal for use with third-party systems

• Routing-capable

• Multicast / Broadcast capable

• Suitable for small to medium amounts of data (<= 2048 bytes)

Disadvantages of UDP

• Lost data packets are not resent

• Multiple deliveries of individual packets are possible

• The arrival sequence of packets at the receiver cannot be predicted

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

SIMATIC S7-1200 Advanced Course

TIA-MICRO2 - Introduction to Industrial Communication 6-23
Training Document V16.00.00

6.5.2. TCP Communication

Ethernet

Internet protocol
UDP

S7 protocol

La
ye

r

2

1

3
4

5-7

S7 communication (PUT/GET)

UDP

RFC 1006 (ISO)4*

ISO-on-TCP

TCP

TCP

Transmission Control Protocol
When data is transferred with TCP, the transmission takes place in the form of a data flow.
Neither information on length nor information about the beginning and end of a message is
transferred. The receiver, however, cannot recognize where a message ends in the data flow and
where the next one begins in the data flow. For that reason, the sender must define a message
structure which can be interpreted by the receiver. The message structure can be composed of,
for example, the data and a concluding control character such as "carriage return", which signals
the end of a message.

In most cases, TCP is based on the IP (Internet protocol) and so you also talk about the "TCP/IP
protocol". It is established in Layer 4 of the ISO-OSI reference model.

Advantages of the TCP Protocol:

• Fast communication

• Suitable for the transmission of medium to large amounts of data (<= 8192 bytes)

• Routing-capable (i.e. can be used in WAN)

• Flexible, can be used with third-party systems

• Acknowledged

Disadvantages of the TCP Protocol:

• Only static data lengths can be transmitted

• Greater programming effort required to manage data

• Data is transmitted as data flow

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

 SIMATIC S7-1200 Advanced Course

6-24 TIA-MICRO2 - Introduction to Industrial Communication
 Training Document V16.00.00

6.5.3. ISO-on-TCP communication

Ethernet

Internet protocol
TCP UDP

S7 protocol

La
ye

r

2

1

3
4

5-7

S7 communication (PUT/GET)

TCP
UDP

RFC 1006 (ISO)4*

ISO-on-TCP

TCP – Transfer Control Protocol RFC - Request For Comments

Background
Historically seen, the ISO Transport Protocol, as Layer 4 interface of the ISO-OSI reference
model, was the first Ethernet protocol in SIMATIC. The great advantage of this protocol lies in the
message-oriented transmission of data whereby the processing within the automation system
becomes easier.
Since, however, the Layer 3 implementation is missing (no IP addresses) with the ISO Transport
Protocol, no network addressing and thus no routing is possible.

ISO-on-TCP
The packet-oriented transmission of data is the great advantage of the ISO Transport Protocol.
However, because of the expanding networking, the missing routing functionality developed into
an increasing disadvantage.
Since the routing-capable TCP/IP protocol became increasingly popular because of the internet,
an attempt was made to combine the advantages of both protocols. In the expansion RFC1006
(RFC = Request for Comments) "ISO on top of TCP", also called "ISO-on-TCP", the mapping of
characteristics of the ISO transport on the TCP/IP protocol is set down. This protocol is available
in all current modules of SIMATIC S7.

Advantages of the ISO-on-TCP Protocol:

• Fast communication

• Suitable for the transmission of medium to large amounts of data (<= 8192 bytes)

• Routing-capable (i.e. can be used in WAN)

• Packet-oriented data transmission

• Dynamic data lengths are possible

Disadvantages/Features of the ISO-on-TCP Protocol:

• Mainly applicable in SIMATIC homogenous structures

• Greater programming effort needed to manage the data

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

SIMATIC S7-1200 Advanced Course

TIA-MICRO2 - Introduction to Industrial Communication 6-25
Training Document V16.00.00

6.5.4. S7 Communication

Ethernet

Internet protocol
TCP UDP

La
ye

r

2

1

3
4

5-7

TCP
UDP

RFC 1006 (ISO)4*

ISO-on-TCP

S7 protocol

S7 communication (PUT/GET)

S7 Communication
The S7 protocol is supported by all available S7 controllers and communications processors. As
well, PC systems with the appropriate hardware and software equipment support communication
via the S7 protocol. The S7-400 controllers use SFBs, the S7-300 and 1200 controllers use FBs.
These functions are available regardless of the bus system used so that you can use the S7
communication via Industrial Ethernet, PROFIBUS or MPI.

Advantages of the S7 Protocol

• Regardless of the bus medium (PROFIBUS, Industrial Ethernet (ISO o. TCP), MPI)

• Applies to all S7 data areas

• Transmission of up to 64KByte in one task

• Layer 7 protocol independently ensures for acknowledgement of the data records

• Low processor and bus load in the transmission of larger amounts of data since it is optimized
for SIMATIC communication

Disadvantages of the S7 Protocol

• Manufacturer-dependent, the S7 protocol is only implemented in the SIMATIC S7 spectrum

• Not compatible with S5 communication

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

 SIMATIC S7-1200 Advanced Course

6-26 TIA-MICRO2 - Introduction to Industrial Communication
 Training Document V16.00.00

6.5.5. Connections

Connections
In the editor “devices and networks” (network view) projected connections can be displayed in the
tabular area.

sa

br
iuz

un
er

 @
 d

uz
ce

.e
du

.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

SIMATIC S7-1200 Advanced Course

TIA-MICRO2 - Introduction to Industrial Communication 6-27
Training Document V16.00.00

6.5.6. Connection resources

Connection resources
Connection resources are PLC dependent. For a projected PLC available connection resources
are displayed in the PLC properties.

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

 SIMATIC S7-1200 Advanced Course

6-28 TIA-MICRO2 - Introduction to Industrial Communication
 Training Document V16.00.00

6.5.7. Diagnosing the Open User Communication

Go online
In the connection

table you can
see the status
of the
connections

You will find further
details in the
Inspector
window

Connection diagnosis
Configured connections can be diagnosed in the tabular area of the "devices and networks"
editor. Only an online connection must be established for this. If the connection is selected,
further details are displayed in the Inspector window.

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

SIMATIC S7-1200 Advanced Course

TIA-MICRO2 - Tags and Messages in HMI 7-1
Training Document, V16.00.00

Contents 7

7. Tags and messages in HMI .. 7-2

7.1. Objectives ... 7-2
7.2. Task description: Outputting the analog value, configuring messages and time-of-day

synchronization with the CPU ... 7-3

7.3. SIMATIC WinCC ... 7-4

7.4. HMI device maintenance: Backup/restore with ProSave .. 7-5

7.5. HMI device maintenance: Pack & Go ... 7-6

7.6. HMI project structure ... 7-7
7.7. Configuring an I/O field (conventional) ... 7-8

7.8. Configuring an I/O field (drag & drop) ... 7-9

7.9. Task description: Outputting the transport time on the Touchpanel 7-10
7.9.1. Exercise 1: Creating the I/O field using drag & drop... 7-11
7.9.2. Exercise 2: Configuring the I/O field and creating text fields .. 7-12
7.10. Tasks of an alarm (massage) system ... 7-13

7.11. Structure of an alarm (message) .. 7-14

7.12. Alarm (message) procedures .. 7-15

7.13. Trigger tags for discrete alarms .. 7-16

7.14. Configuring discrete alarms .. 7-17
7.14.1. Slice access (all languages) ... 7-18
7.15. Configuring analog alarms .. 7-19

7.16. Displaying alarms (messages) .. 7-20

7.17. Task description: Configuring a discrete alarm and analog alarms 7-21
7.17.1. Exercise 3: Configuring a discrete alarm .. 7-22
7.17.2. Exercise 4: Configuring analog alarms ... 7-23

7.18. Possibilities for Time-of-day synchronization .. 7-24
7.19. Cyclic Time-of-day synchronization .. 7-26

7.20. Cyclic Time-of-day synchronization by means of area pointer ... 7-27
7.20.1. Exercise 5: Configuring the Time-of-day synchronization CPU  TP by means of a global

area pointer ... 7-28

7.21. Additional information ... 7-29
7.21.1. Daylight saving time / standard time change .. 7-30
7.21.2. Additional exercise: Adopting the time from the CPU ... 7-31

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

 SIMATIC S7-1200 Advanced Course

 TIA-MICRO2 - Tags and Messages in HMI
7-2 Training Document, V16.00.00

7. Tags and messages in HMI
7.1. Objectives

At the end of the chapter the participant will ...

... be familiar with the possibilities of backing up and restoring an
online HMI project

… be able to configure an I/O field
… be familiar with the various alarm message procedures
… be able to create trigger or monitoring tags
... be able to configure discrete and analog alarm messages
… be familiar with the procedures for time-of-day synchronization

between CPU and HMI

Objectives
In this chapter, the possibilities of backing up and restoring an HMI project are presented. As well,
the procedure for creating I/O fields and alarm messages is dealt with.

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

SIMATIC S7-1200 Advanced Course

TIA-MICRO2 - Tags and Messages in HMI 7-3
Training Document, V16.00.00

7.2. Task description: Outputting the analog value, configuring
messages and time-of-day synchronization with the CPU

Message when
Setpoint=Actual

10/28/2011 13:20:19 AM

10/28/2011 13:20:19 AM

Task description

• You are to configure an output field on the HMI in which the elapsed transport monitoring time
is displayed. As process value, use the PLC tag "MD_TranspTime".

• When the preset setpoint quantity (Actual=Setpoint) is reached, a discrete alarm is to be
generated. For this, create the discrete alarm "Setpoint quant. reached!" and, as message bit,
use the M33.2 bit memory in memory word "MW_Messages" (MW32).

• When the weight exceeds or falls below the valid weight, one message each including the
current weight is to be displayed. For this, configure one analog alarm each with the
appropriate alarm text and also output the weight value ("MW_Weight") with this.

• Configure the cyclic adoption of the CPU time. For this, read out the local CPU time with the
function "RD_LOC_T" and configure the area pointer "Date/time PLC" in the HMI.

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

 SIMATIC S7-1200 Advanced Course

 TIA-MICRO2 - Tags and Messages in HMI
7-4 Training Document, V16.00.00

7.3. SIMATIC WinCC

Basic Panels Comfort Panels,
Panels x77,

Mobile Panels

WinCC Runtime
Professional

WinCC Runtime
Advanced

(stand-alone)

WinCC Basic

WinCC Comfort

WinCC Advanced

WinCC Professional

E
ng

in
ee

rin
g

E
di

tio
n

Ta
rg

et
 S

ys
te

m
s

R
un

tim
e

Stand-alone
… based on WinCC flexible RT

SCADA System
… based on WinCC V7 Runtime

SIMATIC WinCC Engineering System
The engineering system is the software with which you carry out all the necessary configuring
tasks in order to create an interface for controlling and monitoring machines and systems.

Engineering editions
The engineering system of WinCC is modularly graded into different editions. The edition
determines which systems of the SIMATIC WinCC spectrum can be configured.

• Basic: Configuration of basic panels

• Comfort: Configuration of basic panels, comfort panels, mobile panels, multi panels and
operating devices of the type x77

• Advanced: Configuration of PC-based stand-alone systems

• Professional: Configuration of PC-based multi-user systems (SCADA system)

Runtime editions
A license appropriate for the engineering system is required on the respective target system for
operation.

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

SIMATIC S7-1200 Advanced Course

TIA-MICRO2 - Tags and Messages in HMI 7-5
Training Document, V16.00.00

7.4. HMI device maintenance: Backup/restore with ProSave

ProSave

With ProSave it is possible to easily make a central data archiving of WinCC. This provides you
with the possibility of fast re-commissioning after a system failure or a device exchange. The
backed-up data is simply transferred onto the new target device thus re-establishing the original
state.

A backup of a device can be made on any storage medium and can be restored, for example, on
a data server.

Functions
ProSave provides all functions which are necessary for the transfer of data between configuring
PC and operating device:

• Installation and de-installation of drivers and options

• Information about installed and installable options on an operating device

• Saving data via Backup/Restore

• Windows-CE-based devices

• Transfer of authorizations

ProSave is integrated in WinCC and can, optionally, also be installed as stand-alone. Then, when
servicing, you can use the stand-alone installation to restore the original data, which was
previously saved with ProSave, to a target device after exchanging a device, for example.

 For Windows-CE devices, a Backup/Restore can be done independent of ProSave
directly from the device onto an external storage medium. External storage media are, for
example, memory cards or USB mass storage devices. You will find more information in
the appropriate device manuals.

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

 SIMATIC S7-1200 Advanced Course

 TIA-MICRO2 - Tags and Messages in HMI
7-6 Training Document, V16.00.00

7.5. HMI device maintenance: Pack & Go

Pack & Go
With the function "Pack & Go", it is possible to transfer an HMI project onto an operating device,
even without WinCC being installed on the transfer computer.

Operating principle
Pack & Go creates a ZIP-archive which contains your generated HMI project and a program for
the project transfer. This ZIP-archive can then, for example, be sent by e-mail. The ZIP-archive
must simply be unzipped on the transfer computer so that the transfer program can be started.

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

SIMATIC S7-1200 Advanced Course

TIA-MICRO2 - Tags and Messages in HMI 7-7
Training Document, V16.00.00

7.6. HMI project structure

General settings for behavior during Runtime, e.g. display
time of system messages

Contains all HMI screens. Grouping of screens is possible.

HMI tag management. Grouping of tags is possible.

Display and configuration of connections to CPUs.
Configuration of area pointers.

Alarm message configuration and message settings

Recipe management

Create user administration for the HMI

Display
screen

System
Global screen

Screen
Template

HMI project structure
In the Project window, only elements which are supported by the selected operating device are
displayed. In the Project window, you have access to the device settings of the operating device,
the language support and the version management.

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

 SIMATIC S7-1200 Advanced Course

 TIA-MICRO2 - Tags and Messages in HMI
7-8 Training Document, V16.00.00

7.7. Configuring an I/O field (conventional)

Configuring an I/O field (conventional)
In order to create an I/O field, it is dragged from the "Toolbox" task card to the desired location in
the configured screen using drag & drop.

Then, a process tag has to be assigned to the I/O field via the Properties (see picture).

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

SIMATIC S7-1200 Advanced Course

TIA-MICRO2 - Tags and Messages in HMI 7-9
Training Document, V16.00.00

7.8. Configuring an I/O field (drag & drop)

Drag PLC tags into the HMI screen using drag & drop  new
I/O field is created

Configuring an I/O field (drag & drop)
In order to visualize process values on the HMI, I/O fields are used. A very easy way of creating
such an I/O field is to drag the desired PLC tag onto the HMI screen using drag & drop. The
engineering system then automatically creates an I/O field.

The output format and the appearance of the I/O field can then be adjusted via its properties.

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

 SIMATIC S7-1200 Advanced Course

 TIA-MICRO2 - Tags and Messages in HMI
7-10 Training Document, V16.00.00

7.9. Task description: Outputting the transport time on the
Touchpanel

PN

Task description
You are to configure an output field on the HMI in which the elapsed transport monitoring time is
displayed. As process value, use the PLC tag "MD_Runtime".

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

SIMATIC S7-1200 Advanced Course

TIA-MICRO2 - Tags and Messages in HMI 7-11
Training Document, V16.00.00

7.9.1. Exercise 1: Creating the I/O field using drag & drop

Task
In the HMI screen "Conveyor", create a new I/O field in the position shown on the screen.

What to Do
1. Open the HMI screen "Conveyor".

2. In the Project window, select the "Default tag table" in the folder "PLC tags".

3. Drag the PLC tag " MD_Runtime" from the Details view onto the HMI screen using drag &
drop.

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

 SIMATIC S7-1200 Advanced Course

 TIA-MICRO2 - Tags and Messages in HMI
7-12 Training Document, V16.00.00

7.9.2. Exercise 2: Configuring the I/O field and creating text fields

Task
Adjust the properties of the previously created I/O field and add two text fields as labeling.

What to do
1. Adopt the settings for the I/O field shown in the following.

2. Adjust the I/O field optically to the one that already exist.

3. Change the Acquisition cycle of the HMI tag " MD_TranspTime" in the HMI tag table.

4. Generate two text fields for the labeling of the I/O field.

5. Save your project and transfer your HMI project onto the touchpanel.

 The PLC tag " MD_TranspTime" has the data type TIME. This is defined in milliseconds.
On the touchpanel, the only meaningful choice for the display format is Decimal to
display this data type. A scaling was already configured for the tag " MD_TranspTime" so
that hundredth of a second instead of milliseconds is output in the just configured I/O
field.

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

SIMATIC S7-1200 Advanced Course

TIA-MICRO2 - Tags and Messages in HMI 7-13
Training Document, V16.00.00

7.10. Tasks of an alarm (massage) system

Basic Task:
• Displaying alarms

Option:
• Sending e-mails

Expanded Tasks:
• Reporting alarms through a printer
• Logging alarms in a file
• Logging alarms in a database

File

PNPN

Time State Text

F.. 10:08:10 C Weight :463
W.. 10:08:18 C Max. Part Number reached

Tasks of an alarm (message) system
Alarm messages are output depending on events or states that occur in the plant or in the
process.

• Displays: The alarms are displayed on the operating device. This task is supported by every
operating device.

• Reporting: The alarms are output to a printer.

• Logging (archiving): The alarms are stored for further processing and analysis in a file (flash
or hard drive).

• Sending e-mails: Through this task, the "SendEmail" system function can also be configured
to a message.

 Whether the tasks named are supported depends on the respective operating device
type. Information on the functional scope can be found in the manual.

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

 SIMATIC S7-1200 Advanced Course

 TIA-MICRO2 - Tags and Messages in HMI
7-14 Training Document, V16.00.00

7.11. Structure of an alarm (message)

Time stamp
Date and time-of-day

Alarm text
with a max. 8 insertable

process values

Alarm class
Name or identifier
can be configured

Alarm number
within an

alarm class

Alarm status

Alarm group
for group acknowledgement

(optional)

Alarm classes
Each alarm is assigned to an alarm class that has specific properties. In addition to the following
standard alarm classes, you can also declare your own alarm classes.

• Diagnosis Events are generated by the controller and report diagnostic events with standard
texts (such as, the exceeding of the measuring range of an analog input module)

• System Alarms are alarms with standard texts that are output by the operating panel (such
as, connection setup to the controller …)

• Error Alarms must always be acknowledged and can be freely configured by the user. That is,
you define the alarm event ( discrete or analog alarms) as well as the alarm text.

• Warnings do not have to be acknowledged and like error alarms can be freely configured by
you.

Alarm statuses
The following alarm statuses exist:

• Alarm statuses that do not need to be acknowledged:
− C: came
− CD: came and done (gone)

• Alarm statuses that must be acknowledged:
− C: came
− CA: came, still existing (pending) and already acknowledged
− CD: came, done (gone), but not yet acknowledged
− CDA: came, done (gone) and later acknowledged
− CAD: came, acknowledged and done (gone)

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

SIMATIC S7-1200 Advanced Course

TIA-MICRO2 - Tags and Messages in HMI 7-15
Training Document, V16.00.00

7.12. Alarm (message) procedures

Discrete alarm procedure
Analog alarm procedure Alarm number procedure

Operating device
cyclically polls the

relevant data in the CPU

Controller sends
alarm telegram

Alarm procedures
WinCC supports the following alarm procedures:

• Discrete alarm procedure:
The operator panel displays an alarm if a certain bit of a so-called trigger tag is set in the
controller. For this, the operator panel must read out the trigger tag cyclically from the S7
controller.

• Analog Alarm Procedure:
The operator panel displays an alarm if a certain tag exceeds specified upper or lower limit
values. For this, the operator panel must read out the tag cyclically from the S7 controller.

• Alarm Number Procedure:
The operator panel displays an alarm if the controller sends an alarm telegram of the
associated alarm number to the operator panel.
This procedure has the following advantages:
− the alarms are displayed in exactly the same sequence as they actually occur in the

process
− the alarms have a CPU time stamp and not an operator panel time stamp
− reduced bus load because communication only takes place in case of an alarm
− no alarms are lost

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

 SIMATIC S7-1200 Advanced Course

 TIA-MICRO2 - Tags and Messages in HMI
7-16 Training Document, V16.00.00

7.13. Trigger tags for discrete alarms

Trigger tags
To generate a discrete alarm, a bit edge change is necessary. These bits are managed in trigger
tags. These trigger tags are edited in the HMI tags or can be created directly when configuring a
discrete alarm.

Data type
The trigger tag must be of the data type Word.

Array elements
If more than 16 bits are needed, the range can be increased by the number of ARRAY elements.
Several, different trigger tags can also be created.

Acquisition mode "cyclic continuous"
Trigger tags must be constantly monitored in the background by the operating device since alarm
events are possibly not registered otherwise.

 For performance reasons, it is wise to declare the trigger tags in a continuous data area,
rather than to scatter them throughout. That way, all trigger tags can be read out of the
controller by the operating device with fewer reading accesses.

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

SIMATIC S7-1200 Advanced Course

TIA-MICRO2 - Tags and Messages in HMI 7-17
Training Document, V16.00.00

7.14. Configuring discrete alarms

Bit within the PLC
(Information)

"MW_Messages" (MW32)

MB32 MB33

.15 .0.6

M33.6

Bit within the tag

New alarm message
By clicking in the next empty line in the "Alarm text" column, a new alarm is created. The new
alarm must be assigned to an alarm class and a trigger tag (trigger bit of a Word tag) must be
defined.

