
 



 

SCHAUM’S
OUTLINE OF

Basic
Electricity



 

This page intentionally left blank 



 
Basic

Electricity
Second Edition

Milton Gussow, M.S.
Principal Staff Engineer, (Ret.)

Applied Physics Laboratory
The Johns Hopkins University

Schaum’s Outline Series

New York Chicago San Francisco Lisbon
London Madrid Mexico City Milan New Delhi

San Juan Seoul Singapore Sydney Toronto

SCHAUM’S
OUTLINE OF



 

Copyright © 2007, 1983 by The McGraw-Hill Companies, Inc. All rights reserved. Except as permitted under the United States Copyright 
Act of 1976, no part of this publication may be reproduced or distributed in any form or by any means, or stored in a database or retrieval 
system, without the prior written permission of the publisher.

ISBN: 978-0-07-170250-8

MHID: 0-07-170250-4

The material in this eBook also appears in the print version of this title: ISBN: 978-0-07-163528-8, MHID: 0-07-163528-9.

All trademarks are trademarks of their respective owners. Rather than put a trademark symbol after every occurrence of a trademarked name, 
we use names in an editorial fashion only, and to the benefi t of the trademark owner, with no intention of infringement of the trademark. 
Where such designations appear in this book, they have been printed with initial caps.

McGraw-Hill eBooks are available at special quantity discounts to use as premiums and sales promotions, or for use in corporate training 
programs. To contact a representative please e-mail us at bulksales@mcgraw-hill.com.

TERMS OF USE

This is a copyrighted work and The McGraw-Hill Companies, Inc. (“McGrawHill”) and its licensors reserve all rights in and to the work. 
Use of this work is subject to these terms. Except as permitted under the Copyright Act of 1976 and the right to store and retrieve one copy 
of the work, you may not decompile, disassemble, reverse engineer, reproduce, modify, create derivative works based upon, transmit, 
distribute, disseminate, sell, publish or sublicense the work or any part of it without McGraw-Hill’s prior consent. You may use the work for 
your own noncommercial and personal use; any other use of the work is strictly prohibited. Your right to use the work may be terminated if 
you fail to comply with these terms.

THE WORK IS PROVIDED “AS IS.” McGRAW-HILL AND ITS LICENSORS MAKE NO GUARANTEES OR WARRANTIES AS 
TO THE ACCURACY, ADEQUACY OR COMPLETENESS OF OR RESULTS TO BE OBTAINED FROM USING THE WORK, 
INCLUDING ANY INFORMATION THAT CAN BE ACCESSED THROUGH THE WORK VIA HYPERLINK OR OTHERWISE, 
AND EXPRESSLY DISCLAIM ANY WARRANTY, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO IMPLIED 
WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. McGraw-Hill and its licensors do not 
warrant or guarantee that the functions contained in the work will meet your requirements or that its operation will be uninterrupted or error 
free. Neither McGraw-Hill nor its licensors shall be liable to you or anyone else for any inaccuracy, error or omission, regardless of cause, in 
the work or for any damages resulting therefrom. McGraw-Hill has no responsibility for the content of any information accessed through the 
work. Under no circumstances shall McGraw-Hill and/or its licensors be liable for any indirect, incidental, special, punitive, consequential 
or similar damages that result from the use of or inability to use the work, even if any of them has been advised of the possibility of such 
damages. This limitation of liability shall apply to any claim or cause whatsoever whether such claim or cause arises in contract, tort or 
otherwise.

To Libbie, Myra, Susan, Edward, Marc, Nicole, Sara, Laura, and Jeff



 
Contents

Chapter 1 THE NATURE OF ELECTRICITY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Structure of the Atom . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

The Electric Charge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

The Coulomb . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

The Electrostatic Field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

Potential Difference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

Current Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

Sources of Electricity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

Direct and Alternating Currents and Voltages . . . . . . . . . . . . . . . . . . . . . . . . . 8

Chapter 2 ELECTRICAL STANDARDS AND CONVENTIONS . . . . . . . . . . . . . . . . . 15

Units

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

Metric Prefixes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

Powers of 10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

Scientific Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

Rounding Off Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

Graphical Symbols and Electrical Diagrams

Schematic Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

One-Line Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

Wiring Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

Electrical Plan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

Chapter 3 OHM’S LAW AND POWER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

The Electric Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

Fixed Resistors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

Variable Resistors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

Ohm’s Law . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

Electric Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

Horsepower . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

Electric Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45



 

vi Contents

Chapter 4 DIRECT-CURRENT SERIES CIRCUITS . . . . . . . . . . . . . . . . . . . . . . . . . 52
Voltage, Current, and Resistance in Series Circuits . . . . . . . . . . . . . . . . . . . . . 52
Polarity of Voltage Drops . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Conductors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Total Power in a Series Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
Voltage Drop by Proportional Parts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

Chapter 5 DIRECT-CURRENT PARALLEL CIRCUITS . . . . . . . . . . . . . . . . . . . . . . 75
Voltage and Current in a Parallel Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
Resistances in Parallel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
Open and Short Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
Division of Current in Two Parallel Branches . . . . . . . . . . . . . . . . . . . . . . . . . 82
Conductances in Parallel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
Power in Parallel Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

Chapter 6 BATTERIES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
The Voltaic Cell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
Series and Parallel Cells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
Primary and Secondary Cells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
Types of Batteries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
Battery Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

Chapter 7 KIRCHHOFF’S LAWS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
Kirchhoff’s Voltage Law (KVL) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
Kirchhoff’s Current Law (KCL) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
Mesh Currents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
Node Voltages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

Chapter 8 DETERMINANT SOLUTIONS FOR DC NETWORKS . . . . . . . . . . . . . . . 128
Second-Order Determinants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
Third-Order Determinants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
Cramer’s Rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
Determinant Method for Solving Currents in a Two-Mesh Network . . . . . . . . . . 135
Determinant Method for Solving Currents in a Three-Mesh Network . . . . . . . . . 136

Chapter 9 NETWORK CALCULATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
Y and Delta Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
Superposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
Thevenin’s Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
Norton’s Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
Series–Parallel Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
Wheatstone Bridge Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
Maximum Power Transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
Line-Drop Calculations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
Three-Wire Distribution Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170



 

Contents vii

Chapter 10 MAGNETISM AND ELECTROMAGNETISM . . . . . . . . . . . . . . . . . . . . . . 205
The Nature of Magnetism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
Magnetic Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206
Electromagnetism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
Magnetic Units . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210
BH Magnetization Curve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212
Magnetic Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213
Electromagnetic Induction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
International System of Units . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218

Chapter 11 DIRECT-CURRENT GENERATORS AND MOTORS . . . . . . . . . . . . . . . . . 229
Motors and Generators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229
Simple DC Generator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230
Armature Windings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231
Field Excitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232
DC Generator Equivalent Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233
Generator Voltage Equations and Voltage Regulation . . . . . . . . . . . . . . . . . . . . 234
Losses and Efficiency of a DC Machine . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235
Direct-Current Motor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236
DC Motor Equivalent Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237
Speed of a Motor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238
Motor Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239
Starting Requirements for Motors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241

Chapter 12 PRINCIPLES OF ALTERNATING CURRENT . . . . . . . . . . . . . . . . . . . . . 252
Generating an Alternating Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252
Angular Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252
Sine Wave . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254
Alternating Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254
Frequency and Period . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255
Phase Relationships . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256
Phasors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256
Characteristic Values of Voltage and Current . . . . . . . . . . . . . . . . . . . . . . . . . 259
Resistance in AC Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261

Chapter 13 INDUCTANCE, INDUCTIVE REACTANCE, AND
INDUCTIVE CIRCUITS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275
Induction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275
Characteristics of Coils . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276
Inductive Reactance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277
Inductors in Series or Parallel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278
Inductive Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281
Q of a Coil . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287
Power in RL Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 288