Alarm text
The alarm text can be a maximum of 254 characters long and can be formatted character by
character. Tag values and/or texts from text lists can be inserted in the alarm text. The current
value of the tag used is updated or once again read in when an alarm occurs.

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

 SIMATIC S7-1200 Advanced Course

 TIA-MICRO2 - Tags and Messages in HMI
7-18 Training Document, V16.00.00

7.14.1. Slice access (all languages)

D0D1

W0W1W3

X
63

B0B1B7

"My_Var ", Data type LWORD

bit-by-bit:
"My_Var".%X0

X
0

X
7

byte-by-byte:
"My_Var".%B1

word-by-word:
"My_Var".%W3

dword-by-dword:
"My_Var".%D1

Slice Access
Examples:

Slice access
In all programming languages, the slice access enables a bit, byte, word and double-word access
to variables of greater dimensions respectively.

With a bit access, for example, the individual bits of an integer variable can be scanned or low
and high byte can be loaded even though no symbolic names exist for these variable elements.

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

SIMATIC S7-1200 Advanced Course

TIA-MICRO2 - Tags and Messages in HMI 7-19
Training Document, V16.00.00

7.15. Configuring analog alarms

Trigger condition

Analog alarms
An analog alarm is triggered when the value of a monitored (trigger) tag exceeds or falls below a
limit value. The limit value can be specified by means of a constant or via a tag.

Properties

• Exceeding
The alarm comes if the specified limit value is exceeded, and it goes when the limit value
once again falls below

• Falling below
The alarm comes if the specified limit value falls below and it goes when the limit value once
again exceeds (the limit)

• Delay
To "debounce" the monitored (trigger) tag, a delay time can be specified. With it, you can
define how long (time) the limit value must be exceeded or have fallen below before an alarm
is output

• Dead zone
To prevent an "alarm flood", a dead zone can be specified. With it, you can define by what
amount (absolute or percental) the value of the monitored (trigger) tag must once again fall
below (exceed) the limit value after the limit value has been exceeded (fallen below) so that a
new exceeding of the limit value (falling below) can once again be recognized as such

Acquisition mode "cyclic continuous"
Monitored (trigger) tags must be constantly monitored in the background by the operating device
since alarm events are possibly not registered otherwise.

 When you create a tag, the default setting "Cyclic on Use" is set as the Acquisition mode.
This must be explicitly switched to "Cyclic continuous" for tags that are used as
"monitored (trigger) tags" for analog alarms.

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

 SIMATIC S7-1200 Advanced Course

 TIA-MICRO2 - Tags and Messages in HMI
7-20 Training Document, V16.00.00

7.16. Displaying alarms (messages)

Alarm view
Several alarm views can be configured for different alarm classes and in various screens or
various windows. The alarm view is only visible when the relevant screen is called.

Alarm window
The alarm window can only be configured in the "Global screen". Just as with the alarm view you
can select the alarm classes to be displayed. You can define whether or not the alarm window is
to appear in all screens when an alarm "comes".

Alarm indicator
Just as the alarm window, the alarm indicator can only be configured in the "Global screen". It is a
graphic symbol that points to pending alarms or alarms to be acknowledged in all screens,
depending on the configuration. With the help of the alarm indicator, a defined alarm window can
be shown.

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

SIMATIC S7-1200 Advanced Course

TIA-MICRO2 - Tags and Messages in HMI 7-21
Training Document, V16.00.00

7.17. Task description: Configuring a discrete alarm and analog
alarms

PN

start picture

Time State Text
F.. 10:08:10 C Weight to high :463
W.. 10:08:18 C Setpoint quant reached

Task description
When the preset setpoint quantity (Actual=Setpoint) is reached, a discrete alarm is to be
generated. For this, create the discrete alarm "Setpoint quant. reached!" and, as message bit,
use the M33.2 bit memory in memory word "MW_Alarm" (MW32).

When the weight exceeds or falls below the valid weight, one message each including the current
weight is to be displayed. For this, configure one analog alarm each with the appropriate alarm
text and also output the weight value ("MW_Weight") with this.

 An appropriate alarm window for the output of discrete and analog alarms is already
configured in the global screen. Alarm messages of the alarm classes "Errors",
"Warnings" and "System" are displayed.

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

 SIMATIC S7-1200 Advanced Course

 TIA-MICRO2 - Tags and Messages in HMI
7-22 Training Document, V16.00.00

7.17.1. Exercise 3: Configuring a discrete alarm

Task
When the preset setpoint quantity (Actual=Setpoint) is reached, a discrete alarm is to be
generated. For this, create the discrete alarm "Setpoint quant. reached!" and, as message bit,
use the M33.2 bit memory in memory word "MW_Alarm" (MW32).

What to do
1. In the HMI project, open "HMI alarms"

2. Select the tab "Discrete alarms"

3. Enter the alarm text, alarm class and the trigger tag/bit

4. Load the HMI project into the touchpanel

5. Open the function "FC_Count"

6. At output "Q" of the IEC counter, insert a further assignment to the bit memory
"M_ACT=SET_Alarm" (M33.2)

7. Transfer the modified function to the CPU

8. Produce as many parts as you need so that the preset setpoint quantity is reached

Result
The message "Setpoint quant. reached!" appears on the HMI.

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

SIMATIC S7-1200 Advanced Course

TIA-MICRO2 - Tags and Messages in HMI 7-23
Training Document, V16.00.00

7.17.2. Exercise 4: Configuring analog alarms

Task
When the weight exceeds or falls below the valid weight, one message each including the current
weight is to be displayed. For this, configure one analog alarm each with the appropriate alarm
text and also output the weight value ("MW_Weight") with this.

What to do
1. In the HMI project, open "HMI alarms"

2. Select the tab "Analog alarms"

3. Enter the alarm texts and configure the output of the process value:

 Alarm  Right-click in the text field  Insert tag field…

4. Enter the Alarm class and the Trigger tag "MW_Weight"

5. Enter the limits (100 and 400) for controlling the alarm messages and the mode

6. Load the HMI project in the touchpanel

7. On the potentiometer, set a weight that is either too low or too high

Result
When the weight exceeds or falls below, the respective alarm message appears with the
associated weight.

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

 SIMATIC S7-1200 Advanced Course

 TIA-MICRO2 - Tags and Messages in HMI
7-24 Training Document, V16.00.00

7.18. Possibilities for Time-of-day synchronization

Manual time specification on
the HMI

Programmed time setting
through CPU program

Configured, cyclic time
adoption from the time
server in the network

Configured, cyclic CPU time
adoption

General
Since not all operating devices have a buffered realtime clock (in particular the lower performance
range) the system time of the operating device must be set, since the operating device otherwise
works with the initial time of the operating system after a Power OFF/ON.

Since the system time of the operating device is used as a time stamp for…

• all discrete alarms, analog alarms, system messages and diagnostic messages and

• logging (archiving) of process values within the operating device

…it must be set using one of the procedures listed below.

Application
For the system times’ synchronization of HMI and CPU, there are several procedures:

• Manual time specification on the HMI
The system time is input via a configured Date/time field and doesn’t represent a
synchronization between CPU and HMI time in the proper sense, since the internal system
clocks of CPU and HMI will inevitably deviate after the time has been input in the HMI.

• Configured, cyclic CPU time adoption
The configured PLC time adoption is easy to configure and doesn’t require any great program
expansion on the PLC program side. For that reason, this procedure is usually used.  See
next page.

• Programmed time setting through CPU program
The programmed time setting through the CPU program utilizes a mechanism to start
functions within the operating device from the CPU program. This can relieve the
communication load of the operating device but it means programming effort in the CPU
program.

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

SIMATIC S7-1200 Advanced Course

TIA-MICRO2 - Tags and Messages in HMI 7-25
Training Document, V16.00.00

• Configured, cyclic time adoption from the time server in the network (via NTP)
The system clocks of HMI and PLC are synchronized by the same time server and thus run
synchronously. In the HMI, this procedure is configured in the "Control Panel" in the
PROFINET settings (NTP).

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

 SIMATIC S7-1200 Advanced Course

 TIA-MICRO2 - Tags and Messages in HMI
7-26 Training Document, V16.00.00

7.19. Cyclic Time-of-day synchronization

Pay attention to time zones
as well as Daylight saving
time / Standard time

Projected time-of-day synchronization
The S7-1200/1500 operating systems are capable of easily synchronizing the time cyclically with
an operating device.

 Not every operating device supports this form of time-of-day synchronization.
Basic-/Comfort-Panels, various Multipanels, PC-Runtime etc., support this.
→ see online help or the operating device’s technical data

 To be noted

• For several configured connections → only one connection can be "Slave"

• If a connection is activated as "Slave" → then the global area pointer "Date/time PLC" cannot
also be used

• For the controller, if the type of protection "Complete protection" is activated for the
connection → then the correct "password" must also be configured for the connection for
time-of-day synchronization in the operating device

For this method of time-of-day synchronization, the system time (world time) is
synchronized. For that reason, the same time zone as well as daylight saving time and
standard time must be set in the panel and the CPU

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

SIMATIC S7-1200 Advanced Course

TIA-MICRO2 - Tags and Messages in HMI 7-27
Training Document, V16.00.00

7.20. Cyclic Time-of-day synchronization by means of area pointer

Time-of-day synchronization with area pointer
For the time-of-day synchronization by means of global area pointer, the realtime of the panel is
cyclically updated.

Principle
You store a time stamp of the CPU realtime clock in a tag of the data type DTL which is declared
in a data block. The operating device cyclically reads out this tag from the controller via an area
pointer and so synchronizes its time at the same time.

 The CPU program must constantly or cyclically update the time stamp stored in the tag to
ensure that the time stamp it contains is always current whenever the operating device
reads out the tag.

Data Format of the Time Stamp
The CPU has a buffered realtime clock that can be read out by means of the system function
"RD_SYS_T" (system time) and "RD_LOC_T" (local time). This delivers the current time stamp in
the "DTL" format which can also be interpreted by the operating device.

HMI Configuration
The adoption of the relevant time from the CPU is configured via the area pointer "Date/time
PLC". The configured time in the column "Acquisition cycle" determines the time interval in which
the data stored in the CPU is read. This time should not be configured as short as possible, rather
be configured as short as necessary in order to keep the communication load as small as
possible.

 Until the first acquisition cycle has elapsed, the operating device still works with the
operating system’s initial time.

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

 SIMATIC S7-1200 Advanced Course

 TIA-MICRO2 - Tags and Messages in HMI
7-28 Training Document, V16.00.00

7.20.1. Exercise 5: Configuring the Time-of-day synchronization CPU  TP by
means of a global area pointer

FC_HMI_Sync (FC11) DB_HMI_Sync (DB11)

Drag & Drop

Task
Configure the cyclic adoption of the CPU time. For this, read out the local CPU time with the
function "RD_LOC_T" and configure the area pointer "Date/time PLC" in the HMI.

What to do PLC part
1. Create the new DB "DB_HMI_Sync"

2. In the new DB, create the tag "Date_Time" of the type DTL

3. Create the new function "FC_HMI_Sync"

4. With the function "RD_LOC_T", read out the current CPU local time and save it in the
previously created DB tag

5. Call the function "FC_HMI_Sync" in cyclic OB

6. Transfer the PLC program to the CPU

What to do HMI part
1. In the HMI project, open the "connections" and there the tab "area pointer"

2. Configure the "global area pointer" "Date/time PLC" by specifying the DB tag
"DB_HMI_Sync".Date_Time with an acquisition cycle of "1min"

3. In the screen "Conveyor", create a date/time field in the mode output and output the
touchpanel’s system time (see picture)

4. Transfer the project to the touchpanel and check whether the correct time is output

 Until the first acquisition cycle has elapsed, the operating device still works with the
operating system’s initial time.

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

SIMATIC S7-1200 Advanced Course

TIA-MICRO2 - Tags and Messages in HMI 7-29
Training Document, V16.00.00

7.21. Additional information

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

 SIMATIC S7-1200 Advanced Course

 TIA-MICRO2 - Tags and Messages in HMI
7-30 Training Document, V16.00.00

7.21.1. Daylight saving time / standard time change

Daylight saving time / standard time
In properties of the PLC an automatic activation of daylight saving time / standard time can be
set.

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

SIMATIC S7-1200 Advanced Course

TIA-MICRO2 - Tags and Messages in HMI 7-31
Training Document, V16.00.00

7.21.2. Additional exercise: Adopting the time from the CPU

Pay attention to time zones
as well as Daylight saving
time / Standard time

Task description
In the Connections, use the setting Slave for "HMI time synchronization mode" for the time
synchronization and not the global area point "Date/time PLC".

What to do PLC part
1. Delete the call of the function "FC_HMI_Sync" in cyclic OB

2. Transfer the PLC program into the CPU

What to do HMI part
1. In the HMI project, open the "connections" and there the tab "area pointer"

2. Delete the "global area pointer" "date/time PLC"

3. Set the HMI time synchronization mode to slave (see picture)

4. In the panel’s settings, set the correct value for "time shift"
"Stop Runtime > Control Panel > Date/Time". (pay attention to the time shift and +1h for
daylight saving time)

5. Transfer the project to the touchpanel and check whether the correct time is output

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

SIMATIC S7-1200 Advanced Course

TIA-MICRO2 - Technology Objects 8-1
Training Document V16.00.00

Contents 8

8. Technology objects .. 8-2

8.1. Objectives ... 8-2
8.2. Task description: Commissioning a PID controller and controlling a stepper motor 8-3

8.3. Introduction to pulse generators ... 8-4
8.3.1. Pulse Width Modulation (PWM) .. 8-5
8.3.2. Pulse Train Output (PTO) ... 8-6
8.3.3. Configuring a pulse generator ... 8-7

8.4. Introduction to the PID (Controller) ... 8-8
8.4.1. Implementation of a PID controller in the S7-1200 ... 8-9
8.4.2. Creating a "PID" technology object ... 8-10
8.4.3. "PID_Compact" call ... 8-16
8.4.4. Using the commissioning panel .. 8-17

8.5. Task description: Controlling the capacitor voltage .. 8-18
8.5.1. Exercise 1: Creating and configuring the "PID" technology object 8-19
8.5.2. Exercise 2: Calling the "PID_Compact" block in the cyclic interrupt "Cyclic Interrupt" 8-21
8.5.3. Exercise 3: Commissioning the PID controller .. 8-22

8.6. Introduction to the "Axis" technology object (controlling the stepper motor) 8-24
8.6.1. Principle of axis control ... 8-25
8.6.2. Configuring a PTO output (1) .. 8-26
8.6.3. Configuring a PTO output (2) .. 8-27

8.7. Creating a "Positioning Axis" technology object ... 8-28
8.7.1. Properties of "Axis": Configuration .. 8-29
8.7.2. Properties of "Axis": Commissioning ... 8-37
8.7.3. Activating the commissioning panel .. 8-38
8.7.4. Properties of "Axis": Diagnostics ... 8-40
8.7.5. Blocks for axis control ... 8-43

8.8. Task description: Controlling a stepper motor .. 8-44
8.8.1. Exercise 4: Activating (enabling) PTO 1 of the CPU .. 8-45
8.8.2. Exercise 5: Creating and configuring the technology object "Axis" 8-46
8.8.3. Exercise 6: Commissioning "FB_Turntable" ... 8-50
8.8.4. Exercise 7: Starting the axis and monitoring the statuses with the diagnostic panel 8-52

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

 SIMATIC S7-1200 Advanced Course

 TIA-MICRO2 - Technology Objects
8-2 Training Document V16.00.00

8. Technology objects
8.1. Objectives

At the end of the chapter the participant will ...

... know the difference between PWM and PTO outputs.

… be familiar with the structure of a simple closed-loop control.

… be familiar with the procedure for creating a PID controller.

… be able to commission a PID controller with automatic optimization.

… understand the principle of controlling a stepper motor.

… be able to commission a stepper motor for positioning a turntable.

Objectives
In this chapter, the technology objects "PID (Control)" and "Axis" are dealt with. The necessary,
theoretical basics and the procedure for configuring are presented.

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

SIMATIC S7-1200 Advanced Course

TIA-MICRO2 - Technology Objects 8-3
Training Document V16.00.00

8.2. Task description: Commissioning a PID controller and
controlling a stepper motor

D1 R1

R2
C

R3

D2

PID closed-loop control

Stepper motor

S

Task description
In the first step, a PID controller is to be commissioned. It is to control the voltage at Capacitor C
to a constant voltage of 10V, even when a disturbance, in the form of a load resistance R3 is
switched in via the switch S.

The manipulated variable (PWM output) is thereby controlled by the "PID_Compact" controller
block, by evaluating the fed back capacitor voltage at the analog input of the CPU.

After the control loop has been commissioned with the technology object PID, the stepper motor
of the training device is then to be commissioned. For this, the technology object "Positioning
Axis" is to be used, which is to be configured by you. On the hardware side, the so-called "PTO"
output of the CPU is used for this as well as a Boolean output for the direction setting.

There are Motion Control instructions for the programming of the axis control.

Your task is to commission a prefabricated function block and to monitor the movement
sequences on an online screen.

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

 SIMATIC S7-1200 Advanced Course

 TIA-MICRO2 - Technology Objects
8-4 Training Document V16.00.00

8.3. Introduction to pulse generators

CPUs

Signal board

Each CPU with 2
pulse generators

Description Default output assignment
Pulse Direction

PTO 1 Integrated in CPU Q0.0 Q0.1
Signal board Q4.0 Q4.1

PWM 1 Integrated in CPU Q0.0 --
Signal board Q4.0 --

PTO 2 Integrated in CPU Q0.2 Q0.3
Signal board Q4.2 Q4.3

PWM 2 Integrated in CPU Q0.2 --
Signal board Q4.2 --

100kHz 20kHz / 200kHz

Pulse generators

All CPU types of the SIMATIC S7-1200 series are equipped with two pulse generators. These
can be used independent of each other either for Pulse Width Modulation (PWM) or pulse train
(Pulse-Train-Output – PTO).

The two pulse generators are assigned specific digital outputs by default (see table above) and
are activated in the device configuration of the respective CPU. Integrated CPU outputs or the
outputs of an optional signal board can be used. If the addresses of the outputs were changed,
the addresses correspond to the newly assigned ones.

Regardless, PTO1/PWM1 always uses the first two digital outputs of the configured addresses
and PTO2/PWM2 uses the next two digital outputs, either on the CPU or the inserted signal
board. When an output is not required for a pulse function, it is available for other purposes.

The maximum pulse frequency of the pulse generators is 100 kHz for the digital outputs of the
CPU and 20 kHz or 200 kHz for the digital outputs of the signal board.

STEP7 gives no warning when an axis is configured with a maximum speed or frequency
that exceeds this hardware limitation. This can lead to problems in the application. You
must always make sure that the maximum pulse frequency of the hardware is not
exceeded.

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

SIMATIC S7-1200 Advanced Course

TIA-MICRO2 - Technology Objects 8-5
Training Document V16.00.00

8.3.1. Pulse Width Modulation (PWM)

Frequency
=constant

Duty cycle
varies, e.g. 55%

Duty cycle
varies, e.g. 40%

Pulse Width Modulation
With the Pulse Width Modulation (PWM), the cycle time, that is, the time from one positive edge
to the next, remains constant. The duty cycle (pulse width), however, represents the variable size
of the modulation.

The duty cycle can be specified as hundredth of the cycle time (0 – 100), as thousandth (0 –
1000), as ten thousandth (0 – 10000) or as S7 analog format. The pulse duration can lie between
0 (no pulse, always off) and full scale (continuous pulse, always on).

Since the duty cycle can lie between 0 and full scale with the PWM, it provides a digital output
that in many ways is the same as an analog output. The PWM output can, for example, serve to
control the speed of a motor from standstill to full speed or it can be used to control the position of
a valve from closed to fully open.

Controlling PWM outputs
The "CTRL_PWM" block is used to control PWM outputs.

The first time the target system switches to RUN, the PWM duty cycle ratio is set to the start
value specified in the device configuration. To change the pulse duration during program runtime,
the desired values are written in the output addresses ("Start address") specified in the device
configuration, for example, with the command "MOVE".

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

 SIMATIC S7-1200 Advanced Course

 TIA-MICRO2 - Technology Objects
8-6 Training Document V16.00.00

8.3.2. Pulse Train Output (PTO)

Out 1

Duty cycle 50%
=constant

Out 2

Direction

Frequency varies

Pulse Train Output
Unlike the PWM, the Pulse Train Output has a fixed duty cycle of 50% and a variable frequency.
Through this, the speed of the connected drive can be controlled.

The turning direction of the drive can be specified via the direction output.

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

SIMATIC S7-1200 Advanced Course

TIA-MICRO2 - Technology Objects 8-7
Training Document V16.00.00

8.3.3. Configuring a pulse generator

Configuration within the
CPU Properties

Configuring a Pulse generator
To activate the pulse generator, you need to proceed as follows:

1. First, the respective pulse generator must be activated

2 Another name than the default assigned name as well as a comment can be entered

3. Set pulse options
− Use as PWM or PTO output
− Time base
− Format for the pulse duration
− Cycle time specification
− Initial pulse duration

4. The hardware outputs used by the pulse generator are displayed in the field "Pulse output"

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

 SIMATIC S7-1200 Advanced Course

 TIA-MICRO2 - Technology Objects
8-8 Training Document V16.00.00

8.4. Introduction to the PID (Controller)

Setpoint

Actual value

Output

Measured actual value

Setpoint

PID (Controller)
PID stands for "Proportional Integral Differential". A PID controller has a proportional component,
an integrating component and a differentiating component. For each of the three components, a
specific equation is in force:

• The equation of the proportional component results in a value that is proportional to the
control deviation

• The result of the integral equation increases with the duration of the control deviation

• The speed of the control deviation influences the differential component; the steeper the
increase or fall of the change, the greater the D-component is

The three equations are then combined and result in the output value (Output).

PID controllers are used in industry, for example, to control the temperature of welding systems
when it is important to retain a constant temperature value despite possible disturbances.

Put very simply, a PID controller serves to align a changing, measured actual value with a
setpoint value as quickly as possible and as exactly as possible.

This is done by readjusting the output variable whereby the overshoots and undershoots keep
getting smaller until the actual value equals the setpoint value as exactly as possible.

For this, there is a wizard in STEP7 which, in conjunction with the S7-1200, enables you to
configure the necessary settings of a controlled system quickly and easily as well as without
extensive prior knowledge.

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

SIMATIC S7-1200 Advanced Course

TIA-MICRO2 - Technology Objects 8-9
Training Document V16.00.00

8.4.1. Implementation of a PID controller in the S7-1200

(Disturbance)
z

+

Controller Actuator
Controlled

system

w e

-

yP

I

D

Implementation in the
S7-1200

Controller PWM
RC

element

Analog
input

Measuring
element

Setpoint Actual
value

Act. value from analog module

A0.2
Value of man. var. to analog module

Value of man. var. to pulse
output

PID controller in the S7-1200
Based on the example of a complete control system, the picture above shows the PID controller
implemented in the SIMATIC 1200 station in symbolic representation and the block that results
from it.

In the S7-1200, the actual controller of a PID control system is implemented. For this, TIA Portal
provides a prefabricated block "PID_Compact" which can be inserted in the user program and
then assigned.

At the same time, a "PID" technology object is available with which the controller can be
configured in the user program and then commissioned.

The switch output for the pulse width modulation is controlled by the instruction
PID_Compact. The pulse generators integrated in the CPU are not used.

Closed-loop Control

• Blocks:
In the simplest case, a PID control system consists of a PID controller, an actuator as well as
the system to be controlled. The output signal of the controlled system is fed back via a
measuring element on the PID controller.

• Signals/Values:
In the simplest case, distinction is made in a PID control system between the setpoint value
(w), the input value (e), the correcting variable that results from it. Together with an
influencing disturbance (z), the actual value (y) results from this in the closed-loop control,
which is once again fed back to the PID controller via the measuring element.

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

 SIMATIC S7-1200 Advanced Course

 TIA-MICRO2 - Technology Objects
8-10 Training Document V16.00.00

8.4.2. Creating a "PID" technology object

Creating a PID controller
After a PID controller has been created under "Technology objects", the view is transferred to the
wizard. It uses the following identifiers:

 The settings were configured successfully

 The settings are occupied only with default values,
 function is not hindered by this

 The settings are still faulty

As well, a function block for the PID controller is automatically created which contains all input
values and output values in its interface.

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

SIMATIC S7-1200 Advanced Course

TIA-MICRO2 - Technology Objects 8-11
Training Document V16.00.00

8.4.2.1. Configuring a PID controller (1) - Basic settings

Choice of Controller type,
e.g.: Brightness, Pressure,
Viscosity, etc.

Basic settings
The configuration of the basic settings of the PID controller offers the following options.

Type of controller
The preselection "controller type" sets the desired unit for the controller.
If the checkbox "invert the control logic" is activated (checked), it causes an increase of the
manipulated value when a decrease of the actual value occurs (for example, falling water level
through an increase of the valve position of the outlet valve or decreasing temperature through an
increase of the cooling capacity).

Setting the input / output parameters

• Setpoint:
Choose whether the value at the function block or the value of the instance DB is to be used
(insofar as it exists and is only available in the Inspector window of the program editor)

• Input:
Choose whether the input parameter “Input” or “Input_PER” is to be used.
− "Input" is used when an actual value from the user program is to be used.
− "Input_PER" is used when the actual value of an analog input is to be used.

• Output:
Select the manipulated value output of the instruction "PID_Compact". The following
possibilities are available:
− Output: uses a variable of the user program as the manipulated value output. (Real format)
− Output_PER: uses an analog output as the manipulated value output (analog output value)
− Output_PWM: uses a digital switch output and controls it via a pulse width modulation (the

manipulated value is formed via variable switch-on and switch-off times)

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

 SIMATIC S7-1200 Advanced Course

 TIA-MICRO2 - Technology Objects
8-12 Training Document V16.00.00

8.4.2.2. Configuring a PID controller (2) - Process value settings

Process value settings
For the configuration of the process value settings, the following options are available.

High limit and low limit
They define the absolute upper and lower limit of the process value. During operation, as soon as
these limits are exceeded or fall below, the controller switches off and the value of the
manipulated variable is set to 0%.

Scaling
Through scaling, the process values (actual values) are defined by a lower and an upper value
pair. Each value pair consists of the value of the analog input and the physical value of the
respective scaling point. Depending on the configuration of the basic setting, a process value of
the user program can also be used instead of the analog value of the analog input.

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

SIMATIC S7-1200 Advanced Course

TIA-MICRO2 - Technology Objects 8-13
Training Document V16.00.00

8.4.2.3. Configuring a PID controller (3) - Process value monitoring and PWM limits

Process value monitoring
The monitoring of the process value is preset by two limits. If, during controller runtime, the
process value exceeds the high limit or falls below the low limit, a message is output at the
Boolean output parameters "InputWarning_H" or "InputWarning_L" of the block
"PID_COMPACT".

PWM limits
In the window "PWM limits", the minimum permitted switch ON and switch OFF times of the pulse
width modulation are set. The minimum ON and OFF times can be extended when, for example,
the number of switching cycles is to be reduced. This makes sense, for example, for the delayed
control of a tank level when you want to avoid the valve reacting to every small change in the
level.

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

 SIMATIC S7-1200 Advanced Course

 TIA-MICRO2 - Technology Objects
8-14 Training Document V16.00.00

8.4.2.4. Configuring a PID controller (4) - Output value limits

Output value limits

In the configuration window "Output value limits", the absolute limits of the manipulated value are
specified. Neither in manual mode nor in automatic mode can absolute manipulated value limits
be exceeded nor can they fall below. If in manual mode, a manipulated value is specified outside
of the limits, the effective value in the CPU is limited to the configured limits.

Reaction to error
If an error occurs during processing (output parameter ERROR = TRUE), then a substitute value
can be output, the old value can be held (pending) or the output can be deactivated (inactive) at
OUTPUT.

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

SIMATIC S7-1200 Advanced Course

TIA-MICRO2 - Technology Objects 8-15
Training Document V16.00.00

8.4.2.5. Configuring a PID controller (5) - PID parameters

PID parameters

The PID parameters are grayed out by default; they can, if need be, be changed. This, however,
is only recommended for users with experience in PID control.

The PID parameters are determined automatically when the automatic auto-tuning has been run
through.

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

 SIMATIC S7-1200 Advanced Course

 TIA-MICRO2 - Technology Objects
8-16 Training Document V16.00.00

8.4.3. "PID_Compact" call

Call in the cyclic interrupt OB

PID_Compact
The instruction PID_Compact provides a PID controller with integrated optimization for automatic
and manual mode operation.

Call
PID_Compact is called in the time base of the cycle time of the calling OB. This must be constant
to ensure that the PID controller can sample in equidistant intervals. For that reason,
PID_Compact is preferably called in a cyclic interrupt OB since the cycle time in the cyclic user
program can vary significantly because of conditional program execution, for example.

Start-up behavior
When the CPU starts up, it starts PID_Compact in the operating mode in which it was last active.

Monitoring the sampling time PID_Compact
Ideally, the sampling time corresponds to the cycle time of the calling OB. The instruction
PID_Compact measures, in each case, the interval between two calls. That is the current
sampling time. Every time the operating mode changes and in the first start-up, the mean value of
the first 10 sampling times is formed. When the current sampling time deviates too greatly from
this mean value, an error occurs (Error = 0800 hex) and PID_Compact switches into the "inactive"
mode.

During tuning (optimization), the following conditions put PID_Compact in the "inactive" mode:

• New mean value >= 1.1 x old mean value

• New mean value <= 0.9 x old mean value

In automatic mode, the following conditions put PID_Compact in the "inactive" mode:

• New mean value >= 1.5 x old mean value

• New mean value <= 0.5 x old mean value

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

SIMATIC S7-1200 Advanced Course

TIA-MICRO2 - Technology Objects 8-17
Training Document V16.00.00

8.4.4. Using the commissioning panel

Select Tuning
(optimization) and

Start

Monitor Setpoint,
Scaled input and

Output

Display of the
current controller

statuses 
Manual mode

possible

Adopting the
optimized PID

parameters in the
project

Commissioning panel
In the configuration of the PID controller, you can carry out an automatic tuning (optimization) and
you can monitor the current measured values.

Commissioning
As soon as measurement is switched on through a click on "Start", actual value and setpoint
value as well as manipulated value are graphically represented (see picture).

Under "tuning mode" the auto-tuning can be started. This must first occur in the first start-up. In
the second step, you can then tune in the operating point. The status and the progress of the
running tuning (optimization) can be read from the bar graph.

Required for automatic fine tuning:

• PID_Compact is called in a cyclic interrupt OB

• "Manual mode" is deactivated

• The difference between current actual value and setpoint is >50%

The operation can take some minutes. During this time, you cannot work with the CPU.

Subsequently, the ascertained data must be adopted in the project via "Upload PID parameters".

Through "Online status of controller" you can monitor the current actual value, the setpoint as well
as the output in % and you can specify a manual manipulated value.

Representation
Using the following buttons, you can stretch or compress the value axes, select a type of
representation for the value diagram, shift the view etc.

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

 SIMATIC S7-1200 Advanced Course

 TIA-MICRO2 - Technology Objects
8-18 Training Document V16.00.00

8.5. Task description: Controlling the capacitor voltage

Controlled system Disturbance

Feedback of capacitor voltage
(actual value)

PWM output
(actuator)

PID controller
Setpoint=const.

Analog
input

D1 R1

R2
C

R3

D2

S

Task description
In the first step, the PLC with CPU 1211C is to be commissioned.

Then, a PID controller is to be commissioned. This is to control the voltage at Capacitor C to a
constant voltage of 10.0V, even when a fault in the disturbance of a load resistance R3 is
switched in via the switch S.

The manipulated variable (PWM output) is controlled by the "PID_Compact" controller block, by
evaluating the fed-back capacitor voltage at analog input AI0.

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

SIMATIC S7-1200 Advanced Course

TIA-MICRO2 - Technology Objects 8-19
Training Document V16.00.00

8.5.1. Exercise 1: Creating and configuring the "PID" technology object

Task
In PLC_2 (CPU 1211C), create a new technology object of the type "PID" and give it the name
"PID_RC".

What to do
1. Start the technology objects wizard and create a new PID controller.

PLC_2 Technology objects  Double-click on "add new object"  PID_Compact  Name:
PID_RC

2. Implement the settings shown in the following:

Continued the next page 

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

 SIMATIC S7-1200 Advanced Course

 TIA-MICRO2 - Technology Objects
8-20 Training Document V16.00.00

3. PWM limits, output value limits, reaction to error, and PID parameters remain unchanged.

4. Save your project.

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

SIMATIC S7-1200 Advanced Course

TIA-MICRO2 - Technology Objects 8-21
Training Document V16.00.00

8.5.2. Exercise 2: Calling the "PID_Compact" block in the cyclic interrupt
"Cyclic Interrupt"

Assign previously
created technology object

Task
Create "Cyclic Interrupt", call the block “PID_Compact” and assign the previously created
technology object "PID_RC" to it.

What to do
1. Create the cyclic interrupt OB "Cyclic Interrupt". Cycle time 250ms.

 In order to be able to react faster to disturbances, the sampling time of the closed-loop
control (cycle time of the cyclic interrupt) can be reduced, for example, to 100ms or less.
So that it is easier to monitor the control process, a relatively high value of 250ms is set
for the exercise.

2. In this OB, call the block "PID_Compact" from the instructions catalog.
Instructions Task Card  Technology  PID Control  Compact PID  PID_Compact

3. In the "Call options" dialog which opens, select "PID_RC"

4. Assign the block as shown in the picture

− Voltage_RC (IW64) is the analog input 0 (0-10V) on the CPU.
− PWM_A02 (Q0.2) is the digital output for the PWM.
− The setpoint is assigned constantly with 10.0 (V).

5. Save your project and transfer the complete user program into the CPU.

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

 SIMATIC S7-1200 Advanced Course

 TIA-MICRO2 - Technology Objects
8-22 Training Document V16.00.00

8.5.3. Exercise 3: Commissioning the PID controller

Task
Carry out a first commissioning of the PID controller and save the determined PID parameters in
your project.

What to do
1. Open the commissioning panel

 PLC_2  Technology objects  PID_RC  Commissioning

2. Start the measurement

3. Select the Tuning mode "Pretuning" and click on start

4. Monitor the progress of the tuning

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

SIMATIC S7-1200 Advanced Course

TIA-MICRO2 - Technology Objects 8-23
Training Document V16.00.00

5. After the system is tuned, click on "Upload PID parameters", in order to save the determined
PID parameters in your project.

6. Monitor the measured value trends of actual value (green) and manipulated value (red) and

switch in the disturbance and after approximately 5 seconds, switch it off again.

 Result: After switching on the disturbance, the manipulated value immediately shoots up to
compensate for the dropping of the voltage at the capacitor. While the disturbance is pending,
the manipulated value remains at a high level (approximately 85%).
When the disturbance is switched off, an overshoot of the actual value develops, whereupon
the manipulated value immediately drops.

7. Check the adoption of the PID parameters in the configuration of the technology object

"PID_RC"

PLC_2  Technology objects  PID_RC  Configuration  PID Parameters

8. Save your project.

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

 SIMATIC S7-1200 Advanced Course

 TIA-MICRO2 - Technology Objects
8-24 Training Document V16.00.00

8.6. Introduction to the "Axis" technology object (controlling the
stepper motor)

Channel 2: Direction

Channel 1: Pulses

Control unit (Stepper) Motor

CPU with activated
PTO pulse output

"Axis" technology object
The "Axis" technology object represents an axis in the controller and is suitable for controlling
stepper motors and servo motors with pulse interface. The "Axis" technology object is controlled
via Motion Control instructions.

Suitable are all drives or control units which support a control via a pulse/direction interface.

Typical areas of use are adjustable axes and operating axes as well as feed axes and transport
axes. These are used, for example, in the steel, automobile and food and beverage industry and
are used, among others, in packaging machines.

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

SIMATIC S7-1200 Advanced Course

TIA-MICRO2 - Technology Objects 8-25
Training Document V16.00.00

8.6.1. Principle of axis control

User program with PLCopen
Motion Blocks and "Axis"

Technology object

Device configuration of the
PTO output of the CPU

Controlled drive

Principle of axis control
Within the S7-1200 there is a model grouped into four sections for the control of axes in which
you are supported by wizards and diagnostic screens for the commissioning and diagnoses of
axes.

• User Program
The user program utilizes standardized Motion Control instructions for the control of the "Axis"
technology object and thus the axis or the drive.

• Technology object "Axis"
The "Axis" technology object represents an axis in the controller. Through dialog boxes
(wizard), the parameters of the axis can very easily be specified. In the proper sense, the
technology object is a data block with an exactly defined structure in which the parameters
input by the user are entered. The specification of the DB is then required for the
programming in the user program for the motion control instructions.

• PTO (Output)
The PTO (output) is activated in the CPU device configuration and then assigned to the
technology object "Axis". The output is subsequently controlled by the instructions in the user
program.

• Drive
Suitable are all drives or control units which support a control via a pulse/direction interface.

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

 SIMATIC S7-1200 Advanced Course

 TIA-MICRO2 - Technology Objects
8-26 Training Document V16.00.00

8.6.2. Configuring a PTO output (1)

PTO outputs are configured
in the Properties of the

respective CPU

Configuring a PTO (output)
PTOs are activated via the device configuration of the respective CPU. In the properties window
"Pulse generators", the respective pulse generator must first be activated.

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

SIMATIC S7-1200 Advanced Course

TIA-MICRO2 - Technology Objects 8-27
Training Document V16.00.00

8.6.3. Configuring a PTO output (2)

No further parameters,
since always controlled

via "Axis"

Display of the outputs
used for pulses and

direction and the high-
speed counter

Configuring a PTO output
In the second step, the type of pulse generator must be selected. You can choose between
"PTO" and "PWM".

To control an axis, you must choose "PTO". Since PTO outputs are always controlled via the
"Axis" technology object, no further settings can be made in the device configuration.

There are 4 possibilities for controlling:

• PTO (pulse A and direction B)
A pulse output and a direction output are used to control the stepper motor.

• PTO (count up A, count down B)
One pulse output each for movement in positive direction and negative direction are used to
control the stepper motor.

• PTO (A/B phase-shifted)
Both pulse outputs for phase A and for phase B use the same frequency.
On the drive side, the interval of the pulse outputs is evaluated as a step.
The phase shifting between phase A and phase B determines the direction of movement.

• PTO (A/B phase-shifted four-fold)
Both pulse outputs for phase A and for phase B use the same frequency.
On the drive side, all rising and all falling edges of phase A and phase B are evaluated as a
step.
The phase shifting between phase A and phase B determines the direction of movement.

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

 SIMATIC S7-1200 Advanced Course

 TIA-MICRO2 - Technology Objects
8-28 Training Document V16.00.00

8.7. Creating a "Positioning Axis" technology object

Creating a "Positioning Axis" technology object
Just as with PID (controller), the "Add new object" dialog box (wizard) in the "Technology objects"
folder is called for the creation.

First, "Motion" is selected and then the object "TO_PositioningAxis".

With a click on "OK", the configuration wizard of the axis is started.

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

SIMATIC S7-1200 Advanced Course

TIA-MICRO2 - Technology Objects 8-29
Training Document V16.00.00

8.7.1. Properties of "Axis": Configuration

Configuration:
Specify signals, limits, limit
switches, reference point

Commissioning:
Control axis in manual mode

Diagnostics:
Display current position of
axis, evaluate signals

Properties of "Axis"
After the "Axis" technology object has been created, there are three selection possibilities
available for handling:

• Configuration
− Selection of the PTO (output) to be used and configuration of the drive interface
− Properties of the mechanics and gear ratio of the drive (or the machine or plant)
− Properties for position monitoring, for dynamic parameters and for referencing (homing)
− The configuration is stored in the data block of the technology object

• Commissioning
With the "Commissioning" tool, the functioning of the axis is tested without having to have
created a user program. When you start this tool, the control panel opens. The following
commands are available in the control panel:
− Enable and disable the axis
− Traversing the axis in jog mode
− Absolute and relative positioning of the axis
− Referencing (homing) the axis
− Acknowledgement of errors

• Diagnostic
With the "Diagnostics" tool you check the current Status and Error information of axis and
drive

In the following, the configuration of the axis is presented.

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

 SIMATIC S7-1200 Advanced Course

 TIA-MICRO2 - Technology Objects
8-30 Training Document V16.00.00

8.7.1.1. Configuring an "Axis" (1) - Basic parameters / general

Select unit of measurement

Drive connection

Basic parameters / general
The properties of "Axis" are divided into basic and extended parameters.

In the basic parameters, under general, the drive connection and the unit of measurement that is
used are set.

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

SIMATIC S7-1200 Advanced Course

TIA-MICRO2 - Technology Objects 8-31
Training Document V16.00.00

8.7.1.2. Configuring an "Axis" (2) - Drive

Select pulse generator

Basic Parameters – Drive
The properties of the "positioning axis" are subdivided into the basic and extended parameters.

The hardware interface is set in the basic parameters.

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

 SIMATIC S7-1200 Advanced Course

 TIA-MICRO2 - Technology Objects
8-32 Training Document V16.00.00

8.7.1.3. Configuring an "Axis" (3) – Mechanics

Mechanics

• Pulses per motor revolution
In this field you specify how many pulses the motor requires for one revolution

• Distance (Load movement) per motor revolution
In this field you specify what distance the mechanics of the system covers per motor
revolution

• Invert direction signal
Through the checkbox "Invert direction signal" you can adjust the direction output to the
direction logic of the drive

Invert direction signal: deactivated Invert direction signal: activated

0 V level = negative direction
5 V / 24 V level = positive direction

0 V level = positive direction
5 V / 24 V level = negative direction

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

SIMATIC S7-1200 Advanced Course

TIA-MICRO2 - Technology Objects 8-33
Training Document V16.00.00

8.7.1.4. Configuring an "Axis" (4) – Positioning limits

Hardware limit switches
Input low / high HW limit switch

Through the drop-down lists, you can set the digital hardware limit switches. The inputs must be
interrupt-capable. As inputs for the HW limit switches, the digital on-board CPU inputs and the
digital inputs of an inserted signal board are available.

A filter time of the digital inputs of the CPU is set to 6.4 ms by default. This can lead to
undesired delays when used as HW limit switches. In this case, the delay time must be
shortened accordingly.
The filter time can be set in the Devices configuration of the digital inputs under "Input
filters".

Software limit switches
The software limit switches are activated via the checkbox "Enable SW limit switches". They are
purely virtual and can be specified here as the distance travelled from the zero point.

The software limit switches are defined through the input fields "Position of low/high SW limit
switch".