 

viii Contents

Chapter 14 CAPACITANCE, CAPACITIVE REACTANCE, AND
CAPACITIVE CIRCUITS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 305
Capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 305
Capacitance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 306
Types of Capacitors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 308
Capacitors in Series and Parallel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 308
Capacitive Reactance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 310
Capacitive Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 311
Power in RC Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 316

Chapter 15 SINGLE-PHASE CIRCUITS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 332
The General RLC Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 332
RLC in Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 332
RLC in Parallel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 335
RL and RC Branches in Parallel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 338
Power and Power Factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 340

Chapter 16 ALTERNATING-CURRENT GENERATORS AND MOTORS . . . . . . . . . . . 361
Alternators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 361
Paralleling Generators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 364
Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 364
Losses and Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 364
Polyphase Induction Motors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 365
Synchronous Motors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 368
Single-Phase Motors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 372

Chapter 17 COMPLEX NUMBERS AND COMPLEX IMPEDANCE
FOR SERIES AC CIRCUITS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 385
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 385
Definition of a Complex Number . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 385
Operator j . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 385
Rectangular and Polar Forms of Complex Numbers . . . . . . . . . . . . . . . . . . . . . 387
Operations with Complex Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 389
Complex Impedance in Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 392

Chapter 18 AC CIRCUIT ANALYSIS WITH COMPLEX NUMBERS . . . . . . . . . . . . . . 409
Phasors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 409
Two-Terminal Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 409
Series AC Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 409
Parallel AC Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 411
Series–Parallel AC Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 414
Complex Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 416
Determinant Solution for AC Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 421
AC �-Y and Y-� Conversions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 424



 

Contents ix

Chapter 19 TRANSFORMERS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 455
Ideal Transformer Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 455
Transformer Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 458
Impedance Ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 459
Autotransformer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 460
Transformer Losses and Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 460
No-Load Condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 462
Coil Polarity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 463

Chapter 20 THREE-PHASE SYSTEMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 474
Characteristics of Three-Phase Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 474
Three-Phase Transformer Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 475
Power in Balanced Three-Phase Loads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 477
Unbalanced Three-Phase Loads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 482

Chapter 21 SERIES AND PARALLEL RESONANCE . . . . . . . . . . . . . . . . . . . . . . . . . 499
Series Resonance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 499
Q of Series Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 503
Parallel Resonance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 503
Q of Parallel Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 506
Bandwidth and Power of Resonant Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . 508
Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 510

Chapter 22 WAVEFORMS AND TIME CONSTANTS . . . . . . . . . . . . . . . . . . . . . . . . . 524
RL Series Circuit Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 524
RL Time Constants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 528
RC Series Circuit Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 530
RC Time Constants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 534
Calculation for Time t . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 535

TABLES
2-1 Base Units of the International Metric System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2-2 Supplementary SI Units . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2-3 Derived SI Units . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2-4 Metric Prefixes Used in Electricity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2-5 Powers of 10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2-6 Metric Prefixes Expressed as Powers of 10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2-7 Examples of Letter Symbols for Circuit Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4-1 Copper Wire Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4-2 Properties of Conducting Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
6-1 Types of Cells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

10-1 International System of Units for Magnetism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218
12-1 Conversion Table for AC Sine Wave Voltage and Current . . . . . . . . . . . . . . . . . . . . . . . . . 260
13-1 Summary Table for Series and Parallel RL Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 290
14-1 Types of Capacitors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 308
14-2 Summary Table for Series and Parallel RC Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 317
17-1 Summary Table of Complex Impedance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 403



 

x Contents

18-1 Summary Table for AC Circuit Relationships . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 415
18-2 Summary of Complex Power Relationships . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 419
20-1 Voltage and Current Relationships for Common 3-φ Transformer Connections . . . . . . . . . . . 476
21-1 Comparison of Series and Parallel Resonance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 510
22-1 Time Constant Factors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 529

INDEX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 553



 

Chapter 1

The Nature of Electricity

STRUCTURE OF THE ATOM

Matter is anything that has mass and occupies space. Matter is composed of very small particles called
atoms. All matter can be classified into either one of two groups: elements or compounds. In an element, all the
atoms are the same. Examples of elements are aluminum, copper, carbon, germanium, and silicon. A compound
is a combination of elements. Water, for example, is a compound consisting of the elements hydrogen and
oxygen. The smallest particle of any compound that retains the original characteristics of that compound is
called a molecule.

Atoms are composed of subatomic particles of electrons, protons, and neutrons in various combinations.
The electron is the fundamental negative (−) charge of electricity. Electrons revolve about the nucleus or
center of the atom in paths of concentric “shells,” or orbits (Fig. 1-1). The proton is the fundamental positive
(+) charge of electricity. Protons are found in the nucleus. The number of protons within the nucleus of any
particular atom specifies the atomic number of that atom. For example, the silicon atom has 14 protons in
its nucleus so the atomic number of silicon is 14. The neutron, which is the fundamental neutral charge of
electricity, is also found in the nucleus.

Fig. 1-1 Electrons and nucleus of an atom

Atoms of different elements differ from one another in the number of electrons and protons they contain
(Fig. 1-2). In its natural state, an atom of any element contains an equal number of electrons and protons. Since
the negative (−) charge of each electron is equal in magnitude to the positive (+) charge of each proton, the
two opposite charges cancel. An atom in this condition is electrically neutral, or in balance (Fig. 1-2).

Example 1.1 Describe the two simplest atoms.
The simplest atom is the hydrogen atom, which contains 1 proton in its nucleus balanced by 1 electron orbiting the

nucleus (Fig. 1-2a). The next simplest atom is helium, which has 2 protons in its nucleus balanced by 2 electrons orbiting
the nucleus (Fig. 1-2b).

A stable (neutral) atom has a certain amount of energy, which is equal to the sum of the energies of its
electrons. Electrons, in turn, have different energies called energy levels. The energy level of an electron is
proportional to its distance from the nucleus. Therefore, the energy levels of electrons in shells farther from
the nucleus are higher than those of electrons in shells nearer the nucleus. The electrons in the outermost shell
are called valence electrons. When external energy such as heat, light, or electric energy is applied to certain

1
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Fig. 1-2 Atomic structure of four common elements

materials, the electrons gain energy. This may cause the electrons to move to a higher energy level. An atom
in which this has occurred is said to be in an excited state. An atom in an excited state is unstable.

When an electron has moved to the outermost shell of its atom, it is least attracted by the positive charges
of the protons within the nucleus of its atom. If enough energy is then applied to the atom, some of the
outermost shell or valence electrons will leave the atom. These electrons are called free electrons. It is the
movement of free electrons that provides electric current in a metal conductor.

Each shell of an atom can contain only a certain maximum number of electrons. This number is called the
quota of a shell. The orbiting electrons are in successive shells designated K, L, M, N, O, P, and Q at increasing
distances outward from the nucleus. Each shell has a maximum number of electrons for stability (Fig. 1-3).
After the K shell has been filled with 2 electrons, the L shell can take up to 8 electrons. The maximum number
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Fig. 1-3 Energy shells and the quota of electrons for each
shell

of electrons in the remaining shells can be 8, 18, or 32 for different elements. The maximum for an outermost
shell, though, is always 8.

Example 1.2 Structure the copper atom by identifying its energy shells (Fig. 1-2d).
In the copper atom there are 29 protons in the nucleus balanced by 29 orbiting electrons. The 29 electrons fill the K

shell with 2 electrons and the L shell with 8 electrons. The remaining 19 electrons then fill the M shell with 18 electrons,
and the net result is 1 electron in the outermost N shell.

If the quota is filled in the outermost shell of an atom, an element made up of such atoms is said to be
inert. When the K shell is filled with 2 electrons, we have the inert gas helium (Fig. 1-2b). When the outer
shell of an atom lacks its quota of electrons, it is capable of gaining or losing electrons. If an atom loses one
or more electrons in its outer shell, the protons outnumber the electrons so that the atom carries a net positive
electric charge. In this condition, the atom is called a positive ion. If an atom gains electrons, its net electric
charge becomes negative. The atom then is called a negative ion. The process by which atoms either gain or
lose electrons is called ionization.