 The value of the high software limit switch must be greater than or equal to the value of
the low software limit switch.

Enabled software limit switches can only be operational with a referenced axis.

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

 SIMATIC S7-1200 Advanced Course

 TIA-MICRO2 - Technology Objects
8-34 Training Document V16.00.00

8.7.1.5. Configuring an "Axis" (5)- Dynamics/General

Dynamics / General
In the "Dynamics - General" configuration dialog you can specify the limits for the motion
sequences:

• Velocity
− In the field "Maximum velocity", the maximum allowable velocity of the axis is configured.
− In the field "Start/stop velocity", the minimum allowable velocity of the axis is configured.
− The value of the Maximum velocity must be greater than or equal to the value of the

Start/stop velocity.

• Acceleration
The desired acceleration values can be specified either directly via the fields "Acceleration"
and "Deceleration" or indirectly via the specification of acceleration or deceleration time.

• Jerk limit
The "Enable jerk limit" option can be used to set a non-abrupt acceleration or deceleration of
the axis

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

SIMATIC S7-1200 Advanced Course

TIA-MICRO2 - Technology Objects 8-35
Training Document V16.00.00

8.7.1.6. Configuring an "Axis" (6) – Dynamics/Emergency stop

Dynamics / Emergency stop
In the "Dynamics - Emergency stop" configuration wizard dialog, the Emergency deceleration of
the axis can be set. In case of failure and when blocking the axis with the Motion-Control
instruction "MC_Power" (Input parameter StopMode = 0), the axis is brought to a standstill with
this deceleration.

The Emergency deceleration must be sufficiently large in order to bring the axis to a
standstill in good time when there is an emergency (for example, when approaching the
hardware limit switches, before reaching the mechanical stop).

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

 SIMATIC S7-1200 Advanced Course

 TIA-MICRO2 - Technology Objects
8-36 Training Document V16.00.00

8.7.1.7. Configuring an "Axis" (7) - Homing

Homing (referencing)

Compared to a closed-loop control system, you don’t have any feedback signal during traversing
from which you can derive conclusions on the current position of the axis. For that reason, it is
necessary that the axis, for example, every time the system is switched on, references a defined
point, the so-called reference point. This reference point (also reference cam) is configured as an
interrupt-capable input and marks the zero point of the axis. When the position of the reference
point switch and the reference point position (home position) is different, the appropriate
reference point offset is entered in the field "Home position offset". The axis approaches the
reference (home) position with the referencing velocity.

In order to approach the home position exactly there is the "active homing", whose sequence is
represented in the picture above. The movement is divided into three steps:

• Seeking the referencing point (homing) switch (blue section of the graph)
When active referencing is started, the axis accelerates to the configured "Approach velocity"
and with it seeks the referencing point (homing) switch.

• Reference point travel (red section of the graph)
When it detects the referencing point (homing) switch, the axis slows down in this example,
turns around, in order to reference on the configured side of the referencing point (homing)
switch with the configured "Homing velocity".

• Traversing the home position offset (green section of the graph)
After referencing, the axis travels the distance of the home position offset with the referencing
velocity. Arriving there, the axis finds itself in the home position which was specified at the
input parameter "Position" of the Motion Control instruction "MC_Home".

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

SIMATIC S7-1200 Advanced Course

TIA-MICRO2 - Technology Objects 8-37
Training Document V16.00.00

8.7.2. Properties of "Axis": Commissioning

Configuration:
Specify signals, limits, limit
switches, reference point

Commissioning:
Control axis in manual mode

Diagnostics:
Display current position of
axis, evaluate signals

Properties of "Axis"
After the "Axis" technology object has been created, there are three selection possibilities
available for handling:

• Configuration:
− Selection of the PTO (output) to be used and configuration of the drive interface
− Properties of the mechanics and gear ratio of the drive (or the machine or plant)
− Properties for position monitoring, for dynamic parameters and for referencing (homing)
− The configuration is stored in the data block of the technology object

• Commissioning:
With the "Commissioning" tool, the functioning of the axis is tested without having to have
created a user program. When you start this tool, the Control panel opens. The following
commands are available in the Control panel:
− Enable and Disable the axis
− Traversing the axis in Jog mode
− Absolute and relative positioning of the axis
− Referencing (homing) the axis
− Acknowledgement of errors

• Diagnostics:
With the "Diagnostics" tool you check the current Status and Error information of axis and
drive.

In the following, the commissioning of the axis is presented.

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

 SIMATIC S7-1200 Advanced Course

 TIA-MICRO2 - Technology Objects
8-38 Training Document V16.00.00

8.7.3. Activating the commissioning panel

Observe safety note! Incorrect
axis configuration or incorrect
operation in manual mode may
lead to injuries to people and

damages to machine!

Commissioning panel
In automatic mode, the Control Panel offers the opportunity to get an overview of the current
status of the axis. The most important bits such as Enabled, Homed or Axis error as well as the
current values on Position and Velocity are represented.

If the axis is to be controlled in manual mode, a warning appears which points out that all
necessary safety precautions are to be taken since you are about to actively intervene in the
process.

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

SIMATIC S7-1200 Advanced Course

TIA-MICRO2 - Technology Objects 8-39
Training Document V16.00.00

8.7.3.1. Using the commissioning panel (manual control)

Enable axis for manual control

Information about
current axis status

Select the action

Using the commissioning panel
If the axis is to change to manual control, the execution of the MC-Power command in the user
program must be deactivated first. Then, the manual control can be activated via the button
"Enable".

Thereupon, the control passes from the user program to the Control Panel and it is possible to
enable and disable the axis, move with the selected velocity in jog mode or to acknowledge errors
of the control panel as soon as their cause is eliminated.

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

 SIMATIC S7-1200 Advanced Course

 TIA-MICRO2 - Technology Objects
8-40 Training Document V16.00.00

8.7.4. Properties of "Axis": Diagnostics

Configuration:
Specify signals, limits, limit
switches, reference point

Commissioning:
Control axis in manual mode

Diagnostics:
Display current position of
axis, evaluate signals

Properties of "Axis"
After the "Axis" technology object has been created, there are three selection possibilities
available for handling:

• Configuration:
− Selection of the PTO (output) to be used and configuration of the drive interface
− Properties of the mechanics and gear ratio of the drive (or the machine or plant)
− Properties for position monitoring, for dynamic parameters and for referencing (homing)
− The configuration is stored in the data block of the technology object

• Commissioning:
With the "Commissioning" tool, the functioning of the axis is tested without having to have
created a user program. When you start this tool, the Control panel opens. The following
commands are available in the Control panel:
− Enable and Disable the axis
− Traversing the axis in jog mode
− Absolute and relative positioning of the axis
− Referencing (homing) the axis
− Acknowledgement of errors

• Diagnostics:
With the "Diagnostics" tool you check the current Status and Error information of axis and
drive.

In the following, the diagnostics of the axis is presented.

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

SIMATIC S7-1200 Advanced Course

TIA-MICRO2 - Technology Objects 8-41
Training Document V16.00.00

8.7.4.1. Axis diagnostics (1)

Complete overview of status
and error bits

Status and error bits
After the axis diagnostics is started, the current statuses of the axis are displayed under "Status
and error bits". Among other things, you can read out the current axis and motion status. In
addition, error events, such as, the reaching of limit switches are displayed.

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

 SIMATIC S7-1200 Advanced Course

 TIA-MICRO2 - Technology Objects
8-42 Training Document V16.00.00

8.7.4.2. Axis diagnostics (2)

Information on the current motion
status

Display of the dynamics
parameters

Motion status and dynamics settings

• Through the menu point "motion status" you can get information on the current movement.
The values displayed are continuously updated.

• In the dynamics settings, you can read out the configured values for acceleration,
deceleration and emergency deceleration.

 All values are available as read-only.

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

SIMATIC S7-1200 Advanced Course

TIA-MICRO2 - Technology Objects 8-43
Training Document V16.00.00

8.7.5. Blocks for axis control

Call in the cyclic program

Motion control instructions
Through the motion control instructions, you control the axis from the user program. The
instructions start motion control tasks which execute the desired functions.

The status of the motion control tasks as well as possible errors which occurred during
processing can be queried at the output parameters of the motion control instructions. The
following motion control instructions are available for selection:

Instruction Function

MC_Power Activate/deactivate axis

MC_Reset Acknowledge error of the axis

MC_Home Home (reference axis)

MC_Halt Cancel all MC instructions (axis commands)

MC_MoveAbsolute Move axis to an absolute position

MC_MoveRelative Move axis to a position relative to the current one

MC_MoveVelocity Move axis with a constant (defined) velocity

MC_MoveJog Move axis with (manual) jog velocity

MC_CommandTable Execute axis jobs as movement sequence

MC_ChangeDynamic Change dynamic settings of the axis

MC_WriteRaram Write variables of the positioning axis

MC_ReadParam Continuously read movement data of a positioning axis

All blocks can be called in the cyclic program.

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

 SIMATIC S7-1200 Advanced Course

 TIA-MICRO2 - Technology Objects
8-44 Training Document V16.00.00

8.8. Task description: Controlling a stepper motor

Channel 2: Direction

Channel 1: Pulses

Control unit
(Stepper) Motor

CPU with activated PTO pulse output

P
rin

ci
pl

e
of

co

nt
ro

l
A

pp
lic

at
io

n
ex

am
pl

e

Turntable

Task description
The stepper motor of the training device is to be commissioned. For this, the "Turntable"
technology object of the type "Axis" is to be created which is to be configured by you. On the
hardware-side, the PTO (output) 1 of the CPU is used as well as a Boolean output for the
specification of the direction.

The function block "FB_Turntable" (FB40) takes over the control of the axis. You are to call this
function block in the user program.

Scenario
A production piece is transported via a turn-lift table. The production pieces arrive at the lower
level and are transported onto the turn-lift table (Position 1: 90°). Then, the turn-lift table
approaches the upper level and executes a 225° turn to Position 2 (315°). Having arrived at the
upper level, the production piece is moved off the turn-lift table and is transported away.
Subsequently, the turn-lift table travels back in the opposite direction to the starting point (Position
1).

The starting point is approached for the first time after the system is switched on and subsequent
referencing (homing) is done.

 The vertical movement was not programmed.

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

SIMATIC S7-1200 Advanced Course

TIA-MICRO2 - Technology Objects 8-45
Training Document V16.00.00

8.8.1. Exercise 4: Activating (enabling) PTO 1 of the CPU

Task
The "Axis" technology object configured in the following accesses a PTO output. For this, activate
(enable) the PTO 1 of PLC_2 as shown in the picture.

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

 SIMATIC S7-1200 Advanced Course

 TIA-MICRO2 - Technology Objects
8-46 Training Document V16.00.00

8.8.2. Exercise 5: Creating and configuring the technology object "Axis"

Task
Create a technology object "Turntable" of the type "Axis" and configure it.

What to do
1. Create a new technology object in PLC_2:

PLC_2  Technology objects  Add new object  Motion Control  TO_PositioningAxis;
Name: Turntable

2. Implement the settings shown in the following:

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

SIMATIC S7-1200 Advanced Course

TIA-MICRO2 - Technology Objects 8-47
Training Document V16.00.00

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

 SIMATIC S7-1200 Advanced Course

 TIA-MICRO2 - Technology Objects
8-48 Training Document V16.00.00

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

SIMATIC S7-1200 Advanced Course

TIA-MICRO2 - Technology Objects 8-49
Training Document V16.00.00

3. The settings "Enable and feedback of the drive", "Position limits" as well as "Homing Passive"
remain unchanged.

4. Save your project.

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

 SIMATIC S7-1200 Advanced Course

 TIA-MICRO2 - Technology Objects
8-50 Training Document V16.00.00

8.8.3. Exercise 6: Commissioning "FB_Turntable"

Enable Axis
Approach reference point (home)

Wait time 1 (2 sec.)

Approach Position 1 (slow)

Transport part onto turntable (Wait time 2 (5 sec.))

Approach Position 2 (fast)

Transport part from turntable (Wait time 3 (3 sec.))

Approach Position 1 (fast)

Transport part onto turntable … etc.

Ref. point

Pos. 1 (90°)

Pos. 2
(315°) Legend

Turns clockwise
Turns counter-
clockwise
Inactive (Wait time)
Approach ref. point

EN_A

Task
The control of the technology object "Turntable" is implemented by the function block
"FB_Turntable" (FB40). Insert the block from the Project library into your user program and call it
in OB1.

What to do
1. Using drag & drop, copy the block "FB_Turntable" from the project library into the program

folder of PLC_2

2. Call "FB_Turntable" in OB1

3. Connect the input "EN_A" with the bit memory "M_Start_Axis" (M40.0)

4. Save your project and transfer both the hardware and the software to PLC_2

5. Monitor the call of "FB_Turntable" in OB1 and control the bit memory "M_Start_Axis" as
shown in the following

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

SIMATIC S7-1200 Advanced Course

TIA-MICRO2 - Technology Objects 8-51
Training Document V16.00.00

Result
The axis first carries out the active homing (referencing) and then begins with the motion
sequence described in the task.

If the bit memory "M_Start_Axis" is reset, the axis ends the current execution and then stops at
Position 1.

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

 SIMATIC S7-1200 Advanced Course

 TIA-MICRO2 - Technology Objects
8-52 Training Document V16.00.00

8.8.4. Exercise 7: Starting the axis and monitoring the statuses with the
diagnostic panel

Task
Monitor the current status of the axis and track the motion sequences via the diagnostic panel.

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

SIMATIC S7-1200 Advanced Course

TIA-MICRO2 - Troubleshooting
Training Document V16.00.00 9-1

Contents 9

9. Troubleshooting ... 9-2

9.1. Objectives ... 9-2

9.2. Categories of errors .. 9-3

9.3. STEP7 - Test functions, overview ... 9-4

9.4. System Diagnostics – Overview ... 9-5
9.5. Online & Diagnostics – Functions ... 9-6
9.5.1. Diagnostics: Diagnostics buffer ... 9-7
9.5.2. Diagnostic buffer: Error Messages in the diagnostics buffer .. 9-8
9.5.3. Diagnostic buffer: Opening a faulty block ... 9-9
9.5.4. Call hierarchy (block stack) ... 9-10

9.6. Monitor block ... 9-11
9.6.1. Monitor block: Modify tags .. 9-12
9.6.2. Monitoring structures .. 9-13
9.6.3. Monitor block: Call environment .. 9-14

9.7. "Monitor / modify variables": Watch tables ... 9-15
9.7.1. "Monitor / modify variables": Trigger points .. 9-16
9.7.2. "Enable peripheral outputs" .. 9-17

9.8. Force variables.. 9-18

9.9. Reference data: Cross-references of PLC tags .. 9-19
9.9.1. Reference data: Cross-references of a tag ... 9-20
9.9.2. Reference data: Go to  Point of use .. 9-21
9.9.3. Reference data: Call structure .. 9-22
9.9.4. Reference data: Dependency structure .. 9-23
9.9.5. Reference data: Assignment of I, Q, M ... 9-24
9.9.6. Reference data: Resources (memory utilization) .. 9-25
9.9.7. Reference data: Overlapping accesses .. 9-26

9.10. Compare (1) - Offline/online .. 9-27
9.10.1. Compare (2) - Online/offline block detailed comparison ... 9-28
9.10.2. Compare (3) – Software offline/offline .. 9-29
9.10.3. Compare (4) - Offline/offline hardware ... 9-30
9.10.4. Compare (5) - Block-quick compare ... 9-31

9.11. Exercise 1: Downloading a faulty program in PLC_1 ... 9-32

9.12. Exercise 2: Errors detected by the system: Reading out the diagnostics buffer 9-33
9.13. Exercise 3: Testing the motor jog ... 9-34

9.14. TRACE analyzer function .. 9-35
9.14.1. Configuring a TRACE - Signals and sampling .. 9-36
9.14.2. Configuring a TRACE – Trigger and saving measurement on device 9-37
9.14.3. Downloading a TRACE configuration into the CPU and activating it 9-38
9.14.4. Evaluating, Saving, Exporting a TRACE in STEP 7 ... 9-39
9.14.5. Trace task card ... 9-40
9.14.6. Additional exercise: Creating, viewing and saving a TRACE ... 9-41

9.15. Additional information ... 9-43
9.15.1. Monitor block: Display formats .. 9-44
9.15.2. Monitor block: Call path .. 9-45

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

 SIMATIC S7-1200 Advanced Course

 TIA-MICRO2 - Troubleshooting
9-2 Training Document V16.00.00

9. Troubleshooting
9.1. Objectives

At the end of the chapter the participant will ...

... be able to classify errors that occur into the error categories "Errors
detected by the system" and "Functional errors"

... be able to read out the diagnostics buffer, interpret it and use it for
troubleshooting

... be able to read out the hardware diagnostics

... be able to apply the "Monitor/Modify Variables" test function

... be able to interpret the displays of the "Monitor" test function in the
LAD/FBD Editor and use them for troubleshooting

... be able to read out the reference data, interpret it and use it for
troubleshooting

... understand the "Enable peripheral outputs" and "Force" functions

... become familiar with the Trace function

Objectives
In this chapter, the tools for troubleshooting are presented. Tools for functional errors as well as
tools for errors which the system itself detects are dealt with.

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

SIMATIC S7-1200 Advanced Course

TIA-MICRO2 - Troubleshooting
Training Document V16.00.00 9-3

9.2. Categories of errors

Errors Detected by the System
• Acquiring, evaluating and indicating

errors within a PLC
• Module failure
• Short-circuit in signal cables
• Scan time overrun
• Programming error (accessing a

non-existent block)

Functional Errors
• Desired function is either not executed at all

or is not correctly executed
• Process fault (sensor/actuator, cable defective)
• Logical programming error (not detected

during creation and commissioning)

Monitoring functions
Diagnosis is important in the operating phase of a system or machine. Diagnosis usually occurs
when a problem (disturbance) leads to standstill or to the incorrect functioning of the system or
machine. Due to the costs associated with downtimes or faulty functions, the associated cause of
the disturbance must be found quickly and then eliminated.

Categories of errors
Errors that occur can be divided into two categories, depending on whether they are detected by
the PLC:

• Errors that are detected by the PLC’s operating system.

• Functional errors, that is, the CPU executes the program as usual, but the desired function is
either not executed at all or it is executed incorrectly. The search for these types of errors is
much more difficult, since the cause of the error is initially hard to determine.
Possible causes could be:
− A logical programming error (software error) that was not detected during creation and

commissioning of the user program and probably occurs only on extremely rare occasions
− A process fault that was triggered by the faulty functioning of components directly

associated with the process control, such as cables to sensors/actuators or by a defect in
the sensor/actuator itself

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

 SIMATIC S7-1200 Advanced Course

 TIA-MICRO2 - Troubleshooting
9-4 Training Document V16.00.00

9.3. STEP7 - Test functions, overview

Errors Detected by the System
General rule: CPU in Run

• Online & Diagnostics
- Diagnostics buffer,

• Task Card "Testing"
- Call hierarchy / Block stack
- Local data stack (in planning stage)

• Diagnose Modules
- Diagnostic status (all modules)

Functional Errors
General rule: CPU in RUN

• Monitor and Modify Variables
→ Watch and Force tables

• Monitor Blocks (Block Status)
→ Monitor in the Blocks editor

- with call environment

• Tools
- Cross references
- Assignment list (I/Q/M/T/C)

• Asynchronous error (w/o OB82, 83, 86):
• Process fault (e.g. wire break)
• Logical programming error

(e.g. double assignment)

• "Trace" analyzer function
• Program/Block comparison

RUN

Test Functions
There are various STEP 7 test functions for troubleshooting, depending on the type of error
caused:

• For errors that are detected by the system, the test functions diagnostics buffer and hardware
diagnostics give detailed information on the cause of the error and the location of the
interruption. By programming error OBs, information on the error that occurred can be
evaluated by program and the transition of the CPU into the STOP state can be prevented. If
the CPU has stopped, the use of the test functions monitor / modify variable and monitor
blocks makes little sense since the CPU neither reads nor outputs process images while in
the STOP state, and no longer executes the program.

• Vice versa, it makes little sense, as a rule, to use test functions such as module information
when the CPU is in RUN. The Module Information test function merely provides general
information on the CPU‘s operating status or on errors that occurred in the past. Functional
errors can be diagnosed as follows:
− Process fault (such as, wiring error)

Wiring test of the inputs: Monitor variable
Wiring test of the outputs: Enable peripheral outputs (only for CPU STOP) (in planning)

− Logical programming error (such as, double assignment)
All test functions listed, except for Enable peripheral outputs, can be used for searching for
logical program errors

− Force
Forced control of operands regardless of the program logic

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

SIMATIC S7-1200 Advanced Course

TIA-MICRO2 - Troubleshooting
Training Document V16.00.00 9-5

9.4. System Diagnostics – Overview

CPU I/O moduleCPU diagnostics detects
a system error

CPU diagnostics detects
errors in the user program

Error
OB

Diagnostics
buffer

Diagnostics-
capable module
detects an
error and
generates a
diagnostic
interrupt

Diagnostic
interrupt

System diagnostics
All those monitoring functions that deal with the correct functioning of the components of an
automation system are grouped together under system diagnostics. All S7-CPUs have an
intelligent diagnostics system. The acquisition of diagnostic data by the system diagnostics does
not have to be programmed. It is integrated in the operating system of the CPU and in other
diagnostics-capable modules and runs automatically. The CPU (temporarily) stores errors that
occur in the diagnostics buffer and thus enables a fast and targeted error diagnosis by service
personnel, even for sporadically occurring errors.