Example 1.3 Describe what happens to the copper atom when it loses an electron from its outermost shell.
The copper atom becomes a positive ion with a net charge of +1.

THE ELECTRIC CHARGE

Since some atoms can lose electrons and other atoms can gain electrons, it is possible to cause a transfer of
electrons from one object to another. When this takes place, the equal distribution of the positive and negative
charges in each object no longer exists. Therefore, one object will contain an excess number of electrons and
its charge must have a negative, or minus (−), electric polarity. The other object will contain an excess number
of protons and its charge must have a positive, or plus (+), polarity.

When a pair of objects contains the same charge, that is, both positive (+) or both negative (−), the
objects are said to have like charges. When a pair of bodies contains different charges, that is, one body is
positive (+) while the other body is negative (−), they are said to have unlike or opposite charges. The law of
electric charges may be stated as follows:

Like charges repel each other; unlike charges attract each other.
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If a negative (−) charge is placed next to another negative (−) charge, the charges will repel each other
(Fig. 1-4a). If a positive (+) charge is placed next to a negative (−) charge, they will be drawn together
(Fig. 1-4c).

Fig. 1-4 Force between charges

THE COULOMB

The magnitude of electric charge a body possesses is determined by the number of electrons compared with
the number of protons within the body. The symbol for the magnitude of the electric charge is Q, expressed in
units of coulombs (C). A charge of one negative coulomb, −Q, means a body contains a charge of 6.25×1018

more electrons than protons.∗

Example 1.4 What is the meaning of +Q?
A charge of one positive coulomb means a body contains a charge of 6.25 × 1018 more protons than electrons.

Example 1.5 A dielectric material has a negative charge of 12.5 × 1018 electrons. What is its charge in coulombs?
Since the number of electrons is double the charge of 1 C (1 C = 6.25 × 1018 electrons), −Q = 2 C.

THE ELECTROSTATIC FIELD

The fundamental characteristic of an electric charge is its ability to exert a force. This force is present
within the electrostatic field surrounding every charged object. When two objects of opposite polarity are
brought near each other, the electrostatic field is concentrated in the area between them (Fig. 1-5). The electric

Fig. 1-5 The electrostatic field between two charges of opposite polarity

∗See page 16 (Chapter 2) for an explanation of how to use powers of 10.
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field is indicated by lines of force drawn between the two objects. If an electron is released at point A in this
field, it will be repelled by the negative charge and will be attracted to the positive one. Thus both charges
will tend to move the electron in the direction of the lines of force between the two objects. The arrowheads
in Fig. 1-5 indicate the direction of motion that would be taken by the electron if it were in different areas of
the electrostatic field.

Example 1.6 Draw the electrostatic field that would exist between two negatively charged objects.
When two like charges are placed near each other, the lines of force repel each other as shown below.

A charged object will retain its charge temporarily if there is no immediate transfer of electrons to or from
it. In this condition, the charge is said to be at rest. Electricity at rest is called static electricity.

POTENTIAL DIFFERENCE

Due to the force of its electrostatic field, an electric charge has the ability to do the work of moving another
charge by attraction or repulsion. The ability of a charge to do work is called its potential. When one charge
is different from the other, there must be a difference in potential between them.

The sum of the differences of potential of all the charges in the electrostatic field is referred to as
electromotive force (emf).

The basic unit of potential difference is the volt (V). The symbol for potential difference is V , indicating
the ability to do the work of forcing electrons to move. Because the volt unit is used, potential difference is
called voltage.

Example 1.7 What is the meaning of a battery voltage output of 6 V?
A voltage output of 6 V means that the potential difference between the two terminals of the battery is 6 V. Thus,

voltage is fundamentally the potential difference between two points.

CURRENT

The movement or the flow of electrons is called current. To produce current, the electrons must be moved
by a potential difference. Current is represented by the letter symbol I . The basic unit in which current is
measured is the ampere (A). One ampere of current is defined as the movement of one coulomb past any point
of a conductor during one second of time. Electricity can be termed as electric current.

Example 1.8 If a current of 2 A flows through a meter for 1 minute (min), how many coulombs pass through the meter?
1 A is 1 C per second (C/s). 2 A is 2 C/s. Since there are 60 s in 1 min, 60 × 2 C = 120 C pass through the meter in

1 min.

The definition of current can be expressed as an equation:

I = Q

T
(1-1)
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where I = current, A
Q = charge, C
T = time, s

or Q = I × T = IT (1-2)

Charge differs from current in that Q is an accumulation of charge, while I measures the intensity of
moving charges.

Example 1.9 Find the answer to Example 1.8 by using Eq. (1-2).
Write down the known values:

I = 2 A T = 60 s

Write down the unknown:

Q = ?

Use Eq. (1-2) to solve the unknown:

Q = I × T

Substitute I = 2 A and T = 60 s:

Q = (2 A) × (60 s)

Solve for Q:

Q = 120 C Ans.

CURRENT FLOW

In a conductor, such as copper wire, the free electrons are charges that can be forced to move with relative
ease by a potential difference. If a potential difference is connected across two ends of a copper wire (Fig. 1-6),

Fig. 1-6 Potential difference across two ends
of a wire conductor causes electric
current
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the applied voltage (1.5 V) forces the free electrons to move. This current is a drift of electrons from the point
of negative charge, −Q, at one end of the wire, moving through the wire, and returning to the positive charge,
+Q, at the other end. The direction of the electron drift is from the negative side of the battery, through the
wire, and back to the positive side of the battery. The direction of electron flow is from a point of negative
potential to a point of positive potential. The solid arrow (Fig. 1-6) indicates the direction of current in terms
of electron flow. The direction of moving positive charges, opposite from electron flow, is considered the
conventional flow of current and is indicated by the dashed arrow (Fig. 1-6). In basic electricity, circuits are
usually analyzed in terms of conventional current because a positive potential is considered before a negative
potential. Therefore, the direction of conventional current is the direction of positive charges in motion. Any
circuit can be analyzed by either electron flow or conventional flow in the opposite direction. In this book,
current is always considered as conventional flow.

SOURCES OF ELECTRICITY

Chemical Battery

A voltaic chemical cell is a combination of materials which are used for converting chemical energy into
electric energy. A battery is formed when two or more cells are connected. A chemical reaction produces
opposite charges on two dissimilar metals, which serve as the negative and positive terminals (Fig. 1-7). The
metals are in contact with an electrolyte.

Fig. 1-7 Voltaic chemical cell

Generator

The generator is a machine in which electromagnetic inductance is used to produce a voltage by rotating
coils of wire through a stationary magnetic field or by rotating a magnetic field through stationary coils of
wire. Today, more than 95 percent of the world’s energy is produced by generators.

Thermal Energy

The production of most electric energy begins with the formation of heat energy. Coal, oil, or natural
gas can be burned to release large quantities of heat. Once heat energy is available, conversion to mechanical
energy is the next step. Water is heated to produce steam, which is then used to turn the turbines that drive the
electric generators. A direct conversion from heat energy to electric energy will increase efficiency and reduce
thermal pollution of water resources and the atmosphere.

Magnetohydrodynamic (MHD) Conversion

In an MHD converter, gases are ionized by very high temperatures, approximately 3000 degrees Fahrenheit
(3000◦F), or 1650 degrees Celsius (1650◦C). The hot gases pass through a strong magnetic field with current
resulting. The exhausted gases are then moved back to the heat source to form a complete cycle (Fig. 1-8).
MHD converters have no mechanical moving parts.
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Fig. 1-8 Principles of MHD converter

Thermionic Emission

The thermionic energy converter is a device that consists of two electrodes in a vacuum. The emitter elec-
trode is heated and produces free electrons. The collector electrode is maintained at a much lower temperature
and receives the electrons released at the emitter.

Solar Cells

Solar cells convert light energy directly into electric energy. They consist of semiconductor material like
silicon and are used in large arrays in spacecraft to recharge batteries. Solar cells are also used in home heating.

Piezoelectric Effect

Certain crystals, such as quartz and Rochelle salts, generate a voltage when they are vibrated mechanically.
This action is known as the piezoelectric effect. One example is the crystal phonograph cartridge, which contains
a Rochelle salt crystal to which a needle is fastened. As the needle moves in the grooves of a record, it swings
from side to side. This mechanical motion is applied to the crystal, and a voltage is then generated.

Photoelectric Effect

Some materials, such as zinc, potassium, and cesium oxide, emit electrons when light strikes their surfaces.
This action is known as the photoelectric effect. Common applications of photoelectricity are television camera
tubes and photoelectric cells.

Thermocouples

If wires of two different metals, such as iron and copper, are welded together and the joint is heated, the
difference in electron activity in the two metals produces an emf across the joint. Thermocouple junctions can
be used to measure the amount of current because current acts to heat the junction.

DIRECT AND ALTERNATING CURRENTS AND VOLTAGES

Direct current (dc) is the current that moves through a conductor or circuit in one direction only (Fig. 1-9a).
The reason for the unidirectional current is that voltage sources such as cells and batteries maintain the same
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Fig. 1-9 Waveforms of a constant dc current and dc voltage

polarity of output voltage (Fig. 1-9b). The voltage supplied by these sources is called direct-current voltage,
or simply dc voltage. A dc voltage source can change the amount of its output voltage, but if the same polarity
is maintained, direct current will flow in one direction only.

Example 1.10 Assuming the polarity of the battery were reversed in Fig. 1-9b, draw the new curves of current and
voltage.

With polarity reversed, the current will now flow in the opposite direction. The curves would then appear as follows:

An alternating-current voltage (ac voltage) source periodically reverses or alternates in polarity
(Fig. 1-10a). Therefore, the resulting alternating current also periodically reverses direction (Fig. 1-10b).
In terms of conventional flow, the current flows from the positive terminal of the voltage source, through the
circuit, and back to the negative terminal, but when the generator alternates in polarity, the current must reverse
its direction. The ac power line used in most homes is a common example. The voltage and current direction
go through many reversals each second in these systems.

Fig. 1-10 Waveforms of ac voltage and ac current
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Solved Problems

1.1 Match each term in column 1 to its closest meaning in column 2.

Column 1 Column 2

1. Electron (a) Positive charge

2. Neutron (b) Same number of electrons and protons

3. Compound (c) Electrons in first shell

4. Neutral (d) Released electrons

5. Valence electrons (e) Neutral charge

6. Atomic number (f ) Electrons in outermost shell

7. Free electrons (g) Quota filled in outermost shell

8. K shell (h) Number of electrons in nucleus

9. Ion (i) Negative charge

10. Inert (j ) Quota of 2 electrons

(k) Combined elements

(l) Number of protons in nucleus

(m) Charged atom
Ans. 1. (i) 2. (e) 3. (k) 4. (b) 5. (f ) 6. (l) 7. (d) 8. (j ) 9. (m) 10. (g)

1.2 Show the atomic structure of the element aluminum with atomic number 13. What is its electron
valence?

Because aluminum has 13 protons in the nucleus, it must have 13 orbiting electrons to be electrically
neutral. Starting with the innermost shells (Fig. 1-3), we have

K shell 2 electrons

L shell 8 electrons

M shell 3 electrons

Total 13 electrons

The atomic structure for aluminum then is shown in Fig. 1-11. Its electron valence is −3 because
it has 3 valence electrons.

Fig. 1-11
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1.3 In observing the maximum number of electrons in shells K, L, M, and N in Fig. 1-3, you will find that
they are 2, 8, 18, and 32 electrons, respectively. Develop a formula that describes this relationship,
where n is the shell number in sequential order outward from the nucleus.

The formula is 2n2 because the maximum number of electrons in the

K or first shell (n = 1) is 2(l2) = 2(1) = 2

L or second shell (n = 2) is 2(22) = 2(4) = 8

M or third shell (n = 3) is 2(32) = 2(9) = 18

N or fourth shell (n = 4) is 2(42) = 2(16) = 32

This relationship is true for most elements.

1.4 What is the net charge of a body that contains 8 protons and 4 electrons?

The numerical value of the net charge is found by subtracting the number of one type of charge
from the number of the other type. So a positive charge of 8 (+8) and a negative charge of 4 (−4)
yields a positive charge of 4 (+4).

1.5 A charged insulator has deficiency of 50 × 1018 electrons. Find its charge in coulombs with polarity.

Since 1 C = 6.25 × 1018 electrons, 8 C = 50 × 1018 electrons. Deficiency of electrons means an
excess of protons. So the insulator has a positive charge of 8 C, or +Q = 8 C.

1.6 Write the word which most correctly completes each of the following statements:

(a) A rubber rod repels a second rubber rod, so both rods have _______________ charges.

(b) Glass rubbed with silk attracts rubber rubbed with fur. If the rubber rod is negative, the glass rod
must be ____________________.

(a) like (law of charges); (b) positive (law of charges)

1.7 Find the current needed to charge a dielectric so that it will accumulate a charge of 20 C after 4 s.

Known values: Q = 20 C; T = 4 s

Unknown: I = ?

Use Eq. (1-1) to find I :

I = Q

T
= 20 C

4 s
= 5 A Ans.

1.8 A current of 8 A charges an insulator for 3 s. How much charge is accumulated?

Known values: I = 8 A; T = 3 s

Unknown: Q = ?

Use Eq. (1-2) to find Q:

Q = IT = (8 A)(3 s) = 24 C Ans.

1.9 Write the word or words which most correctly complete each of the following statements.

(a) The ability of a charge to do work is its _______________________.

(b) When one charge is different from the other, there is a ________________ of
_____________________.

(c) The unit of potential difference is the ________________________.
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(d) The sum of potential differences of all charges is called _________________________.

(e) The movement of charges produces _______________________.

(f ) A greater amount of moving charges means a ___________________ value for the current.

(g) When the potential difference is zero, the value of current is _____________.

(h) The rate of flow of charge is called ___________________.

(i) The direction of the conventional flow of current is from a point of ________ potential to a point
of ______________ potential.

(j ) Electron flow is opposite in direction to ________________ flow.

(k) Direct current (dc) has just ________________ direction.

(l) A _____________________ is an example of a dc voltage source.

(m) An alternating current (ac) _________________ its polarity.

Ans. (a) potential (h) current

(b) difference, potential (i) positive, negative

(c) volt (j ) conventional

(d) electromotive force (k) one

(e) current (l) battery

(f ) higher (m) reverses

(g) zero

1.10 Match each device in column 1 to its closest principle in column 2.

Column 1 Column 2

1. Battery (a) Electromagnetic induction

2. Generator (b) Free electrons

3. TV camera tube (c) Ionized gases

4. Vacuum tube (d) Chemical reaction

5. Phonograph needle (e) Thermal energy

(f ) Photoelectricity

(g) Mechanical motion

Ans. 1. (d) 2. (a) 3. (f ) 4. (b) 5. (g)

Supplementary Problems

1.11 Match each term in column 1 to its closest meaning in column 2.

Column 1 Column 2

1. Proton (a) Negative charge

2. Molecule (b) Quota of 8 electrons

3. Quota (c) Excited state

4. L shell (d) Maximum number of electrons in a shell

5. Element (e) Atom negatively charged

6. Unstable (f ) Positive charge

7. Shell (g) Mass and volume
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Column 1 Column 2

8. Copper (h) Atomic number is 29

9. Negative ion (i) Quota of 18 electrons

10. Matter (j ) Orbit

(k) Smallest particle having same characteristics

(l) Atomic number is 14

(m) All atoms the same

Ans. 1. (f ) 2. (k) 3. (d) 4. (b) 5. (m) 6. (c) 7. (j ) 8. (h) 9. (e) 10. (g)

1.12 Write the word or words which most correctly complete each of the following statements.

(a) Electrons move about the nucleus of an atom in paths which are called _____________.