System reaction
The operating system takes the following actions when it detects an error or a STOP event, such
as an operating mode change (RUN  STOP):

• A message on the cause and the effect of the occurring error is entered in the diagnostics
buffer, complete with the date and time. The diagnostics buffer is a FIFO (circular) buffer on
the CPU module for storing error events. In the FIFO buffer structure, the most recently
entered message overwrites the oldest diagnostics buffer entry. A CPU memory reset
CANNOT delete the diagnostics buffer, only a “Reset to factory settings”. The diagnostics
buffer can be read out using the programming device or the panel.

• The Error OB associated with this error is called. This gives the user the opportunity of
carrying out his own error handling.

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

 SIMATIC S7-1200 Advanced Course

 TIA-MICRO2 - Troubleshooting
9-6 Training Document V16.00.00

9.5. Online & Diagnostics – Functions

Online & diagnostics

Status display
After the online connection was successfully established, the user interface changes as follows:

• The title bar of the active window gets an orange colored background

• The title bars of the inactive windows of the associated station get an orange colored line at
the lower edge

• In the project tree, operating state or diagnostic symbols are displayed for the objects of the
associated station

• In the inspector window, the area "Diagnostics > Device Information" is brought to the
foreground

Symbol Meaning

 Folder contains objects whose online and offline versions are different

 Comparison result is unknown

 Online and offline versions of the object are identical

 Online and offline versions of the object are different

 Object only exists offline

 Object only exists online

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

SIMATIC S7-1200 Advanced Course

TIA-MICRO2 - Troubleshooting
Training Document V16.00.00 9-7

9.5.1. Diagnostics: Diagnostics buffer

Diagnostic buffer
The diagnostic buffer is a buffered memory area of the CPU organized as a ring buffer. It contains
all diagnostic events (error messages, diagnostic alarms, start-up information, etc.) of the CPU in
the order in which they occurred. The topmost entry is the last event that occurred.

All events can be displayed on the programming device in plain text and in the order of their
occurrence.

 The size of the diagnostic buffer depends on the CPU. Likewise, the entire diagnostic

buffer is not buffered when the power is OFF (only a part is retentive).

Event details
Some additional information about the selected event is provided in the field "Event details":

• Name of the event and event number

• Additional information, depending on the event, such as the address of the statement that
caused the event, and so on.

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

 SIMATIC S7-1200 Advanced Course

 TIA-MICRO2 - Troubleshooting
9-8 Training Document V16.00.00

9.5.2. Diagnostic buffer: Error Messages in the diagnostics buffer

Detected error

System reaction

Open the block /
hardware concerned

in the editor

Interpreting the diagnostics buffer
To interpret the diagnostics buffer, you must look at the events that belong together in the
sequence in which they occurred, in other words, from bottom to top.

If errors occur in which the CPU does not change to STOP, an entry is made in the diagnostics
buffer in every program cycle.

Entries in the diagnostics buffer
The last error that occurred after this warm restart leads to the following entries in the diagnostics
buffer: Example:

Event No. 1:
Temporary CPU error: Area length error in FC18 – Processing will continue

Description:

Temporary CPU error: Area length error in FC18
affects OB1 execution
Write-access DB area
faulty address ignored ( system reaction)

Processing will continue (no OB processing)

 If a runtime error occurs during the execution of the STEP 7 user program, the CPU as of
Firmware 2.0 remains in RUN

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

SIMATIC S7-1200 Advanced Course

TIA-MICRO2 - Troubleshooting
Training Document V16.00.00 9-9

9.5.3. Diagnostic buffer: Opening a faulty block

Opening a block
For synchronous errors, that is, for errors that were triggered by a faulty instruction in the user
program, you can open the block in which the interruption occurred by clicking on the "Open in
editor" button.

In LAD/FBD, the network causing the interruption is highlighted. In the example shown, the DBW
20 of DB5 is accessed which does not exist.

"Open in editor"
With the "Open in editor" button, the associated editor that is relevant for the entry (the event) is
opened.

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

 SIMATIC S7-1200 Advanced Course

 TIA-MICRO2 - Troubleshooting
9-10 Training Document V16.00.00

9.5.4. Call hierarchy (block stack)

Call hierarchy
The "Call hierarchy" gives you the information in which call path the block is opened.

If the block was opened from the diagnostic buffer via the button "Open in editor", then by looking
at the entry in the Call hierarchy, you can see in which path the error occurred.

You can open the calling block by clicking on the appropriate link.

Note
If the CPU is in "STOP" mode, the current block stack at the time of the STOP transition can be
read out via the call hierarchy. The block stack lists all blocks whose execution was not
completed at the moment when the CPU went into "STOP". The blocks are listed in the order in
which the execution was started.

With an existing online connection, open any block for this and switch into the Task Card "Test" >
Call hierarchy.

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

SIMATIC S7-1200 Advanced Course

TIA-MICRO2 - Troubleshooting
Training Document V16.00.00 9-11

9.6. Monitor block

Monitor On / Off

Application
The test function Monitor block is used to track the program processing within a block. The states
or contents of the operands used in the block at the time of program processing are displayed on
the screen. The test mode "Observe" ("Block status") for the block currently opened in the
LAD/FUP/SCL editor is activated via the eyeglass symbol.

To start the test function, the block must be identical online and offline. If the opened block does
not correspond to the block stored online in the CPU, the opened block must be loaded into the
CPU or from the CPU and then observed before monitoring.

In the test mode the states of the operands and LAD / FBD elements are represented by different
colors. The settings for this are to be made via Extras  Settings:

Example:

• Status fulfilled  "Element is displayed in green color"

• Status not fulfilled  "Element is displayed in blue color"

Note
The observation values are only current if the CPU is in RUN state and the instructions to be
observed are processed!

This is indicated by the progress bar "Online values are updated" in the upper right corner of the
block.

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

 SIMATIC S7-1200 Advanced Course

 TIA-MICRO2 - Troubleshooting
9-12 Training Document V16.00.00

9.6.1. Monitor block: Modify tags

Modify tags
If the test function "Monitor block" is activated, it is possible to control variables to status '0' or '1'.
The assignment of the status is done once. With non-Boolean variables, the control can be
carried out via the menu item "Modify operand…".

If the variable whose status was changed is not overwritten by the program, the variable remains
at the assigned status. If, for example, an output is controlled to status '1' and this variable is not
overwritten by the program, the output remains switched on or set to status '1'.

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

SIMATIC S7-1200 Advanced Course

TIA-MICRO2 - Troubleshooting
Training Document V16.00.00 9-13

9.6.2. Monitoring structures

Monitor
Structures

For INOUT parameters
Input value and

Output value

Rules for Monitoring Structures (S7-1200/1500)
When monitoring structures, the values of a structured PLC tag are displayed in the Inspector
window  Diagnostics  Monitor value, with the following exception:

• Structures, whose elements have adjustable retentive properties, cannot be monitored.

In order to display the Monitor values for a structure, you must first activate the monitoring via the
Context menu.

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

 SIMATIC S7-1200 Advanced Course

 TIA-MICRO2 - Troubleshooting
9-14 Training Document V16.00.00

9.6.3. Monitor block: Call environment

Function
The call conditions for blocks and for breakpoints can be defined. In this way we can determine
under which conditions the program status of a block is displayed or the program execution is
interrupted at a breakpoint. The following conditions can be selected:

• Instance data block
The program status of a function block is only displayed when the function block is called with
the selected instance data block.

• Call path
The program status of a block is only displayed when the block is called by a specific block or
from a specific path.

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

SIMATIC S7-1200 Advanced Course

TIA-MICRO2 - Troubleshooting
Training Document V16.00.00 9-15

9.7. "Monitor / modify variables": Watch tables

Area of use
The "Monitor/modify variables (Tags)" test function is used to monitor and / or modify variables
(tags) in any format you choose. For this, the desired variables are entered in a watch table.
Except for block-local, temporary variables, you can monitor and/or modify all variables (tags) or
operands.

You can choose the columns displayed in the watch table via the menu ‘view’. The columns have
the following meanings:

• Name: symbolic name of the variable (tag)

• Address: absolute address of the variable (tag)

• Symbol comment: comment on the variable (tag) displayed

• Display format: a data format you can choose per mouse click (such as binary or decimal), in
which the content of the variable (tag) is displayed

• Monitor value: variable (tag) value in the selected status format

• Modify value: value to be assigned to the variable (tag)

Watch table
You can choose any name for the Watch table. Saved Watch tables can be reused to monitor
and modify so that a renewed input of the variables to be monitored is no longer necessary.

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

 SIMATIC S7-1200 Advanced Course

 TIA-MICRO2 - Troubleshooting
9-16 Training Document V16.00.00

9.7.1. "Monitor / modify variables": Trigger points

Trigger point
"Beginning of

Scan Cycle"

cyclic
program
execution

PII

PIQ

Trigger point
"End of

Scan Cycle"

Trigger point
"Transition

to STOP"

show / hide all
modify columns

once / by trigger
modify variables

by Trigger / once
monitor variables

show / hide all
trigger columns

enable peripheral outputs
(disable output disables OD)

(CPU must be in STOP mode)

Trigger points
Through the "monitor with trigger or modify with trigger" columns, you can define the trigger
points for monitoring and modifying. The "trigger point for monitoring" specifies when the values
of the variables being monitored are to be updated on the screen. The "trigger point for
modifying" specifies when the given modify values are to be assigned to the variables being
modified.

Trigger condition
The "trigger condition for monitoring" specifies whether the values are to be updated on the
screen once only when the trigger point is reached or permanently (when the trigger point is
reached).

The "trigger condition for modifying" specifies whether the given modify values are to be assigned
to the variables being modified once only or permanently (every time the trigger point is reached).

Area of use
The following tests, among others, can be implemented with the appropriate selection of trigger
points and conditions:

• Wiring test of the inputs:
Monitor variables, trigger point: Start of scan cycle, trigger condition: Permanent

• Simulate input states (user specified, independent of process):
Modify variables, trigger point: Start of scan cycle, trigger condition: Permanent

• Differentiation between hardware / software errors (an actuator that should be activated in the
process is not controlled)
Monitor variables, in order to monitor the relevant output, trigger point: End of scan cycle,
trigger condition: Permanent
 (output state = ´1´ > program logic OK > process error (hardware)
 (output state = ´0´ > program logic error (such as double assignment)

• Control outputs (independent of the program logic)
Modify variables, trigger point: End of scan cycle, trigger condition: Permanent

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

SIMATIC S7-1200 Advanced Course

TIA-MICRO2 - Troubleshooting
Training Document V16.00.00 9-17

9.7.2. "Enable peripheral outputs"

"Enable peripheral outputs"
CPU must be in STOP

Once and immediately
modify all active variables

The function "Enable peripheral outputs"
The "Enable peripheral outputs" function is used to check the functioning of the output modules,
the wiring of the digital output modules or it can be used to continue to control actuators in the
process even though the CPU finds itself in the STOP state because of an error that has
occurred.

The "Enable peripheral outputs" function cancels the output disable of the peripheral outputs
(PQ), which enables you to control the outputs despite the CPU‘s STOP state.

Conditions

• The CPU must be in STOP mode

• A Force task must not be active in the CPU

• The Watch table must be displayed in "extended mode", in other words, displayed with trigger
columns

• The peripheral outputs to be enabled are to be specified byte by byte, word by word or
double-word by double-word with the suffix :P (for peripheral)

• After the peripheral outputs have been enabled, the modify values can be activated via the
"Modify once only" button (not via "Modify with trigger")

Note
When changing the CPU’s operating status from STOP to RUN or STARTUP, enable peripheral
outputs is deactivated and a message pops up.

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

 SIMATIC S7-1200 Advanced Course

 TIA-MICRO2 - Troubleshooting
9-18 Training Document V16.00.00

9.8. Force variables

FORCE task is active

Activate Force
Deactivate ForceUpdate all forced

operands and values

Introduction
With the help of the force table, you can pre-assign individual variables of the user program with
fixed values. These variables are then independently and continuously overwritten by the CPU.
This process is called forcing. Requirement for forcing is that an online connection to the CPU
exists and that the CPU used supports this function.

Area of use
Through the fixed pre-assignment of variables with defined values, you can set certain
specifications for your user program and thus test the programmed functions.

Forced variables and PLCs are identified with an F, as soon as you switch to the online view or
the respective block is monitored.

 With an active Force task, the MAINT-LED lights up on the CPU.

 Only physical inputs and outputs (in other words ":P") can be forced.

Careful
Before forcing, you must become familiar with the safety precautions for this process.

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

SIMATIC S7-1200 Advanced Course

TIA-MICRO2 - Troubleshooting
Training Document V16.00.00 9-19

9.9. Reference data: Cross-references of PLC tags

Display of where it is used
(also for HMI)

Click to jump to the point of
use

Introduction
The cross-references list offers an overview of the use of operands and variables (tags) within the
user program. From the cross-references list, you can jump directly to the point of use.

The cross-references list contains the following information:

• Which operand is used in which block with which instruction?

• Which tag is used in which HMI screen?

• Which block is called by which other block?

As part of the project documentation, the cross-references supply a comprehensive overview of
all operands, memory areas, blocks, variables (tags) and screens used.

Views
There are two views of the cross-references list which differentiate themselves by which objects
are displayed in the first column:

• Used by:
Displays the referenced objects
Here, the reference location where the object is used are displayed.

• Used:
Displays the referencing objects.
Here, the users of the object are displayed.
The associated tooltips give further information on the respective objects.

Show Unused
This is a list of tags which are declared in the PLC tag table but are not used in the S7 user
program.

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

 SIMATIC S7-1200 Advanced Course

 TIA-MICRO2 - Troubleshooting
9-20 Training Document V16.00.00

9.9.1. Reference data: Cross-references of a tag

Introduction
In the Inspector window, the cross-reference information for a selected object is displayed in the
tabs "Info > Cross-references". In this tab, you will see at which locations (Point of use) and from
which other objects every selected object is used.
In the Inspector window, cross-references are made even to those blocks which only exist online
or cross-references from HMI accesses.

Structure
The cross-reference information is displayed in tabular form in the Inspector window. Each
column contains specific detailed information on the selected object and its use.

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

SIMATIC S7-1200 Advanced Course

TIA-MICRO2 - Troubleshooting
Training Document V16.00.00 9-21

9.9.2. Reference data: Go to  Point of use

Go to  Next or previous point of use
During block processing, in order to navigate quickly within a block from one point of use to the
next or previous point of use, the function "Go to > Next point of use" or "Go to > Previous point of
use" is started via the context menu of the respective variable (tag).

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

 SIMATIC S7-1200 Advanced Course

 TIA-MICRO2 - Troubleshooting
9-22 Training Document V16.00.00

9.9.3. Reference data: Call structure

Call structure
The call structure shows (describes) the call hierarchy of the blocks within an S7 program. It can
be opened via context menu or in menu “tools”. It gives you an overview of:

• The blocks used

• Jumps to the points of use of the blocks

• Dependencies between the blocks

• Local data requirements of the blocks

• Status of the blocks

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

SIMATIC S7-1200 Advanced Course

TIA-MICRO2 - Troubleshooting
Training Document V16.00.00 9-23

9.9.4. Reference data: Dependency structure

Dependency structure
The dependency structure can be shown via menu “tools” and it shows the list of blocks used in
the user program. In the first level (to the very left) is the respective block and indented
underneath it are the blocks which call this block or use it.

The dependency structure also shows the status of the individual blocks using symbols. Objects
which cause a time stamp conflict, and which can lead to an inconsistency in the program are
identified with different symbols.
The dependency structure represents an extension of the cross-references list for objects.

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

 SIMATIC S7-1200 Advanced Course

 TIA-MICRO2 - Troubleshooting
9-24 Training Document V16.00.00

9.9.5. Reference data: Assignment of I, Q, M

Assignment I/Q/M
The assignment list for I/Q/M is opened via "Right-click on the device > Assignment list" or via
Menu "Tools > Assignment list".

This assignment list gives you an overview of which bit is used from which byte of the memory
areas input (I), output (Q) and bit memory (M) are used. The type of use (reading or writing) is not
displayed.

The memory areas inputs (I), outputs (Q) and bit memories (M) are displayed byte-by-byte in
lines.

• The bits identified with a small diamond, that is, binary operands (in the picture, for example, I
4.0 or M 16.4) are used explicitly in the program.

• The fields of the individual bits which have a gray background identify byte, word, double-
word or long word operands that are used in the user program. The operand dimension (byte,
word, double-word or long word) comes from the vertical line in one of the columns "B" (Byte),
"W" (Word), "DWORD" (Double word) and "LWORD" (Long word).

• Bits that are marked with both a diamond and a gray background are used explicitly as a
binary operand in the user program and are used via a byte, word, double-word or long word
operand.

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

SIMATIC S7-1200 Advanced Course

TIA-MICRO2 - Troubleshooting
Training Document V16.00.00 9-25

9.9.6. Reference data: Resources (memory utilization)

Resources (memory utilization)
The Resources is opened via Menu "Tools > Resources" and shows you which (how much)
memory area is used by which objects in the CPU.

Note
Display of the ‘Used’ Load memory in the CPU:

Please note that the sum of the used load memory cannot be exactly determined if not all blocks
have been compiled.

In this case, a ">" placed in front of the sum indicates that the value for the used memory area
could be larger than displayed since blocks that are not compiled are not considered for the total
formation.

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

 SIMATIC S7-1200 Advanced Course

 TIA-MICRO2 - Troubleshooting
9-26 Training Document V16.00.00

9.9.7. Reference data: Overlapping accesses

Check overlapping
accesses

Show overlapping
access

Overlapping accesses
With the help of the "Check overlapping accesses" button, you can check whether overlapping
accesses exist for one of the variables (tags).
If this is the case, they can be displayed in a separate table with the help of the "Show
overlapping accesses" button.

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

SIMATIC S7-1200 Advanced Course

TIA-MICRO2 - Troubleshooting
Training Document V16.00.00 9-27

9.10. Compare (1) - Offline/online

Start detailed comparison

Select
synchronization

action

Set comparison criteria

Types of comparison
In principle, there are two different types of comparison:

• Online/Offline comparison:
The objects in the project are compared with the objects of the relevant device. For this, an
online connection to the device is necessary.

• Offline/Offline comparison:
Either the objects of two devices within a project or from different projects are compared.

Symbols of the result display
The result of the comparison is presented by means of symbols.
The following table shows the symbols for the comparison results of an Online/Offline
comparison:

Symbol Meaning

 Folder contains objects whose online and offline versions are different

 Comparison result is unknown

 Online and offline versions of the object are identical

 Online and offline versions of the object are different

 Object only exists offline

 Object only exists online

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

 SIMATIC S7-1200 Advanced Course

 TIA-MICRO2 - Troubleshooting
9-28 Training Document V16.00.00

9.10.1. Compare (2) - Online/offline block detailed comparison

Position on previous/next
difference

Detailed comparison
Through the detailed comparison you can identify exactly those locations that are different in the
online and offline version of a block. So that you can find these locations as quickly as possible,
the following identifiers are used:

• The lines in which there are differences are highlighted in grey

• The different operands and operations are highlighted in green

• When the number of networks is different, pseudo networks are inserted so that a
synchronized representation of identical networks is possible. These pseudo networks are
highlighted in grey and contain the text "No corresponding network was found" in the title-bar
of the network. Pseudo networks cannot be processed

• If the sequence of the networks is mixed up, pseudo networks are inserted at the appropriate
locations. These pseudo networks are highlighted in grey and contain the text "The networks
are not synchronized" in the title-bar of the network. The pseudo network also contains a link
"Go to network <No>", through which you can navigate to the associated network

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

SIMATIC S7-1200 Advanced Course

TIA-MICRO2 - Troubleshooting
Training Document V16.00.00 9-29

9.10.2. Compare (3) – Software offline/offline

Compare
Manual/Automatic

Online/offline software comparison
Compared are either:

• the objects of two devices within a project

• the blocks of two devices within a project

• the blocks within one device

• the objects from different projects

• the blocks from different projects

By means of a mouse-click, you can toggle between

automatic and manual comparison.

Automatic Comparison
Blocks and objects of the same type and same name are compared with each other.

Manual Comparison
You can select which blocks are compared with each other. That way, it is possible to compare all
blocks with each other.

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

 SIMATIC S7-1200 Advanced Course

 TIA-MICRO2 - Troubleshooting
9-30 Training Document V16.00.00

9.10.3. Compare (4) - Offline/offline hardware

Offline/offline hardware comparison
In addition, it is possible to compare the hardware between two devices or modules in one device
with each other.

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

SIMATIC S7-1200 Advanced Course

TIA-MICRO2 - Troubleshooting
Training Document V16.00.00 9-31

9.10.4. Compare (5) - Block-quick compare

Offline/Offline
To start an offline/offline detailed comparison for a block directly in the project tree, follow these
steps:

• Right-click the block that you want to compare. This can also be a block from a reference
project

• Select the command "Fast comparison > Select as left object" in the shortcut menu

• Right-click the block that you want to compare with the block that you previously selected as
left object

• Select the command "Fast comparison > Compare with <selected object>" in the shortcut
menu. "<selected object> stands for the left comparison object

Offline/Online
To start an online/offline comparison for a block directly in the project tree, follow these steps:

• Establish an online connection to the device where the block is located

• Right-click the block that you want to compare with its online object

• Select the command "Fast comparison > Compare with the online object" in the shortcut
menu

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

 SIMATIC S7-1200 Advanced Course

 TIA-MICRO2 - Troubleshooting
9-32 Training Document V16.00.00

9.11. Exercise 1: Downloading a faulty program in PLC_1

Backup program blocks

Copy new blocks from the
library

Delete program blocks

Task
In the following exercises, you are to work with the program of the library “MICRO2_Lib”. This
program fulfills the same tasks as your present project, but it contains errors which you are to
look for and eliminate in the following.