(b) The nucleus of an atom consists of particles called _____________ and ______________.

(c) The number of protons in the nucleus of an atom is known as the _________
___________________ of that atom.

(d) When all the atoms within a substance are alike, the substance is called a chemical
____________________.

(e) A ______________________ is the smallest particle of a compound which retains all the
properties of that compound.

(f ) The energy ____________________ of an electron is determined by its distance from the nucleus
of an atom.

(g) If a neutral atom gains electrons, it becomes a ________________ ion.

(h) If a neutral atom loses electrons, it becomes a _________________ ion.

(i) Unlike charges ________________ each other, while like charges ______________ each other.

(j ) A charged object is surrounded by an __________________ field.

Ans. (a) shells or orbits (f ) level

(b) protons, neutrons (g) negative

(c) atomic number (h) positive

(d) element (i) attract, repel

(e) molecule (j ) electrostatic

1.13 Show the atomic structure of the element phosphorus, which has an atomic number of 15. What is its
electron valence? Ans. See Fig. 1-12. Electron valence is −5.

1.14 Show the atomic structure of the element neon, which has an atomic number of 10. What is its electron
valence? Ans. See Fig. 1-13. Electron valence is 0. Thus, neon is inert.

1.15 What is the net charge if 13 electrons are added to 12 protons? Ans. −1 electron

1.16 What becomes of the silicon atom when it loses all the orbiting electrons in its outermost shell?
Ans. It becomes a negative ion with a net charge of −4. See Fig. 1-2c.

1.17 A charged insulator has an excess of 25 × 1018 electrons. Find its charge in coulombs with polarity.
Ans. −Q = 4 C

1.18 A material with an excess of 25 × 1018 electrons loses 6.25 × 1018 electrons. The excess electrons are
then made to flow past a given point in 2 s. Find the current produced by the resultant electron flow.
Ans. I = 1.5 A



 

14 THE NATURE OF ELECTRICITY [CHAP. 1

Fig. 1-12 Fig. 1-13

1.19 A charge of 10 C flows past a given point every 2 s. What is the current?
Ans. I = 5 A

1.20 How much charge is accumulated when a current of 5 A charges an insulator for 5 s?
Ans. Q = 25 C

1.21 Match each item in section 1 with its application in section 2.

Section 1 Section 2
1. Water 4. Quartz (a) Solar cell (e) Photoelectric cell

2. Cesium oxide 5. Carbon–zinc (b) Generator (f ) Turbine

3. Silicon 6. Iron–copper (c) Battery (g) MHD converter

(d) Crystal oscillator (h) Thermocouple

Ans. 1. (f ) 2. (e) 3. (a) 4. (d) 5. (c) 6. (h)

1.22 Fill in the missing quantity:

I , A Q, C T , s Ans. I , A Q, C T , s

(a) ? 10 2 (a) 5 . . . . . . . .

(b) 5 ? 4 (b) . . . . 20 . . . .

(c) ? 9 2 (c) 4.5 . . . . . . . .

(d) 7 ? 3 (d) . . . . 21 . . . .

(e) 2 6 ? (e) . . . . . . . . 3



 

Chapter 2

Electrical Standards and Conventions

Units

INTRODUCTION

The international metric system of units of dimensions, commonly called SI, is used in electricity. The
abbreviation SI stands for système internationale. The seven base units of SI are length, mass, time, electric
current, thermodynamic temperature, light intensity, and amount of substance (Table 2-1). Formerly the MKS
metric system was used, where M stands for meter (length), K for kilogram (mass), and S for seconds (time).
The two supplementary units of SI are plane angle and solid angle (Table 2-2).

Table 2-1 Base Units of the International Metric System

Quantity Base Unit Symbol

Length meter m

Mass kilogram kg

Time second s

Electric current ampere A

Thermodynamic temperature kelvin K

Light intensity candela cd

Amount of substance mole mol

Table 2-2 Supplementary SI Units

Quantity Unit Symbol

Plane angle radian rad

Solid angle steradian sr

Other common units can be derived from the base and supplementary units. For example, the unit of
charge is the coulomb, which is derived from the base units of second and ampere. Most of the units that are
used in electricity are derived ones (Table 2-3).

METRIC PREFIXES

In the study of basic electricity, some electrical units are too small or too large to express conveniently. For
example, in the case of resistance, we often use values in thousands or millions of ohms (�). The prefix kilo
(denoted by the letter k) is a convenient way of expressing a thousand. Thus, instead of saying a resistor has a
value of 10 000 �, we normally refer to it as a 10-kilohm (10-k�) resistor. In the case of current, we often use

15
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values in thousandths or millionths of an ampere. We use expressions such as milliamperes and microamperes.
The prefix milli is a short way of saying a thousandth and micro is a short way of saying a millionth. Thus
0.012 A becomes 12 milliamperes (mA) and 0.000 005 A becomes 5 microamperes (µA). Table 2-4 lists the
metric prefixes commonly used in electricity and their numerical equivalents.

Table 2-3 Derived SI Units

Quantity Unit Symbol

Energy joule J

Force newton N

Power watt W

Electric charge coulomb C

Electric potential volt V

Electric resistance ohm �

Electric conductance siemens S

Electric capacitance farad F

Electric inductance henry H

Frequency hertz Hz

Magnetic flux weber Wb

Magnetic flux density tesla T

Table 2-4 Metric Prefixes Used in Electricity

Prefix (Letter Symbol) Value Pronunciation

mega (M) million 1 000 000 as in megaphone

kilo (k) thousand 1 000 kill’oh

milli (m) thousandth 0.001 as in military

micro (µ) millionth 0.000 001 as in microphone

nano (n) thousand-millionth 0.000 000 001 nan’oh

pico (p) million-millionth 0.000 000 000 001 peek’oh

Example 2.1 A resistor has a value of 10 M stamped on its case. How many ohms of resistance does this resistor have?
The letter M denotes mega, or million. Thus the resistor has a value of 10 megohms (M�) or 10 million ohms.

Example 2.2 A power station has a capacity of delivering 500 000 watts (W). What is the capacity in kilowatts (kW)?
Refer to Table 2-4. Kilo stands for 1000. Thus, 500 000 W = 500 kW.

POWERS OF 10

We have seen that it is often necessary or desirable to convert one unit of measurement to another unit
that may be larger or smaller. In the previous section, we did this by substituting a metric prefix for certain
values. Another way would be to convert the number to a power of 10. Powers of 10 are often termed the
“engineer’s shorthand.” Examples of expressing number as powers of 10 are shown in Table 2-5.
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Table 2-5 Powers of 10

Number Power of 10 Commonly Read As

0.000 001 = 10−6 10 to the minus sixth

0.000 01 = 10−5 10 to the minus fifth

0.000 1 = 10−4 10 to the minus fourth

0.001 = 10−3 10 to the minus third

0.01 = 10−2 10 to the minus second

0.1 = 10−1 10 to the minus one

1 = 100 10 to the zero

10 = 101 10 to the first

100 = 102 10 squared

1 000 = 103 10 cubed

10 000 = 104 10 to the fourth

100 000 = 105 10 to the fifth

1 000 000 = 106 10 to the sixth

Rule 1: To express numbers larger than 1 as a small number times a power of 10, move the decimal point
to the left as many places as desired. Then multiply the number obtained by 10 to a power which is
equal to the number of places moved.

Example 2.3

3000 = 3.000↑ ◦. (Decimal point is moved three places to the left.)

= 3 × 103 (Therefore the power, or exponent, is 3.)

6500 = 65.00↑ ◦. (Decimal point is moved two places to the left.)

= 65 × 102 (Therefore the exponent is 2.)

880 000 = 88.0000↑ ◦. (Decimal point is moved left four places.)

= 88 × 104 (Therefore the exponent is 4.)

42.56 = 4.2↑ ◦.56 (Decimal point is moved left one place.)

= 4.256 × 10 (Therefore the exponent is 1.)

Rule 2: To express numbers less than 1 as a whole number times a power of 10, move the decimal point to
the right as many places as desired. Then multiply the number obtained by 10 to a negative power
which is equal to the number of places moved.

Example 2.4
0.006 = 0◦. ↑006. (Decimal point is moved three places to the right.)

= 6 × 10−3 (Therefore the power, or exponent, is −3.)

0.435 = 0◦. ↑4.35 (Decimal point is moved one place to the right.)

= 4.35 × 10−1 (Therefore the exponent is −1.)

0.000 92 = 0◦. ↑000 92. (Decimal point is moved right five places.)

= 92 × 10−5 (Therefore the exponent is −5.)

0.578 = 0◦. ↑57.8 (Decimal point is moved right two places.)

= 57.8 × 10−2 (Therefore the exponent is −2.)
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Rule 3: To convert a number expressed as a positive power of 10 to a decimal number, move the decimal
point to the right as many places as the value of the exponent.

Example 2.5
0.615 × 103 = 0◦. ↑615. (The exponent is 3. Therefore move the decimal point three places to the right.)

= 615

0.615 × 106 = 0◦. ↑615 000. (Move the decimal point six places to the right.)

= 615,000

0.0049 × 103 = 0◦. ↑004.9 (Move decimal point right three places.)

= 4.9

84 × 102 = 84◦. ↑00. (Move decimal point right two places.)

= 8400

Rule 4: To convert a number expressed as a negative power of 10 to a decimal number, move the decimal
point to the left as many places as the value of the exponent.

Example 2.6

70 × 10−3 = 0.070↑ ◦. (The exponent is −3. Therefore move the decimal point three places to the left.)

= 0.07

82.4 × 10−2 = 0.82↑ ◦.4 (Move decimal point left two places.)

= 0.824

60 000 × 10−6 = 0.060 000↑ ◦. (Move decimal point left six places.)

= 0.06

0.5 × 10−3 = 0.000↑ ◦.5 (Move decimal point left three places.)

= 0.0005

Rule 5: To multiply two or more numbers expressed as powers of 10, multiply the coefficients to obtain the
new coefficient and add the exponents to obtain the new exponent of 10.

Example 2.7

102 × 104 = 102+4 = 106 Ans.

10−1 × 104 = 10−1+4 = 103 Ans.

(40 × 103) (25 × 102) = 40 × 25 × 103 × 102 (40 × 25 = 1000, 3 + 2 = 5)

= 1000 × 105 (But 1000 = 103)

= 103 × 105

= 108 Ans.

(2 × 10−2) (50 × 102) = 2 × 50 × 10−2 × 102

= 100 × 100 (But 100 = 102)

= 102 × 1 (100 = 1)

= 102 Ans.

(3 × 10−4) (6 × 106) = 3 × 6 × 10−4 × 106

= 18 × 102 Ans.
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Rule 6: To divide by powers of 10, use the formula

1

10n
= 1 × 10−n

We therefore can transfer any power of 10 from numerator to denominator, or vice versa, simply by changing
the sign of the exponent.

Example 2.8
15

10−1
= 15 × 101 = 150

1500

104
= 1500 × 10−4 = 0.15

15

10−3
= 15 × 103 = 15 000

0.25 × 4

10−2
= 1.0 × 102 = 100

The prefixes in Table 2-4 are expressed as powers of 10 in Table 2-6.

Table 2-6 Metric Prefixes
Expressed as Powers of 10

Metric Prefix Power of 10

mega (M) 106

kilo (k) 103

milli (m) 10−3

micro (µ) 10−6

nano (n) 10−9

pico (p) 10−12

Example 2.9 Problem answers can be expressed in different but equivalent units. For example, 3 000 000 � is different
but equivalent to 3 M�.

(a) Express 2.1 V in millivolts (mV).

1 V = 103 mV

2.1 V = 2.1 × 103 = 2100 mV Ans.

(b) Express 0.006 A in milliamperes (mA).

1 A = 103 mA

0.006 A = 0.006 × 103 = 6 mA Ans.

(c) Change 356 mV to volts (V).

1 mV = 10−3 V

356 mV = 356 × 10−3 = 0.356 V Ans.

(d) Change 500 000 � to megohms (M�).

1 � = 10−6 M�

500 000 � × 10−6 = 0.5 M� Ans.
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(e) Change 20 000 000 picofarads (pF) into farads (F).

1 pF = 10−12 F

20 000 000 pF × 10−12 = 0.000 02 F Ans.

SCIENTIFIC NOTATION

In scientific notation, the coefficient of the power of 10 is always expressed with one decimal place and
the required power of 10. Several examples will make the procedure clear.

Example 2.10 Express the following numbers in scientific notation.

300 000 = 3.000 00↑ ◦. × 105 (Move decimal point left five places—power is 5 by Rule 1)

= 3 × 105

871 = 8.71↑ ◦. × 102 (Move decimal point left two places—power is 2 by Rule 1)

= 8.71 × 102

7425 = 7.425↑ ◦. × 103 (Move decimal point left three places—power is 3 by Rule 1)

= 7.425 × 103

0.001 = 0◦. ↑001. × 10−3 (Move decimal point right three places—power is −3 by Rule 2)

= 1 × 10−3

0.015 = 0◦. ↑01.5 × 10−2 (Move decimal point right two places—power is −2 by Rule 2)

= 1.5 × 10−2

ROUNDING OFF NUMBERS

A number is rounded off by dropping one or more digits at its right. If the digit to be dropped is less than 5,
we leave the digit as it is. For example, 4.1632, if rounded to four digits, would be 4.163; if rounded to three
digits, 4.16. If the digit to be dropped is greater than 5, we increase the digit to its left by 1. For example,
7.3468, if rounded to four digits, would be 7.347; if rounded to three digits, 7.35. If the digit to be dropped is
exactly 5 (that is, 5 followed by nothing but zeros), we increase the digit to its left by 1 if it is an odd number
and we leave the digit to the left as it is if it is an even number. For example, 2.175, when rounded to three
digits, becomes 2.18. The number 2.185 would also round to the same value, 2.18, if rounded to three digits.

Any digit that is needed to define the specific value is said to be significant. For example, a voltage of
115 V has three significant digits: 1, 1, and 5. When rounding off numbers, zero is not counted as a significant
digit if it appears immediately after the decimal point and is followed by other significant digits. Such zeros
must be retained and the count of significant digits must begin at the first significant digit beyond them. For
example, 0.000 12 has two significant digits, 1 and 2, and the preceding zeros don’t count. However, 18.0 has
three significant digits; in this case zero is significant because it is not followed by other significant digits.
In electricity, specific values are usually expressed in three significant digits.

Example 2.11 Round off the following numbers to three significant digits.
We look at the fourth significant digit to the right and observe whether this digit is less than 5, greater than 5, or

equal to 5.
5.6428 = 5.64 0.016 95 = 0.0170

49.67 = 49.7 2078 = 2080

305.42 = 305 1.003 × 10−3 = 1.00 × 10−3
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782.51 = 783 12.46 × 105 = 12.5 × 105

0.003 842 = 0.003 84 1.865 × 102 = 1.86 × 102

Scientific notation is a convenient way to work problems in electricity. Often, we express a numerical
answer in terms of a prefix rather than leave the answer in scientific notation.

Example 2.12 Express each of the following first in scientific notation and then with a prefix.

(a) 0.000 53 A to milliamperes (mA)

0.000 53 A = 5.3 × 10−4 A

= 0.53 × 10−3 A

= 0.53 mA

(b) 2500 V to kilovolts (kV)

2500 V = 2.5 × 103 V

= 2.5 kV

(c) 0.000 000 1 F to microfarads (µF)

0.000 000 1 F = 1 × 10−7 F

= 10 × 10−6 F

= 10 µF

Solved Problems

Express each of the following in the units indicated.

2.1 2 A to milliamperes

1 A = 1000 mA = 103 mA

Multiply 2 by 1000 to get 2000 mA. Ans.

or Multiply 2 by 103 to get 2 × 103 mA, which is 2000 mA.