What to do
1. Backup all tag tables and program blocks in the project library, even the system blocks

2. Delete the tags and all blocks from the program blocks folder (even the system blocks)

3. Open the library "MICRO2_Lib".
<Drive>:_Archive\TIA-MICRO2[version]\MICRO2_Lib.al16

4. Copy the blocks from the folder master copies > chapter_09 into the program blocks folder of
your project and the tag table in the PLC tags

5. Compile the program blocks folder and transfer (download) the software from "PLC_1" into
the CPU 1214C

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

SIMATIC S7-1200 Advanced Course

TIA-MICRO2 - Troubleshooting
Training Document V16.00.00 9-33

9.12. Exercise 2: Errors detected by the system: Reading out the
diagnostics buffer

Task
By reading out the diagnostics buffer, you are to find out why the ERROR-LED is flashing on the
CPU and fix the error.

What to do
1. Open the "Online & diagnostics" of PLC_1

2. Select the diagnostics buffer

3. Select (highlight) the last error message and click on "Open in editor"

4. Fix the error in the block and download it into the CPU

Result
After the error has been eliminated, the ERROR-LED on the CPU goes dark.

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

 SIMATIC S7-1200 Advanced Course

 TIA-MICRO2 - Troubleshooting
9-34 Training Document V16.00.00

9.13. Exercise 3: Testing the motor jog

Split editor space
horizontally

Task
The function "Jog conveyor motor" does not work. The combined use of the PG functions
"Monitor block" and "Watch table" (monitor tags [variables]) indicates that there must be a double
assignment at output "K_Right" (Q8.5). The task now is to find all instructions in the entire user
program that write-access this output.

What to do
1. On the touchpanel, switch off operation

2. Open the "FC_Conveyor" block and activate the "Monitor" test function

3. In the project tree, under "Watch and force tables" create a new watch table and in it monitor
the output "K_Right" (Q8.5)

4. Display the blocks editor with the opened "FC_Conveyor" and the watch table one below the
other by splitting the working area (see picture)

5. Interpret the different status displays of the two test functions

6. Localize the double assignment at output "K_Right" (Q8.5) with the help of the reference data
and correct the error

7. Download all modified blocks into the CPU and check how the program functions

8. Save your project

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

SIMATIC S7-1200 Advanced Course

TIA-MICRO2 - Troubleshooting
Training Document V16.00.00 9-35

9.14. TRACE analyzer function

Internal Flash

separate CPU memory

"Trace" analyzer function
The value-over-time of one or several CPU tags (max. 16) can be stored in a TRACE. In STEP 7,
a TRACE recording can be presented graphically.

The number of traces depends on the CPU.
Depending on the CPU, internal TRACE memories with 512 Kbyte each are available.

• S7-1200 2x TRACE (FW ≥ V4.0)

• Up to S7-1517 4x TRACE, S7-1518 8x TRACE

• A maximum of 16 Trace signals or CPU tags (variables) can be recorded per Trace

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

 SIMATIC S7-1200 Advanced Course

 TIA-MICRO2 - Troubleshooting
9-36 Training Document V16.00.00

9.14.1. Configuring a TRACE - Signals and sampling

Trace – Signals
All global PLC tags (variables) of an elementary data type can be recorded.

Trace – Sampling and recording duration
Here, you define how often or in which intervals the Trace signals are to be recorded. From these
sampling intervals and the data type or the dimension of the Trace signals you get the maximum
duration of a Trace recording since the memory space available for the recording is limited.

Max. memory per trace: 512 Kbytes – 30 bytes (for internal management) = 524,258 bytes
Each sample is saved with a time stamp (8 bytes).
This results in a number of bytes per sample = 8 bytes + number of bytes of a sample
(for Boolean trace signals, the number of bytes of a measured value is 1 byte)

Example: Trace with 1x INT variable and a sampling interval of 100ms
Trace signal of the data type INT -> 8+2 bytes/sample -> 52,425 possible samples
Sampling interval = 100ms -> 10 samples per second
-> maximum recording duration: 52425 samples / 10 samples per second = 5242 seconds

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

SIMATIC S7-1200 Advanced Course

TIA-MICRO2 - Troubleshooting
Training Document V16.00.00 9-37

9.14.2. Configuring a TRACE – Trigger and saving measurement on device

Triggering the trace recording
Activating the trace recording starts the measurement and recording of the trace signals,
however, not the permanent saving of values since these are merely only temporarily saved in a
ring buffer which is continuously overwritten with new values. Only when the configured trigger
event is fulfilled, are the temporarily saved values permanently saved and no longer overwritten
with new values, whereby the trigger event is dependent on the data type of the trigger variable
The Trace recording ends as soon as the maximum recording duration configured in Trace
Sampling is reached.

By defining a pre-trigger, you determine how many of the samples recorded before the trigger
event occurs are to remain stored.

Measurement on device (memory card)
Completed measurements can be stored on the memory card in order to start a new
measurement. In the item "Measurements on device", you can define if several and, if yes, how
many measurements are to be made. In addition, you define whether the oldest measurement is
to be deleted when the set number of measurements is reached or whether no more
measurements are to be made. The measurements are stored on the memory card, if there is no
memory card, the recording stops after one measurement.

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

 SIMATIC S7-1200 Advanced Course

 TIA-MICRO2 - Troubleshooting
9-38 Training Document V16.00.00

9.14.3. Downloading a TRACE configuration into the CPU and activating it

Down/Up load Trace
in CPU / in Project

Observe
Trace

Activate / Stop
recording

Delete Trace
from the device

Automatically
repeat recording

Transfer trace configuration to device
Add trace configuration from the device to trace configurations

After the trace has been configured offline, i.e., in the project, the configuration must be
downloaded into the CPU, since it is not the engineering tool that executed the trace but the CPU.

Only trace configurations that exist online in the CPU can be uploaded from the CPU into the
project.

Observe trace
“Observe trace” displays the status of a trace on the CPU:

• inactive (Trace already loaded in the CPU, but not yet activated)

• wait for trigger (Trace activated in the CPU, but trigger event not yet fulfilled)

• recording running (Trace activated in the CPU and recording running)

• recording completed (Trace activated in the CPU and recording already completed)

Activate recording / deactivate recording
The trace is activated with "activate recording", that means that the measuring and recording of
the Trace signals is started immediately, even if the possibly configured trigger event is not yet
fulfilled. The recorded values are continuously displayed and stored in a ring buffer which is
continuously overwritten with new values. Only when the trigger event is fulfilled, are the recorded
values no longer overwritten and remain saved. As of this time , the recording is continued until
the maximum recording duration is reached.

Through "deactivate recording", a trace with the status "wait for trigger" is deactivated (stopped)
or an already running recording is aborted.

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

SIMATIC S7-1200 Advanced Course

TIA-MICRO2 - Troubleshooting
Training Document V16.00.00 9-39

9.14.4. Evaluating, Saving, Exporting a TRACE in STEP 7

Add to measurements
(offline)

Export Trace configuration and Measurement
with the settings of the current view

Measurements on device
(memory card)

Combine measurements

View and evaluate trace
When an online connection exists, the trace recording currently saved in the CPU is displayed in
the diagram view of the trace editor.

You will find the measurements stored on the memory card in the "Measurements on device"
folder.

Trace recordings saved offline in the project can be looked at by double-clicking on the trace
recordings saved in the project tree in the "Measurements" folder.

Furthermore, in the "Combined measurements" folder, measurements can be simultaneously
evaluated and compared.

Save trace in project

With this function, traces saved online in the CPU can be uploaded into the offline project (Add to
measurements). A trace can only be saved in the project when it is full, or the recording has been
stopped.

Trace configuration
This function exports the configuration of a trace which can then be imported into other projects.
(TTCRX-file)

Trace measurement:
This function exports a trace recording in CSV-format which can then be further processed with
MS Excel, for example, or, in TTRCRX-format which can be imported into a TIA Portal-project.

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

 SIMATIC S7-1200 Advanced Course

 TIA-MICRO2 - Troubleshooting
9-40 Training Document V16.00.00

9.14.5. Trace task card

Snapshots

Measuring cursorMeasuring cursor

"Measuring cursor" pane
The "Measuring cursor" pane shows the position of the measuring cursor in the graph and the
values at the intersections.

"Snapshots" pane
The "Snapshots" pane enables the saving and restoring of different views of a measurement.

A snapshot is created from the current view in the "Diagram" tab. The snapshots are saved in the
measurement with the project.

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

SIMATIC S7-1200 Advanced Course

TIA-MICRO2 - Troubleshooting
Training Document V16.00.00 9-41

9.14.6. Additional exercise: Creating, viewing and saving a TRACE

TRACE

Task
When "P_Operation" (Q4.0) is switched on, the recording of the values of the variables
P_Operation, MW_Weight, B_Bay1, B_Bay2, P_Bay1, P_Bay2, S_Bay1, S_Bay2 K_Right and
B_LB is to be started for 60 seconds with a pre-trigger of 5 seconds and then saved in the
project.

What to do
1. Configure trace "Transport"

Add a trace, give it the name "Transport", open the editor and switch to the "Configuration"
tab

2. Recorded signals: all binary signals of the automatic transport:
P_Operation, MW_Weight, B_Bay1, B_Bay2, P_Bay1, P_Bay_2, S_Bay1, S_Bay2, K_Right
and B_LS

3. The recording clock is to be clocked by the new OB "OB_Cyclic_Interrupt". The duration of
the trace should be 60s.
Cyclic time "OB_Cyclic_Interrupt" = 250ms = 0.25s
Recording duration 60s

4. The recording is to be started with the start of the automatic mode with a pre-trigger of 5s

5. Transfer trace to the CPU and activate it
Since a start trigger was configured in the properties of the trace, recording does not start
immediately (status: Wait for trigger)  Recording waits for start of automatic transport

6. Observe trace and start recording
By connecting online, trace monitoring is already active. The real-time signals are displayed
in the diagram

7. Select the "Conveyor" screen in the Touchpanel, activate automatic mode and start several
transports to the light barrier

8. In the diagram, you can see the values of the trace variables graphically.
...wait until the trace is full (recording then stops automatically) or end the trace recording

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

 SIMATIC S7-1200 Advanced Course

 TIA-MICRO2 - Troubleshooting
9-42 Training Document V16.00.00

9. Save the trace in project
If the trace is full or the recording stopped, it can be saved in the project with (Add to
measurement)

10. View the trace recording

11. Save your project

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

SIMATIC S7-1200 Advanced Course

TIA-MICRO2 - Troubleshooting
Training Document V16.00.00 9-43

9.15. Additional information

 sa

br
iuz

un
er

 @
 d

uz
ce

.e
du

.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

 SIMATIC S7-1200 Advanced Course

 TIA-MICRO2 - Troubleshooting
9-44 Training Document V16.00.00

9.15.1. Monitor block: Display formats

Displaying the program status
The display of the program status is updated cyclically and displayed with colored lines.

For the display of numerical values, the display format can be selected between "Automatic",
"Decimal", "Hexadecimal" and "Floating point".

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

SIMATIC S7-1200 Advanced Course

TIA-MICRO2 - Troubleshooting
Training Document V16.00.00 9-45

9.15.2. Monitor block: Call path

Monitor with call path
By means of the function "Open and monitor", a block is opened and directly monitored.

This determines under which conditions the program status of a block is displayed.

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

SIMATIC S7-1200 Advanced Course

TIA-MICRO2 - Programming in SCL
Training Document V16.00.00 10-1

Contents 10

10. Programming in SCL .. 10-2

10.1. Objectives ... 10-2

10.2. Task description: Storing weight values in a DB variable ... 10-3

10.3. Program creation in SCL ... 10-4

10.4. Comparison of LAD and SCL .. 10-5
10.4.1. Comparison of different programming languages ... 10-6
10.5. Creating a new SCL block .. 10-7

10.6. Editing an SCL block ... 10-8
10.6.1. Operators .. 10-9
10.6.2. Control structures .. 10-10
10.6.3. Direct addressing (examples) ... 10-11
10.6.4. Indirect addressing (examples) ... 10-12
10.6.5. Block calls in SCL ... 10-13
10.6.6. Monitoring an SCL block ... 10-14

10.7. Task description: Commissioning an SCL block and expanding it 10-15
10.7.1. Exercise 1: Copying an SCL block from the project library .. 10-16
10.7.2. Exercise 2: Commissioning the SCL block ... 10-17
10.7.3. Exercise 3: Expanding "FC_Ind_Weight_SCL" .. 10-18
10.7.4. Exercise 4: Updating and assigning the block call.. 10-19

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

 SIMATIC S7-1200 Advanced Course

 TIA-MICRO2 - Programming in SCL
10-2 Training Document V16.00.00

10. Programming in SCL
10.1. Objectives

At the end of the chapter the participant will ...

... be familiar with the application areas of SCL

... be able to commission a given SCL block and expand it

Objectives
The programming language SCL is presented in this chapter.

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

SIMATIC S7-1200 Advanced Course

TIA-MICRO2 - Programming in SCL
Training Document V16.00.00 10-3

10.2. Task description: Storing weight values in a DB variable

187

235

398

129

285

0

0

Array[1..100] INT

…

[1]

[2]

[3]
[4]
[5]

[6]
[7]

285
Actual (Weight)

Count event
(positive edge),

e.g. for Part No.5

DB_Parts

Storage of the current
part weight in the array
element depending on
the Actual (quantity)

Situation up until now
The weight values of transported parts are stored in the array variable "DB_Parts".PartWeights in
"FC_Ind_Weight" via indirect addressing using "FieldWrite".

Old weight values are overwritten with new ones when the ring buffer ("DB_Parts".PartWeights) is
rewritten.

Task description
In the first step, the function "FC_Ind_Weight" and its call in "FC_Count" is to be replaced by the
function "FC_Ind_Weight_SCL". This is copied out of the Project library and fulfills the same
function.

Subsequently, the initializing of the DB variable "DB_Parts".PartWeights is to be programmed:
As soon as the setpoint quantity equals the actual quantity and the bay pushbutton at the light
barrier bay is pressed, all array elements in "DB_Parts".PartWeights are to be overwritten with the
value "0".

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

 SIMATIC S7-1200 Advanced Course

 TIA-MICRO2 - Programming in SCL
10-4 Training Document V16.00.00

10.3. Program creation in SCL

• Structured text
• Complex calculations & algorithms
• Database operations, for example, sorting

data
• Program code exchangeable between

S7-1200 and S7-1500 as well as between
S7-300, S7-400 and WinAC

S7-1200S7-400

WinAC
S7-300

Structured Control Language as text-based structured high-level language

S7-1500

S7-SCL
SCL (Structured Control Language) is a PASCAL-similar high-level textual language. It simplifies
the programming of mathematical algorithms and complex data processing tasks for PLCs. SCL
therefore also enables S7 PLCs to be used for more complex tasks such as closed-loop control
or statistical evaluation.

SCL offers the functional scope of a high-level language such as:

• Loops

• Alternatives

• Branch distributors, etc.

combined with PLC-specific functions such as:

• Bit accesses to the I/O, bit memories, timers, counters etc.

• Access to the symbol table

• STEP 7 block accesses

Advantages of SCL

• easy to learn programming language, especially for beginners

• easy to read (understand) programs are generated

• simpler programming of complex algorithms and processing of complex data structures

• System integration in STEP7 languages such as FBD and LAD

• relatively easy for PLC technicians to understand by reference to STEP7 languages

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

SIMATIC S7-1200 Advanced Course

TIA-MICRO2 - Programming in SCL
Training Document V16.00.00 10-5

10.4. Comparison of LAD and SCL

Solution in LAD

Solution in SCL

Comparison
The use of SCL is recommended for data processing and the programming of complex,
mathematical functions. In the example shown, data is stored in an array variable using indirect
addressing. It is obvious that the program code of the SCL solution is significantly more compact
than the code in LAD or FBD.

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

 SIMATIC S7-1200 Advanced Course

 TIA-MICRO2 - Programming in SCL
10-6 Training Document V16.00.00

10.4.1. Comparison of different programming languages

Solution in SCL for S7-300/400 AND S7-1200/1500

Solution in STL
for S7-300/400

Solution in FBD for S7-1200/1500

Solution in STL
for S7-1500

Comparison
Compared to other programming languages, the programming is simple, compact and easy to
understand.

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

SIMATIC S7-1200 Advanced Course

TIA-MICRO2 - Programming in SCL
Training Document V16.00.00 10-7

10.5. Creating a new SCL block

All code blocks can
be programmed in

SCL

Creating an SCL block
SCL blocks are inserted in the same manner as blocks in the programming languages
LAD/FBD/STL. Depending on the task, SCL blocks can be of the FC or FB block type.

Even the internal structure in the declaration and statement section is identical to the
LAD/FBD/STL blocks:

• Declaration Section:
The IN, OUT and INOUT parameters as well as the local temporary and local static variables
of the block are declared in the declaration section of a block.

• Statement Section:
The statement section contains the instructions that are executed after a logic block (OB, FB,
FC) is called. These instructions are used to process data and operands.

In SCL blocks, the interface can also be shown as textual interface. For this the standard for new
blocks must be changed from table view to textual view in the settings (Options > Settings > PLC
programming > SCL).

Note
In programming instructions, the following points must be taken into consideration:

• Each instruction must be completed with a semicolon.

• All identifiers (names) used in the statement section must be declared.

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

 SIMATIC S7-1200 Advanced Course

 TIA-MICRO2 - Programming in SCL
10-8 Training Document V16.00.00

10.6. Editing an SCL block

Automatic
indentation of

statement sections

Same interface as in
LAD/FBD/STL

Master copies for
control operation

structures

Regions (use as
Networks)

Statement Section
The statement section contains the instructions that are executed after a code (logic) block (OB,
FB, FC) is called. These instructions are used to process data and operands.

Subdivision

The individual instructions can basically be divided into three groups:

• Value assignments:
− They are used to assign an expression or a value to a variable.

• Control instructions:
− They are used to branch within a program or to repeat groups of instructions.

• Subroutine call:
− They are used to process functions and function blocks.

Note
In programming instructions, the following points must be taken into consideration:

• Each instruction must be completed with a semicolon.

• All identifiers (names) used in the statement section must be declared.

Using Regions as Networks:

• Code structuring

• Greater clarity & readability

• Easy navigation even in large blocks

• In addition, there is a synchronized navigation column including the display of syntax errors..

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

SIMATIC S7-1200 Advanced Course

TIA-MICRO2 - Programming in SCL
Training Document V16.00.00 10-9

10.6.1. Operators

Logic operation Description Operator

Assignment Assignment :=

Parenthesis (Expression) (,)

Binary logic operation Negation
AND
OR
Exclusive-OR

NOT
AND, &
OR
XOR

Comparison Less than, less than or equal to, greater
than, greater than or equal to, equal to,
not equal to

<, <=, >, >=
=, <>

Math Plus, Minus (sign)
Addition, Subtraction
Multiplication, Division
Exponentiation

+,-
+,-
*, /, MOD
**

Syntax: result := expression;

Example: #Q_Average := (#Value1 + Value2) / 2;

Expressions
Expressions consist of operands, operators and round brackets (parenthesis). Within an
expression the operators (e.g. +, -, *, /, etc.), that is, the active components of an expression, are
linked with the passive elements, such as constants, variables and function values, in order to
form a new value. An expression therefore stands for the value it represents. SCL permits the
formation of standard expressions, that is, mathematical, logical and comparative expressions.
Variables from data blocks, arrays, structures and CPU memory areas (inputs, outputs, etc.) can
be enlisted for the formation.

Operators and Operands
Expressions consist of operators and operands. Most SCL operators link two operands
(e.g. A + B) and are therefore termed binary operators. The others work with only one operand
and are thus called unary operators.

The result of an expression can

• be assigned to a variable (e.g. A := B + C;)

• be used as a condition for a control statement (e.g. IF A< B DO ...)

• be used as an actual parameter for the call of a function or a function block
(e.g. FB20 (Input := A + B))

Value Assignments
With their help, variables can be assigned new values. The old variable value is lost.

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

 SIMATIC S7-1200 Advanced Course

 TIA-MICRO2 - Programming in SCL
10-10 Training Document V16.00.00

10.6.2. Control structures

Keyword Functionality

Program branching IF Program branching with Boolean value

CASE Program branching with INT value

Program loops
(Abort possible)

FOR Program loop with run variable

WHILE Program loop with execution condition

REPEAT Program loop with abort condition

Loop aborts CONTINUE Abort current loop pass

EXIT Exit program loop

Block abort RETURN Exit the block

There are master copies (so-called code snippets) for the control operation structures!

Control instructions
These are used for changing the sequence in which the instructions are normally processed.

A choice from the various alternatives in the program execution can be made with conditional
instructions (IF and CASE instructions).

Loop instructions (FOR, WHILE and REPEAT instructions) are used to repeatedly execute
instructions.

Jump instructions (CONTINUE, EXIT and GOTO instructions) permit the sequence of processing
to be interrupted and to jump to a resumption point.