2.2 1327 mA to amperes

1 mA = 0.001 A = 10−3 A

Multiply 1327 by 0.001 to get 1.327 A. Ans.

or Multiply 1327 by 10−3 to get 1327 × 10−3 A, which is 1.327 A.

2.3 8.2 k� to ohms

1 k� = 1000 � = 103 �

Multiply 8.2 by 1000 to get 8200 �. Ans.

or Multiply 8.2 by 103 to get 8.2 × 103 � which is 8200 �.
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2.4 680 k� to megohms

Use two steps.

Step 1: Convert to ohms.

Multiply 680 by 1000 to get 680 000 �.

Step 2: Convert to megohms.

Multiply 680 000 � by 0.000 001 to get 0.68 M�. Ans.

2.5 10 000 µF to farads

1 µF = 0.000 001 F = 10−6 F

Multiply 10 000 by 0.000 001 to get 0.01 F. Ans.

or Multiply 10 000 by 10−6 to get 10 000 × 10−6, which is 0.01 F.

2.6 0.000 000 04 s to nanoseconds (ns)

1 s = 1 000 000 000 ns = 109 ns

Multiply 0.000 000 04 by 1 000 000 000 to get 40 ns. Ans.

or Multiply 0.000 000 04 by 109 to get 0.000 000 04 × 109 ns, which is equal to 4 × 101 or 40 ns.

Express the following numbers as decimal numbers.

2.7 0.75 × 103

Move decimal point right three places—Rule 3:

0.75 × 103 = 0◦. ↑750. = 750 Ans.

2.8 0.75 × 10−3

Move decimal point left three places—Rule 4:

0.75 × 10−3 = 0.000↑ ◦.75 = 0.000 75 Ans.

2.9 (2.1 × 10−1)(4 × 102)

(2.1 × 10−1)(4 × 102) = 2.1 × 4 × 10−1 × 102

= 8.4 × 101 (Rule 5)

= 84 (Rule 3) Ans.

2.10 Express 4160 in scientific notation.

Move decimal point left three places—Rule 1:

4160 = 4.160↑ ◦. × 103 = 4.160 × 103 Ans.
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Express each quantity in the following problems in scientific notation and then perform the indicated arithmetic
calculation.

2.11 0.072 × 1000

Express 0.072 = 7.2 × 10−2 (Move decimal point right two places—Rule 2)

Then 0.072 × 1000 = (
7.2 × 10−2

) (
1 × 103

)
= (7.2 × 1)

(
10−2 × 103

)
= 7.2 × 10 (Rule 5)

= 72 (Rule 3) Ans.

2.12 0.0045 × 100

Express 0.0045 = 4.5 × 10−3 (Move decimal point right three places—Rule 2)

100 = 1 × 102 (Move decimal point left two places—Rule 1)

Then 0.0045 × 100 = (
4.5 × 10−3

) (
1 × 102

)
= (4.5 × 1)

(
10−3 × 102

)
= 4.5 × 10−1 (Rule 5)

= 0.45 (Rule 4) Ans.

2.13 7500 ÷ 100

Express 7500 = 7.5 × 103 (Move decimal point left three places—Rule 1)

100 = 1 × 102 (Move decimal point left two places—Rule 1)

Then
7500

100
= 7.5 × 103

1 × 102

= 7.5
(
103 × 10−2

) (
1/102 = 10−2

)
= 7.5 × 101 (Rule 5)

= 75 (Rule 3) Ans.

2.14
4000

2000

Express 4000 = 4 × 103 (Move decimal point left three places—Rule 1)

2000 = 2 × 103 (Move decimal point left three places—Rule 1)

4000

2000
= 4 ×

1

��103

2 ×��103
1

= 2 Ans.

Note that any factor divided by itself cancels out to 1. That is, 103/103 = 103−3 = 100 = 1.

2.15
1000 × 0.008

0.002 × 500

Express 1000 = 1 × 103 (Move decimal point left three places—Rule 1)

0.008 = 8 × 10−3 (Move decimal point right three places—Rule 2)

0.002 = 2 × 10−3 (Move decimal point right three places—Rule 2)

500 = 5 × 102 (Move decimal point left two places—Rule 1)
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Then
1000 × 0.008

0.002 × 500
=

(
1 × 103

) (
8 × 10−3

)(
2 × 10−3

) (
5 × 102

)
= 1 × 8 × 103 × 10−3

2 × 5 × 10−3 × 102

= 8 × 100

10 × 10−1 (Rule 5)

= 8 × 1

100 (Rule 5)

= 8 Ans.

2.16
1

4 × 100 000 × 0.000 05

Express 4 = 4

100 000 = 1 × 105 (Move decimal point left five places—Rule 1)

0.000 05 = 5 × 10−5 (Move decimal point right five places—Rule 2)

Then
1

4 × 100 000 × 0.000 05
= 1

4
(
1 × 105

) (
5 × 10−5

)
= 1

(4 × 5)
(
105 × 10−5

)
= 1

20 × 100 (Rule 5)

= 1

2 × 10 × 1
(Rule 1)

= 10−1

2

(
Rule 6, 1/10 = 10−1

)
= 0.5 × 10−1

= 0.05 (Rule 4) Ans.

2.17 We might read 220 V on a certain type of voltmeter, but a precision instrument might show that voltage
to be 220.4 V, and a series of precise measurements might show the voltage to be 220.47 V. How many
significant digits does each measurement have?

220 V, three significant digits

220.4 V, four significant digits

220.47 V, five significant digits

If the accuracy of measurement required is five places, then the instrument must measure to at
least five significant digits.

In Problems 2.18–2.20, perform the indicated operations. Round off the figures in the results, if necessary,
and express answers to three significant digits as a number from 1 through 10 and the proper power of 10.

2.18
0.256 × 338 × 10−9

865 000

Express 0.256 = 2.56 × 10−1

338 = 3.38 × 102

865 000 = 8.65 × 105
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Then
0.256 × 338 × 10−9

865 000
=

(
2.56 × 10−1

) (
3.38 × 102

) (
10−9

)
8.56 × 105

= 2.56 × 3.38

8.65

(
10−1 × 102 × 10−9 × 10−5

)
= (1.00)

(
1013

)
= 1.00 × 10−13 Ans.

2.19
2800 × 75.61

0.000 900 5 × 0.0834

Express 2800 = 2.8 × 103

75.61 = 7.561 × 101

0.000 900 5 = 9.005 × 10−4

0.0834 = 8.34 × 10−2

Then
2800 × 75.61

0.000 900 5 × 0.0834
=

(
2.8 × 103

) (
7.561 × 101

)(
9.005 × 10−4

) (
8.34 × 10−2

)
= 2.8 × 7.561

9.005 × 8.34

103 × 101

10−4 × 10−2
= 21.17

75.10

104

10−6

= 0.2819 × 1010

= 2.819 × 10−1 × 1010

= 2.82 × 109 Ans.

2.20
1

6.28 × 400 × 106 × 25 × 10−12

Then
1

6.28
(
4 × 102

) (
106

) (
2.5 × 101

) (
10−12

) = 1

(6.28 × 4 × 2.5)
(
102 × 106 × 101 × 10−12

)
= 1

62.80 × 10−3
= 0.0159 × 103

= 1.59 × 10−2 × 103

= 1.59 × 101 = 15.9 Ans.

Supplementary Problems

Express each of the following in the units indicated (use powers of 10 where applicable).

2.21 5 600 000 � in megohms Ans. 5.6 M�

2.22 2.2 M� in ohms Ans. 2 200 000 � or 2.2 × 106 �

2.23 0.330 M� in kilohms Ans. 330 k�

2.24 0.013 kV in volts Ans. 13 V

2.25 0.24 A in milliamperes Ans. 240 mA
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2.26 20 000 µA in amperes Ans. 0.02 A

2.27 0.25 mA in microamperes Ans. 250 µA

2.28 10 000 V in kilovolts Ans. 10 kV

2.29 4 000 000 W in megawatts (MW) Ans. 4 MW

2.30 5 000 kW in megawatts Ans. 5 MW

2.31 200 ns in seconds Ans. 0.000 000 2 s or 2 × 10−7 s

Express each of the following as decimal numbers.