FB and FC Calls:

According to the principle of structured programming, other function blocks and functions can also
be called from an SCL block.

Callable blocks are:

• Functions and function blocks that were created in SCL or in another STEP 7 language (STL,
LAD, etc.)

• Standard functions and standard function blocks that are supplied with SCL

• Instructions with and without instance

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

SIMATIC S7-1200 Advanced Course

TIA-MICRO2 - Programming in SCL
Training Document V16.00.00 10-11

10.6.3. Direct addressing (examples)

Area Notation examples Examples

SCL V5.x TIA SCL
(harmonized to STL...)

Absolute
Addressing

Bit %DBz.DXy.x , %Iy.x %DBz.DBXy.x , %Iy.x %DB5.DBX0.7 , %I0.0

Byte %DBz.DBy , %MWy %DBz.DBBy , %MWy %DB5.DBB2 , %QB2

Word %DBz.DWy , %MWy %DBz.DBWy , %MWy %DB5.DBW4 , %MW20

Double-word %DBz.DDy %DBz.DBDy %DB5.DBD8

Symbolic
Addressing

"<DB-Symbol>“.<Variable-Name> "Motor".Setvalue

Only for
S7- 1200/1500

<Variable-Name>.%X<Bitnumber>
<Variable-Name>.%B<Bytenumber>
<Variable-Name>.%W<Wordnumber>

"Motor".Alarms.%X1
(Bit 1 of the variable

"Alarms" in DB "Motor")

Direct addressing (absolute and symbolic) for
inputs, outputs and memory bits is identical to LAD/FBD/STL!

Absolute addressing
The instruction part of a block describes the actions to be executed with local operands
(parameters or local variables) or global variables (PLC tag or variable in a global data block).
The global variables can be addressed absolutely or symbolically.

The absolute addressing for SCL corresponds to that for the basic languages (LAD and FBD).
Access to global data operands in SCL is only completely addressed. Inputs and outputs are
automatically given a symbolic name (e.g. "Tag_4") after input.

 Note, that for SCL, there can be no separator (space or tabulator) between the operand
notation and the operand address.

Symbolic addressing
Symbolic addressing addresses operands and variables with a name. The name is assigned in
the symbol table for global data; for local data it is assigned in the declaration section of the
block. The symbolic addressing for SCL corresponds to that of the basic languages.

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

 SIMATIC S7-1200 Advanced Course

 TIA-MICRO2 - Programming in SCL
10-12 Training Document V16.00.00

10.6.4. Indirect addressing (examples)

Area Instruction Examples

Indirect
Addressing Bit PEEK_BOOL

POKE_BOOL

BYTE -
LWORD

PEEK
POKE

WORD PEEK_WORD

DWORD PEEK_DWORD

LWORD PEEK_LWORD

Area POKE_BLK

Indexed
Access Array

element

“<DB-
Symbol>”.<Array-
Symbol>[Index]

“Motor”.Value[#Index]

Indirect addressing, both for I/Q/M/Peripheral access,
and for variables in data blocks!

#OUT1 :=PEEK_BOOL(area:=#Memory _area,
dbNumber:=#DB_Number,
byteOffset:=#Byte_addr,
bitOffset:=Bit_addr);

POKE(area:= Memory_area,
dbNumber:=#DB_Number,
byteOffset:=#Byte_addr,
value:=w#16#12);

Indirect addressing
The instructions PEEK (reading) and POKE (writing) are used for indirect addressing.

Memory_area, DB_Number, Byte_addr and Bit_addr are constants or, at runtime, changeable
variables or expressions.

The following operand areas (area) can be addressed in this way:

• 16#81: Input

• 16#82: Output

• 16#83: Memory bit

• 16#84: DB

• 16#1: Peripheral input (only S7-1500)

If the memory area is not 16#84, then the DB_Number must be specified with 0.

Example Poke_BLK
POKE_BLK(AREA_SRC := "Tag_Source_Area", //Memory area Source

 DBNUMBER_SRC := "Tag_Source_DBNumber", //DB-Number Source

 BYTEOFFSET_SRC := "Tag_Source_Byte"), //Byte number Source

 AREA_DEST := "Tag_Destination_Area", // Memory area Destination

 DBNUMBER_DEST := "Tag_Destination_DBNumber", //DB-Number Destination

 BYTEOFFSET_DEST := "Tag_Destination_Byte", //Byte number Destination

 COUNT := "Tag_Count"); //Number of bytes

Array Elements
Array elements can be addressed with a variable Index at runtime.

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

SIMATIC S7-1200 Advanced Course

TIA-MICRO2 - Programming in SCL
Training Document V16.00.00 10-13

10.6.5. Block calls in SCL

FBD

FC Call

SCL

FB Call

Input parameters and In/Out parameters are identified with :=
Output parameters with =>

Calling an SCL block
Depending on the task, SCL blocks can be created as FC or FB. According to the principle of
structured programming, other function blocks, functions as well as instructions with and without
instance can also be called from an SCL block. In that way, other functions and function blocks
that were created in SCL or in another STEP 7 language (STL, LAD, etc.) can be called.

Callable blocks are:

• Other functions and function blocks that were created in SCL or in another STEP7 language
(FBD, LD, and so on)

• Simple and advanced instructions

• technology objects

• communication blocks

Display of an FB call
For an FB call, only the instance is displayed. If you hover the mouse pointer over the instance, a
tooltip displays the relevant FB.

Note
When a function which supplies a return value (RET_VAL) is called, this return value must be
stored in an operand

<Operand>:=<Function name> (Parameter list);

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

 SIMATIC S7-1200 Advanced Course

 TIA-MICRO2 - Programming in SCL
10-14 Training Document V16.00.00

10.6.6. Monitoring an SCL block

Not executed instructions are greyed-out

Always the result of the
instruction

Display all values of the instruction

When the line is selected, the values
are presented in a popup

When a variable is selected, the
value is displayed in the tooltip

Monitoring an SCL block
Just as in LAD/FBD/STL, SCL blocks can be monitored. All values of control operation
instructions are displayed when these are "opened and revealed".

The values of not executed instructions are grayed out.

Special Features of Selected Variables

• In the online mode, a Tooltip displays the value of the variable.

• The value of IN-OUT variables is displayed before and after the call of the function.

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

SIMATIC S7-1200 Advanced Course

TIA-MICRO2 - Programming in SCL
Training Document V16.00.00 10-15

10.7. Task description: Commissioning an SCL block and expanding
it

Project library

FC_Ind_Weight_SCL

Program blocks

FC_Ind_Weight

FC_Ind_Weight_SCL

Same program function as
"FC_Ind_Weight"

Call is replaced

Situation up until now
The weight values of transported parts are stored in the array variable "DB_Parts".Part_Weight in
"FC_Ind_Weight" via indirect addressing using "FieldWrite".

Old weight values are overwritten with new ones when the ring buffer ("DB_Parts".Part_Weight) is
rewritten.

Task description
In the first step, the function "FC_Ind_Weight" and its call in "FC_Count" is to be replaced by the
function "FC_Ind_Weight_SCL". This is copied out of the Project library and fulfills the same
function.

Subsequently, the initializing of the DB variable "DB_Parts".PartWeights is to be programmed:
As soon as the setpoint quantity equals the actual quantity and the bay pushbutton at the light
barrier bay is pressed, all array elements in "DB_Parts".PartWeights are to be overwritten with the
value "0".

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

 SIMATIC S7-1200 Advanced Course

 TIA-MICRO2 - Programming in SCL
10-16 Training Document V16.00.00

10.7.1. Exercise 1: Copying an SCL block from the project library

Task
Using drag & drop, copy the function "FC_Ind_Weight_SCL" from the project library into the
program blocks folder of "PLC1".

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

SIMATIC S7-1200 Advanced Course

TIA-MICRO2 - Programming in SCL
Training Document V16.00.00 10-17

10.7.2. Exercise 2: Commissioning the SCL block

FC_Count

Task
Replace the call of "FC_Ind_Weight" in "FC_Count" with "FC_Ind_Weight_SCL".

What to do
1. Open "FC_Count"

2. Replace the call of "FC_Ind_Weight" with "FC_Ind_Weight_SCL"

3. Save your project and transfer the entire program into the CPU

4. Monitor "DB_Parts" and produce at least (setpoint quantity) parts

Result
The program behaves just as before: The weight values are written in the array variable
"DB_Parts".PartWeights according to the actual quantity. Old values are overwritten with new
ones as soon as the ring buffer is full.

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

 SIMATIC S7-1200 Advanced Course

 TIA-MICRO2 - Programming in SCL
10-18 Training Document V16.00.00

10.7.3. Exercise 3: Expanding "FC_Ind_Weight_SCL"

FC_Ind_Weight_SCL

Task
You are now to program the initialization of the DB variable "DB_Parts".PartWeights:
As soon as the actual quantity equals the setpoint quantity and the bay pushbutton at the light
barrier bay ("S_BayLB") is pressed, all array elements in "DB_Parts".PartWeights are to be
overwritten with the value "0".

What to do
1. Open "FC_Ind_Weight_SCL"

2. Declare the input parameter "init" of type BOOL

3. Declare the temporary variable "index" of type INT

4. Make the changes to the program code as shown in the picture

5. Save your project

Operating Principle
With the first IF statement instruction, it is checked whether a new weight is to be stored. All
values are stored in the OUT-Array-Variable "Weight_Store" with the Index "Part_No".

In the second IF statement instruction, it is checked whether an initialization is to be executed. If
this is the case, a For-loop with 100 executions is started. In every execution, one array element
in “Weight_Store" is overwritten with "0". The loop counter is automatically increased.

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

SIMATIC S7-1200 Advanced Course

TIA-MICRO2 - Programming in SCL
Training Document V16.00.00 10-19

10.7.4. Exercise 4: Updating and assigning the block call

FC_Count

Task
Due to the changes in the block interface, the call of "FC_Ind_Weight_SCL" in "FC_Count" must
be updated.

The initialization of the DB is always to happen when the message "SETP=ACT" is pending and
the bay pushbutton on the light barrier ("S_Bay-LB") is pressed.

What to Do
1. Open "FC_Count"

2. Update the call of "FC_Ind_Weight_SCL" (FC36)
Right-click on "FC_Ind_Weight_SCL"  Update  OK

3. Assign a positive signal edge to the input "init" as shown in the picture

4. Save your project and transfer the modified user program into the CPU

5. Monitor "DB_Parts" and produce at least (setpoint quantity) parts in order to determine
whether the DB is initialized when the init condition is fulfilled

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

SIMATIC S7-1200 Advanced Course

TIA-MICRO2 - Training and Support
Training Document, V16.00.00 11-1

Contents 11

11. Training and Support ... 11-2

11.1. Any Questions on our Training Courses Offered?? .. 11-3

11.2. www.siemens.com/sitrain ... 11-4
11.3. Learning path: SIMATIC S7 Prgramming in the TIA Portal .. 11-6

11.4. Download the training documents... 11-7

11.5. The Industry Online Support – the most important innovations .. 11-8

11.6. The Principle of Navigation ... 11-9

11.7. Complete product information ... 11-10

11.8. mySupport – Overview .. 11-11
11.9. Support Request ... 11-12

11.10. Support Request ... 11-13

11.11. Industry Online Support – wherever you go ... 11-14
11.11.1. Scanning product/EAN code ... 11-15
11.11.2. Scan functionality .. 11-16

11.12. Forum - the communication platform for Siemens Industry products 11-17
11.12.1. Conferences and Forum management ... 11-17
11.12.2. Interactions in the Forum .. 11-19

11.13. Task and Checkpoint .. 11-21

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

 SIMATIC S7-1200 Advanced Course

 TIA-MICRO2 - Training and Support
 Training Document, V16.00.00 11-2

11. Training and Support

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

SIMATIC S7-1200 Advanced Course

TIA-MICRO2 - Training and Support
Training Document, V16.00.00 11-3

11.1. Any Questions on our Training Courses Offered??

General Information
We‘ll be glad to help you regarding any questions on our training courses offered.

We’ll help you!

... on the Internet:

www.siemens.com/sitrain
or with e-mail:

info@sitrain.com

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

 SIMATIC S7-1200 Advanced Course

 TIA-MICRO2 - Training and Support
 Training Document, V16.00.00 11-4

11.2. www.siemens.com/sitrain

The complete range of courses offered can be accessed via the following links:

 www.siemens.de/sitrain or

 www.siemens.com/sitrain

Course Search
The course search permits the user to find the required courses by applying different search
filters such as keyword, target group, etc. The filters can also be combined.

Course Catalog
The course catalog permits you to find the required course via learning paths or via the Siemens
Mall structure.

1

2

1

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

SIMATIC S7-1200 Advanced Course

TIA-MICRO2 - Training and Support
Training Document, V16.00.00 11-5

Top Links
Various courses, e.g. SIMATIC S7-1500 solution line, etc., can be reached directly via the top
links.

2

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

 SIMATIC S7-1200 Advanced Course

 TIA-MICRO2 - Training and Support
 Training Document, V16.00.00 11-6

11.3. Learning path: SIMATIC S7 Prgramming in the TIA Portal

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

SIMATIC S7-1200 Advanced Course

TIA-MICRO2 - Training and Support
Training Document, V16.00.00 11-7

11.4. Download the training documents

If you want to download the training documents, proceed as follows:

• Visit our new SITRAIN homepage at http://www.siemens.de/sitrain

• Register with your access data under the menu option MyTraining.

• Select MyLearning on the right-hand side of the submenu.

• Select your course and download your documents with a click on ”Download documents”.

Documents
Name Size

> SIMATIC S7 Sequence Control with … 18,47 MB

Hint:
Please note that the training documents may be used for personal purposes exclusively. You
agree that you will not copy the training documents or make them accessible to third parties and
that you will be liable for any damage resulting thereof.

1

Register with your access data

Chose the course

Download your documents
Chose "History" after the

course.

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

http://www.siemens.de/sitrain

 SIMATIC S7-1200 Advanced Course

 TIA-MICRO2 - Training and Support
 Training Document, V16.00.00 11-8

11.5. The Industry Online Support – the most important innovations

The most important functions are always in the same place on all the pages:

The menu bar links to the main areas of the site. You can subscribe and register at any time to
benefit from the features the personalized mySupport option offers.

Links to our service offerings are in the center. On the start page, you will find up-to-date
information and links, which quickly brings you to your destination in other areas of Online
Support.

Links from the menu bar are repeated at the top of the page: Product Support, Services, Forum
and mySupport.

On every page, you will find your personal mySupport cockpit. There, for example, you can see
when the status of your support inquiry changes.

1

2

3

4

1

2

3

4

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

SIMATIC S7-1200 Advanced Course

TIA-MICRO2 - Training and Support
Training Document, V16.00.00 11-9

11.6. The Principle of Navigation

Here, you will find information about all the current and discontinued products, such as:

• Frequently Asked Questions (FAQ)

• Manuals and Operating Instructions

• Downloads

• Product Notes (product announcements, discontinuation, etc.)

• Certificates

• Characteristics

• Application Examples

You will not only be able to access these articles though the product tree, but also through a
central filter bar. The integration of various search filters will give you access to relevant
information after only a few clicks. The product tree has been moved to an equivalent filter. This
has the effect that several filter steps can be combined clearly and comprehensibly.

Based on the preview numbers you can see the expected set of results before using a filter. This
makes finding relevant information considerably easier and more efficient.

For example, you can customize your search by combining the product tree, a search keyword
and a document type in your search.
There will be no hidden search parameters; all the settings and results will be clearly displayed.

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

 SIMATIC S7-1200 Advanced Course

 TIA-MICRO2 - Training and Support
 Training Document, V16.00.00 11-10

11.7. Complete product information

A powerful function of the Industry Online Support is the direct access to complete product
information. You can use it if you are looking for a quick and easy access to all the technical
information about a Siemens Industry product. For example, for comparing products, if you are
expanding your system or replacing individual components, this is how to do it:

In the Product Support area, there is the central navigation bar.

To select a product, simply select the filter “Product.” Enter an order number or a product name
here. You will be supported by a dynamic display of suitable products (list of suggestions).

One more click and the details of the selected product will be displayed – always up to date:

• Product life cycle, consisting of milestones with dates (e.g. delivery release, discontinuation of
the product, …). You will find out whether the selected product is a current product or whether
the product is already in the discontinuation phase.

• Successor products for discontinued products and new developments will be suggested. If
there is a successor product, you will get a direct link to the product information of this
product.

• Technical data – clear, compact and complete. You get all the available technical data
concerning the selected product here – dimensions, operating voltage or the number of
inputs/outputs, etc.

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

SIMATIC S7-1200 Advanced Course

TIA-MICRO2 - Training and Support
Training Document, V16.00.00 11-11

11.8. mySupport – Overview

mySupport
The mySupport area will always remain your personal workplace; with this feature you can make
the best of your Industry Online Support experience.

The most important thing, if you're already working with mySupport, you can take all your
previous personal data and information you’ve filed away with you to the Industry Online Support.

In this area, you can compile the information that is important for your daily work – we provide
you with the suitable tools. Create your own folder structures and file information such as
bookmarks. There are numerous options, whether you want to file items by project or by
products.

Moreover, you can now add notes, comments and tags (keywords). The system automatically
creates a “Tag Cloud” based on your entries so you can access information quickly and easily by
means of your own terms. The operation is consistent throughout mySupport so that you will
easily find your way around. “Drag &drop” is also possible.

As soon as you are logged on, the mySupport cockpit is always at your side. It will immediately
show you when the status of a support request changes, or when you receive new personal
messages. You also have direct access to your personal keywords in the tag cloud, to the entries
last visited, and you can see which user is online.

Here, just a few highlights:

• The previous MyDocumentationManager is now completely integrated into mySupport under
the name of “mySupport-Documentation.” The function category “Documentation” contains all
the functions of the MyDocumentationManager and provides a few innovations, too.

• The Service & Support Newsletter has been completely revamped. An individual messaging
system will more than replace it.

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

 SIMATIC S7-1200 Advanced Course

 TIA-MICRO2 - Training and Support
 Training Document, V16.00.00 11-12

11.9. Support Request

Support Request
To create a Support Request, different options are available to you in Online Support:

• You will find the "Support Request" option in the menu on all Online Support pages.

• Alternatively, you can create a new request in mySupport in the "Requests" category.

• Or directly click on the following link:

http://www.siemens.com/automation/support-request

Tips for creating a request:

• Select your product and use case as accurately as possible; try to avoid selecting "Other". By
doing so, you ensure optimum support by our experts and appropriate suggested solutions.

• Did other users have a similar problem? This step already offers frequent problems and
solutions. Take a look – it will be worth your while!

• Describe your problem with as much detail as possible. Pictures or explanatory attachments
allow our experts to consider your problem from all sides and develop solutions. You can
upload multiple attachments up to 10 MB per file.

• Before each sending, verify your personal contact information and the data you have entered.
The final step additionally offers the option to print the summary.

As a logged in user, you can track the status of your requests online. To do so, navigate to "My
requests" in the "Requests" category in mySupport.

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

http://www.siemens.com/automation/support-request

SIMATIC S7-1200 Advanced Course

TIA-MICRO2 - Training and Support
Training Document, V16.00.00 11-13

11.10. Support Request

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

 SIMATIC S7-1200 Advanced Course

 TIA-MICRO2 - Training and Support
 Training Document, V16.00.00 11-14

11.11. Industry Online Support – wherever you go

The app supports you, for example, in the following fields:

• Problem solving during the implementation of a project

• Troubleshooting of failures

• Expanding or restructuring your system

It also provides you with access to the Technical Forum and to further entries created for you by
our experts:

• FAQs

• Application examples

• Manuals

• Certificates

• Product notes and many others

The main functions at a glance:

• Scan your product codes / EAN codes for a direct display of all technical and graphic data
(e.g. CAx data) about your Siemens Industry product.

• Send your product information or entries per e-mail in order to process the information directly
at the workstation.

• Send your requests to Technical Support at your convenience. Detail information can easily
be added using the scan or photo function.

• Use the offline cache function to save your favorites to your device. In this way you can call
these entries, products and conferences even without network coverage.

• Transfer PDF documents to an external library.

 Mobile access to more than 300,000 entries on
all Siemens Industry products

 Reduced to the essential functions

 Application case: initial diagnosis of problem or
in case of failures directly at the system or
machine

Quick and easy access to technical information, anytime.
Scanning function, search and Support Request – everything at your
fingertips at any time.

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

SIMATIC S7-1200 Advanced Course

TIA-MICRO2 - Training and Support
Training Document, V16.00.00 11-15

• The contents and surfaces are available in six languages (German, English, French, Italian,
Spanish and Chinese) - including a temporary switching to English.

11.11.1. Scanning product/EAN code

 After scanning a code, the
product view will open in most
cases.

 Specialized search options are
available for configurable
products.

 Depending on the product, the
result can also be displayed as
a list of products, in which

 the user can select the
appropriate product.

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

 SIMATIC S7-1200 Advanced Course

 TIA-MICRO2 - Training and Support
 Training Document, V16.00.00 11-16

11.11.2. Scan functionality

Data matrix codes

on Siemens products
as per standard SN60450

EAN13 bar code

on Siemens products

The scan functionality in the
Online Support app supports the
following types of code:

Data matrix code

QR code

EAN13 bar code

Code39 bar code

When one of these codes is
recognized, the respective
product view is called up in the
app.

Exception:
The QR codes contain URLs –
these are directly called up and
displayed in the app by the
integrated browser (but only, if
"siemens" is contained in the
URL).

QR code

e.g.: in advertisements
relating to Siemens content

Code39 bar code

(very hard to recognize /
scan) on Siemens products
as per standard SN60450

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

SIMATIC S7-1200 Advanced Course

TIA-MICRO2 - Training and Support
Training Document, V16.00.00 11-17

11.12. Forum - the communication platform for Siemens Industry
products

11.12.1. Conferences and Forum management

On the left side, you will find the so-called conference tree. It allows you to navigate through the
individual discussion areas.

The conference overview is the central discussion area of the Technical Forum. This is where the
community meets to discuss technical questions about Siemens Industry products.

In forum management, you will find your personal control center for the Technical Forum. It allows
you to manage your specific profile data and filters.

1 2

3

1

2

3

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

 SIMATIC S7-1200 Advanced Course

 TIA-MICRO2 - Training and Support
 Training Document, V16.00.00 11-18

Conference filter
Add conferences to your personal filter of preferred conferences.

This allows you to enable a notification that informs you when new topics are started in these
conferences.

In Quicklinks, the Technical Forum additionally offers an overview page that contains all topics of
your preferred conferences.

Managing profile
Profile management provides interesting information and functions:

• You get an overview of your activities in the Technical Forum.

• You can view your rank, any special permissions and your ranking progress.

• You can store a signature and a personal description for your profile in the forum.

• You have direct access to the quick links to get an overview of all topics you have contributed
to.

User filter
Have you found a user in the Technical Forum who posts entries that are particularly interesting?
Then add this user to your list of "preferred users".

This allows you to enable a notification that informs you when the user has posted a new entry.

In Quicklinks, the Technical Forum additionally offers an overview page that contains all topics of
your preferred users.

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

SIMATIC S7-1200 Advanced Course

TIA-MICRO2 - Training and Support
Training Document, V16.00.00 11-19

11.12.2. Interactions in the Forum

Creating a new topic in a
conference

Rating of the
topic

Topic from
conference overview

Status:
solved

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

 SIMATIC S7-1200 Advanced Course

 TIA-MICRO2 - Training and Support
 Training Document, V16.00.00 11-20

Creating a new entry
Do you want to create or format a new entry? The entry editor provides all the necessary
functions.

• You can upload and publish in the forum a file with "Add attachment".

• You would like to check before the publication how your entry will actually look? A preview is
available for this purpose.

• You would like to look at the topic again to which you create an entry? Please, you used the
link over the input area (right mouse button > open in a new tab or window)

Posting / replying to an entry
Do you want to participate in an existing discussion with your own entry? Click on "Reply" and
post your personal entry to support other users in answering the question.

• Use the "Reply" link to go to the entry editor and create a reply without quoting the entry.

• If you want to quote the entry, possibly only excerpts of it, use the "Quote" link. The content of
the quoted entry is then displayed accordingly in the entry editor.

Rating an entry / saying thank you
Do you find an entry particularly interesting? Use the available functions and rate the entry or say
thank you to provide personal feedback. Ratings and thank yours are the rewards our community
members get for the support they provide. When you rate an author or entry, this will be added to
the already existing ratings. The average value of all ratings is displayed.

Aside from feedback to the author of the entry, you also draw other readers' attention to
particularly valuable entries and helpful authors.

Creating a new entry for
the topic

Topic from conference
overview

Reacting to an
existing entry

Feedback for the
individual entry

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

SIMATIC S7-1200 Advanced Course

TIA-MICRO2 - Training and Support
Training Document, V16.00.00 11-21

11.13. Task and Checkpoint

Task: Software compatibility

Goal
Find out which current version of virus scanners is compatible with your engineering software.

Use all information sources available:

• Readme files in the installation folder

• The compatibility tool of the Industry Online Support

• Entries in the Product support

• Entries in the Forum

• Create a Support Request.

Checkpoint

Let‘s think about this:
• Name some reasons for

registration in MySupport.
• What do you think is the best way

to have always the latest version
of the required manuals for your
job with you? sa

br
iuz

un
er

 @
 d

uz
ce

.e
du

.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

Siemens AG
Digital Factory
SITRAIN – Digital Industry Academy
Postfach 48 48
90026 Nürnberg

siemens.com/sitrain

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

sa
br

iuz
un

er
 @

 d
uz

ce
.e

du
.tr

P
riv

at
e

co
py

 fo
r

S
ab

ri
U

zu
ne

r,
 s

ab
riu

zu
ne

r@
du

zc
e.

ed
u.

tr

	__ Title
	00_Cover
	01_Training_Devices
	1. Presentation of the Course Contents and Training Devices
	1.1. Objectives
	1.2. Course Contents
	1.3. Training Area with S7-1200
	1.4. Schematic Diagram Industrial Ethernet/ PROFINET Networking
	1.5. Configuration of the S7-1214 Training Device
	1.6. The Simulator
	1.7. The Conveyor Model
	1.8. PLC Tags

	02_Com_HW_SW_HMI
	2. Commissioning the Hardware and Software
	2.1. Objectives
	2.2. Task Description: The Conveyor Model as Distribution Conveyor
	2.3. Types of Program Blocks
	2.4. Possibilities for Program Structuring
	2.5. Process Images
	2.6. Cyclic Program Execution
	2.7. Data Exchange between Touchpanel and CPU
	2.8. Task Description: Commissioning the Training Case
	2.8.1. Exercise 1: Deleting Old Projects
	2.8.2. Exercise 2: Establishing an Online Connection to the CPU
	2.8.3. Exercise 3: Resetting the CPU to Factory Settings
	2.8.4. Exercise 4: Opening existing Project and save it with new name
	2.8.5. Exercise 5: Checking and, if necessary, adjusting the device configuration
	2.8.6. Exercise 6: Downloading the device configuration and user program into the CPU
	2.8.7. Exercise 7: Setting the IP address of the touchpanel
	2.8.8. Exercise 8: Transferring the touchpanel project
	2.8.9. Exercise 9: Function test touchpanel project and CPU program
	2.8.10. Exercise 10: Selecting the Editing Language
	2.8.11. Exercise 11: Runtime Settings

	2.9. Additional Information
	2.9.1. Industrial Ethernet: IP Address and Subnet Mask
	2.9.2. Online Access: Assigning an IP Address for the PG
	2.9.3. OB – Organization Blocks
	2.9.4. Events which Start an OB
	2.9.5. Events which Cannot Start an OB
	2.9.6. Interrupting the Cyclic Program
	2.9.7. DB – Data Block
	2.9.8. FC – Function
	2.9.9. FB – Function Block
	2.9.10. Adding a New Block
	2.9.11. Block programming
	2.9.12. Block Calls
	2.9.13. Block Groups
	2.9.14. Compiling a Block
	2.9.15. Downloading Blocks into the CPU
	2.9.16. Monitoring a Block
	2.9.17. Block Networks

	03_Analog_Value_Processing
	3. Analog value processing
	3.1. Objectives
	3.2. Task description
	3.3. Principle of analog value processing
	3.4. Properties of analog input modules
	3.5. Properties of analog output modules
	3.6. Analog value representation and measured value resolution
	3.7. Analog value representation of different measuring ranges
	3.8. Analog value representation for the analog outputs
	3.9. Scaling analog inputs with NORM_X and SCALE_X (1)
	3.9.1. Scaling analog inputs with NORM_X and SCALE_X (2)

	3.10. Controlling analog outputs with NORM_X and SCALE_X
	3.11. Comparator operations: IN_RANGE and OUT_RANGE
	3.12. Cyclic interrupts
	3.12.1. Phase offsets for cyclic interrupts

	3.13. Task description: Fault evaluation on the analog channel
	3.13.1. Exercise 1: Parameterizing the Analog Module SM 1234
	3.13.2. Exercise 2: Hardware diagnostics for diagnostic interrupt
	3.13.3. Exercise 3: Evaluating the diagnostics buffer of the CPU

	3.14. Task description: Converting the analog value and outputting it on the touchpanel
	3.14.1. Exercise 4: Inserting "OB_Cyclic interrupt"
	3.14.2. Exercise 5: Programming Analog Value Processing and Lock Outs
	3.14.3. Exercise 6: Downloading blocks into the CPU and testing the display on the touchpanel

	3.15. Additional Information
	3.15.1. Additional exercise: Return of reject parts

	04_Data_Blocks
	4. Data Blocks
	4.1. Objectives
	4.2. Data blocks (DBs)
	4.3. Overview of data types in S7-1200
	4.3.1. Elementary data types for S7-1200
	4.3.2. Data types for Timers, Date and Time-of-day
	4.3.2.1. Complex data type: DTL

	4.3.3. Complex data types for S7-1200
	4.3.3.1. Array, STRUCT, PLC-datatypes

	4.4. Creating a data block
	4.5. Block access for DBs without the attribute "Optimized block access"
	4.6. Block access for DBs with the attribute "Optimized block access"
	4.7. Start value, monitor value, retain (retentivity)
	4.8. Editing and monitoring a data block
	4.9. Function for modifying tags in data blocks
	4.10. Retentivity in system FBs (1): Separate instance DBs
	4.10.1. Retentivity in system FBs (2): Storage in global DB
	4.10.2. Retentivity in system FBs (3): Multiple instance in the FB

	4.11. Accessing DB variables
	4.12. Task description: DB_Parts
	4.12.1. Exercise 1: Creating and declaring DB_Parts
	4.12.2. Exercise 2: Replacing bit memories with DB variables
	4.12.3. Exercise 3: Making the IEC-Counter retentive (Global DB)
	4.12.4. Exercise 4: Transferring the modified program into the CPU and monitoring "DB_Parts"
	4.12.5. Exercise 5: Updating the HMI tag interfacing and transferring it to the Touchpanel

	4.13. Task Description: Archiving part weights in "DB_Parts" using "FieldWrite"
	4.13.1. Indirect addressing of Array elements with "FieldRead" and "FieldWrite" (1)
	4.13.2. Indirect addressing of Array elements with "FieldRead" and "FieldWrite" (2)
	4.13.3. Exercise 6: Creating a re-usable function "FC_Ind_Weight" and declaring the interface
	4.13.4. Exercise 7: Programming the DB access as re-usable using "FieldWrite"
	4.13.5. Exercise 8: Calling the new function in "FC_Count"
	4.13.6. Exercise 9: Monitoring "DB_Parts"

	4.14. Additional Information
	4.14.1. Additional exercise: Reading back the setpoint (quantity) and adopting it as the start value
	4.14.2. Type conversion

	05_Introduction_PROFINET
	5. Introduction to PROFINET
	5.1. Objectives
	5.2. Task Description: Replacing a central I/O module with distributed I/O
	5.3. Industrial Ethernet: IP address and subnet mask
	5.4. PROFINET IO Device types
	5.5. Fieldbus Systems for SIMATIC S7
	5.5.1. Identification of distributed I/O devices

	5.6. PROFINET device addressing
	5.7. Inserting distributed I/O into the project (Network view)
	5.8. Configuring a connection to the CPU and setting the address parameters
	5.9. Configuring distributed I/Os (Device view)
	5.10. Writing the device name in the IO device (Device initialization)
	5.11. Task description: Controlling the conveyor model via the ET 200S
	5.11.1. Exercise 1: Inserting the ET 200S in the project and networking it
	5.11.2. Exercise 2: Configuring the ET 200S and setting the PROFINET address parameters
	5.11.3. Exercise 3: Changing the I/O addresses
	5.11.4. Exercise 4: Writing the device name in the IO device (Device initialization)
	5.11.5. Exercise 5: Compiling the modified device configuration and testing the program

	5.12. Additional information
	5.12.1. Topology editor
	5.12.2. Topologies
	5.12.3. Topology View - Topology comparison
	5.12.4. PROFINET proxy concept
	5.12.5. PROFINET Communications model
	5.12.6. The MAC Address
	5.12.7. The partitioning of the IP Address
	5.12.8. Detecting decentral devices automatically

	06_Introduction_Communication
	6. Introduction to industrial communication
	6.1. Objectives
	6.2. Task Description: Creating an "ISO-on-TCP" connection
	6.3. S7-1200 ethernet communication services in the ISO/OSI communication model
	6.3.6. Data flow-oriented and message-oriented communication
	6.3.7. Combined blocks for the connection programming
	6.3.8. Connection parameterization via block properties (sending station with TSEND_C)
	6.3.9. Parameterized send block TSEND_C
	6.3.10. Connection parameterization via block properties (receiving station with TRCV_C)
	6.3.11. Parameterized receive block TRCV_C

	6.4. Task description: Program CPU-CPU communication and send 200 Bytes of data
	6.4.1. Exercise 1: Preparing the CPU 1211C
	6.4.2. Exercise 2: Calling TSEND_C ("PLC_1": "FC_Send")
	6.4.3. Exercise 3: Calling "FC_Send"
	6.4.4. Exercise 4: Calling TRCV_C ("PLC_2": "FC_Receive")
	6.4.5. Exercise 5: Function test

	6.5. Additional Information
	6.5.1. UDP Communication
	6.5.2. TCP Communication
	6.5.3. ISO-on-TCP communication
	6.5.4. S7 Communication
	6.5.5. Connections
	6.5.6. Connection resources
	6.5.7. Diagnosing the Open User Communication

	07_Tags_and_Messages_HMI
	7. Tags and messages in HMI
	7.1. Objectives
	7.2. Task description: Outputting the analog value, configuring messages and time-of-day synchronization with the CPU
	7.3. SIMATIC WinCC
	7.4. HMI device maintenance: Backup/restore with ProSave
	7.5. HMI device maintenance: Pack & Go
	7.6. HMI project structure
	7.7. Configuring an I/O field (conventional)
	7.8. Configuring an I/O field (drag & drop)
	7.9. Task description: Outputting the transport time on the Touchpanel
	7.9.1. Exercise 1: Creating the I/O field using drag & drop
	7.9.2. Exercise 2: Configuring the I/O field and creating text fields

	7.10. Tasks of an alarm (massage) system
	7.11. Structure of an alarm (message)
	7.12. Alarm (message) procedures
	7.13. Trigger tags for discrete alarms
	7.14. Configuring discrete alarms
	7.14.1. Slice access (all languages)

	7.15. Configuring analog alarms
	7.16. Displaying alarms (messages)
	7.17. Task description: Configuring a discrete alarm and analog alarms
	7.17.1. Exercise 3: Configuring a discrete alarm
	7.17.2. Exercise 4: Configuring analog alarms

	7.18. Possibilities for Time-of-day synchronization
	7.19. Cyclic Time-of-day synchronization
	7.20. Cyclic Time-of-day synchronization by means of area pointer
	7.20.1. Exercise 5: Configuring the Time-of-day synchronization CPU (TP by means of a global area pointer

	7.21. Additional information
	7.21.1. Daylight saving time / standard time change
	7.21.2. Additional exercise: Adopting the time from the CPU

	08_Technology_Objects
	8. Technology objects
	8.1. Objectives
	8.2. Task description: Commissioning a PID controller and controlling a stepper motor
	8.3. Introduction to pulse generators
	8.3.1. Pulse Width Modulation (PWM)
	8.3.2. Pulse Train Output (PTO)
	8.3.3. Configuring a pulse generator

	8.4. Introduction to the PID (Controller)
	8.4.1. Implementation of a PID controller in the S7-1200
	8.4.2. Creating a "PID" technology object
	8.4.2.1. Configuring a PID controller (1) - Basic settings
	8.4.2.2. Configuring a PID controller (2) - Process value settings
	8.4.2.3. Configuring a PID controller (3) - Process value monitoring and PWM limits
	8.4.2.4. Configuring a PID controller (4) - Output value limits
	8.4.2.5. Configuring a PID controller (5) - PID parameters

	8.4.3. "PID_Compact" call
	8.4.4. Using the commissioning panel

	8.5. Task description: Controlling the capacitor voltage
	8.5.1. Exercise 1: Creating and configuring the "PID" technology object
	8.5.2. Exercise 2: Calling the "PID_Compact" block in the cyclic interrupt "Cyclic Interrupt"
	8.5.3. Exercise 3: Commissioning the PID controller

	8.6. Introduction to the "Axis" technology object (controlling the stepper motor)
	8.6.1. Principle of axis control
	8.6.2. Configuring a PTO output (1)
	8.6.3. Configuring a PTO output (2)

	8.7. Creating a "Positioning Axis" technology object
	8.7.1. Properties of "Axis": Configuration
	8.7.1.1. Configuring an "Axis" (1) - Basic parameters / general
	8.7.1.2. Configuring an "Axis" (2) - Drive
	8.7.1.3. Configuring an "Axis" (3) – Mechanics
	8.7.1.4. Configuring an "Axis" (4) – Positioning limits
	8.7.1.5. Configuring an "Axis" (5)- Dynamics/General
	8.7.1.6. Configuring an "Axis" (6) – Dynamics/Emergency stop
	8.7.1.7. Configuring an "Axis" (7) - Homing

	8.7.2. Properties of "Axis": Commissioning
	8.7.3. Activating the commissioning panel
	8.7.3.1. Using the commissioning panel (manual control)

	8.7.4. Properties of "Axis": Diagnostics
	8.7.4.1. Axis diagnostics (1)
	8.7.4.2. Axis diagnostics (2)

	8.7.5. Blocks for axis control

	8.8. Task description: Controlling a stepper motor
	8.8.1. Exercise 4: Activating (enabling) PTO 1 of the CPU
	8.8.2. Exercise 5: Creating and configuring the technology object "Axis"
	8.8.3. Exercise 6: Commissioning "FB_Turntable"
	8.8.4. Exercise 7: Starting the axis and monitoring the statuses with the diagnostic panel

	09_Troubleshooting
	9. Troubleshooting
	9.1. Objectives
	9.2. Categories of errors
	9.3. STEP7 - Test functions, overview
	9.4. System Diagnostics – Overview
	9.5. Online & Diagnostics – Functions
	9.5.1. Diagnostics: Diagnostics buffer
	9.5.2. Diagnostic buffer: Error Messages in the diagnostics buffer
	9.5.3. Diagnostic buffer: Opening a faulty block
	9.5.4. Call hierarchy (block stack)

	9.6. Monitor block
	9.6.1. Monitor block: Modify tags
	9.6.2. Monitoring structures
	9.6.3. Monitor block: Call environment

	9.7. "Monitor / modify variables": Watch tables
	9.7.1. "Monitor / modify variables": Trigger points
	9.7.2. "Enable peripheral outputs"

	9.8. Force variables
	9.9. Reference data: Cross-references of PLC tags
	9.9.1. Reference data: Cross-references of a tag
	9.9.2. Reference data: Go to (Point of use
	9.9.3. Reference data: Call structure
	9.9.4. Reference data: Dependency structure
	9.9.5. Reference data: Assignment of I, Q, M
	9.9.6. Reference data: Resources (memory utilization)
	9.9.7. Reference data: Overlapping accesses

	9.10. Compare (1) - Offline/online
	9.10.1. Compare (2) - Online/offline block detailed comparison
	9.10.2. Compare (3) – Software offline/offline
	9.10.3. Compare (4) - Offline/offline hardware
	9.10.4. Compare (5) - Block-quick compare

	9.11. Exercise 1: Downloading a faulty program in PLC_1
	9.12. Exercise 2: Errors detected by the system: Reading out the diagnostics buffer
	9.13. Exercise 3: Testing the motor jog
	9.14. TRACE analyzer function
	9.14.1. Configuring a TRACE - Signals and sampling
	9.14.2. Configuring a TRACE – Trigger and saving measurement on device
	9.14.3. Downloading a TRACE configuration into the CPU and activating it
	9.14.4. Evaluating, Saving, Exporting a TRACE in STEP 7
	9.14.5. Trace task card
	9.14.6. Additional exercise: Creating, viewing and saving a TRACE

	9.15. Additional information
	9.15.1. Monitor block: Display formats
	9.15.2. Monitor block: Call path

	10_SCL
	10. Programming in SCL
	10.1. Objectives
	10.2. Task description: Storing weight values in a DB variable
	10.3. Program creation in SCL
	10.4. Comparison of LAD and SCL
	10.4.1. Comparison of different programming languages

	10.5. Creating a new SCL block
	10.6. Editing an SCL block
	10.6.1. Operators
	10.6.2. Control structures
	10.6.3. Direct addressing (examples)
	10.6.4. Indirect addressing (examples)
	10.6.5. Block calls in SCL
	10.6.6. Monitoring an SCL block

	10.7. Task description: Commissioning an SCL block and expanding it
	10.7.1. Exercise 1: Copying an SCL block from the project library
	10.7.2. Exercise 2: Commissioning the SCL block
	10.7.3. Exercise 3: Expanding "FC_Ind_Weight_SCL"
	10.7.4. Exercise 4: Updating and assigning the block call

	11_Training_and_Support
	11. Training and Support
	11.1. Any Questions on our Training Courses Offered??
	11.2. www.siemens.com/sitrain
	11.3. Learning path: SIMATIC S7 Prgramming in the TIA Portal
	11.4. Download the training documents
	11.5. The Industry Online Support – the most important innovations
	11.6. The Principle of Navigation
	11.7. Complete product information
	11.8. mySupport – Overview
	11.9. Support Request
	11.10. Support Request
	11.11. Industry Online Support – wherever you go
	11.11.1. Scanning product/EAN code
	11.11.2. Scan functionality

	11.12. Forum - the communication platform for Siemens Industry products
	11.12.1. Conferences and Forum management
	11.12.2. Interactions in the Forum

	11.13. Task and Checkpoint

	xx_Backshield