2.32 0.006 × 102 Ans. 0.6

2.33 43.41 × 100 Ans. 4341

2.34 0.0053 × 103 Ans. 5.3

2.35 400/103 Ans. 0.4

2.36 3 × 10−2 Ans. 0.03

2.37 100 000 × 10−4 Ans. 10

2.38 (0.5 × 0.03)/10−2 Ans. 1.5

2.39 (3.1 × 10−1)(2 × 10−2) Ans. 0.0062

2.40 600/
(
5 × 102

)
Ans. 1.2

Express each of the following in scientific notation, that is, as a number from 1 to 10 and the proper
power of 10.

2.41 120 000 Ans. 1.2 × 105

2.42 0.006 45 Ans. 6.45 × 10−3

2.43 2 300 000 Ans. 2.3 × 106

2.44 550 × 10−4 Ans. 5.5 × 10−2

2.45 0.0008 × 103 Ans. 8 × 10−1

Perform the indicated operations. Express the answer in scientific notation.

2.46
200 × 0.008

0.02 × 103
Ans. 8 × 10−1

2.47
1(

4 × 104
) (

0.5 × 10−5
) Ans. 5
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2.48

(
3.2 × 102

) (
1.4 × 10−1

)(
2 × 10−3

) (
4 × 102

) Ans. 5.6 × 10

2.49
400 000

2 × 107 Ans. 2 × 10−2

2.50
300

(
4 × 10−5

) (
102

)
12 × 102

Ans. 1 × 10−3

Round off the following numbers to three significant digits.

2.51 3.824 Ans. 3.82

2.52 3.825 Ans. 3.82

2.53 3.826 Ans. 3.83

2.54 205.6 Ans. 206

2.55 0.004 152 Ans. 0.004 15

2.56 2096 Ans. 2100

2.57 7.803 × 102 Ans. 7.80 × 102

2.58 0.001 205 × 10−3 Ans. 0.001 20 × 10−3

Perform the indicated operations. Round off the answers to three-place accuracy.

2.59

(
8.31 × 100

) (
5.7 × 103

)(
2.1 × 10−1

) (
3.0 × 106

) Ans. 7.52 × 10−2

2.60

(
5 × 102

) (
6 × 104

) (
9 × 1016

)(
7 × 10−6

) (
5 × 1010

) (
3 × 1014

) Ans. 2.57 × 104

2.61
170 000(6910) (100 000)

9185(54 000)
Ans. 2.37 × 105

2.62
790(0.0014) (0.01)

0.000 006(500 000)
Ans. 3.69 × 10−3

Graphical Symbols and Electrical Diagrams

SCHEMATIC DIAGRAM

A simple electric circuit is shown in pictorial form in Fig. 2-1a. The same circuit is drawn in schematic
form in Fig. 2-1b. The schematic diagram is a shorthand way to draw an electric circuit, and circuits usually
are represented in this way. In addition to the connecting wires, three components are shown symbolically
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in Fig. 2-1b: the dry cell, the switch, and lamp. Note the positive (+) and the negative (−) markings in
both pictorial and schematic representations of the dry cell. The schematic components represent the pictorial
components in a simplified manner. A schematic diagram then is one that shows by means of graphic symbols
the electrical connections and the functions of the different parts of a circuit.

Fig. 2-1 A simple lamp circuit

The standard graphic symbols for the commonly used electrical and electronic components are given in
Fig. 2-2.

Examples of common letter symbols used to denote various circuit components are given in Table 2-7.

Table 2-7 Examples of Letter Symbols for Circuit Components

Part Letter Example

Resistor R R3, 120 k�

Capacitor C C5, 20 pF

Inductor L L1, 25 mH

Rectifier (metallic or crystal) CR CR2

Transformer T T2

Transistor Q Q5, 2N482 Detector

Jack J J1

A schematic diagram of a two-transistor radio receiver is shown in Fig. 2-3. The circuit diagram in Fig. 2-3
shows the components in the order from left to right in which they are used to convert radio waves into sound
waves. With the use of the diagram, it is then possible to trace the operation of the circuit from the incoming
signal at the antenna to the output at the headphones. The components in a schematic diagram are identified
by letter symbols such as R for resistors, C for capacitors, L for inductors, and Q for transistors (Table 2-7).
Symbols are further identified by letter–number combinations such as R1, R2, and R3 (sometimes written as
R1, R2, R3) to prevent confusion when more than one type of component is used (Fig. 2-3). The letters B,
C, and E near the transistor symbols indicate the base, collector, and emitter of the transistors (Fig. 2-3). The
numerical values of components are often indicated directly in the schematic diagram, such as 220 k� for R1
and 0.022 µF for C2 (Fig. 2-3). When these values are not given in this way, they are stated in the parts list
or the notes which accompany the diagram.
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Fig. 2-2 Standard circuit symbols
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Fig. 2-3 Schematic diagram of a two-transistor radio

A schematic diagram does not show the physical location of the components or the wires which connect
the components.

ONE-LINE DIAGRAM

A one-line, or single-line, diagram shows the component parts of a circuit by means of single lines and
appropriate graphical symbols. The single lines represent the two or more conductors that are connected
between the components in the actual circuit. The one-line diagram shows the necessary basic information
about the sequence of a circuit but does not give the detailed information that is found in a schematic diagram.
One-line diagrams are generally used to show complex electrical systems without the individual conductors to
the various loads.

Example 2.13 Draw a one-line diagram showing the major equipment, switching devices, and connecting circuits of
an electric power substation.

See Fig. 2-4. The single line running down represents three lines in this three-wire system. The power path can be
traced from the shielded aluminum cable steel reinforced (ACSR) downward past a grounded lightning arrester, through a
disconnect switch, fused disconnect switches, and a step-down transformer. It continues downward through an oil circuit
breaker, disconnect switch, past another lightning arrester, and out through the ACSR line.

BLOCK DIAGRAM

The block diagram is used to show the relationship between the various component groups or stages in
the operation of a circuit. It shows in block form the path of a signal through a circuit from input to output
(Fig. 2-5). The blocks are drawn in the shape of squares or rectangles that are joined by single lines. Arrowheads
placed at the terminal ends of the lines show the direction of the signal path from input to output as the diagram
is read from left to right. As a general rule, the necessary information to describe the components or stages is
placed within the block. On some block diagrams, devices such as antennas and loudspeakers are shown by
standard symbols instead of by blocks (Fig. 2-5).
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Fig. 2-4 A one-line diagram of a substation

Fig. 2-5 Block diagram of a typical transistor radio receiver circuit
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Because a block diagram shows the functions of the various stages of a circuit and uses single lines, it is
a type of functional one-line diagram. The block diagram gives no information about specific components or
wiring connections. Therefore, it is limited in use but does give a simple way of illustrating the overall features
of a circuit. For this reason, block diagrams are frequently used by electricians, electronic technicians, and
engineers as a first step in designing and laying out new equipment.

To show how easy it is to understand a circuit’s operation by means of a block diagram, look at Fig. 2-5.
The signal comes through the antenna and then progresses through the mixer circuit, through the intermediate-
frequency (IF) amplifier stages and the detector stage, and finally to the output stage and speaker. The oscillator
is in an auxiliary circuit, and so it is not shown in the main signal path.

WIRING DIAGRAM

The wiring, or connection, diagram is used to show wiring connections in a simple, easy-to-follow way.
They are very commonly used with home appliances and electrical systems of automobiles (Fig. 2-6). The
typical wiring diagram shows the components of a circuit in a pictorial manner. The components are identified
by name. Such a diagram also often shows the relative location of the components within a given space.
A color-coding scheme may be used to identify certain wires or leads (Fig. 2-6).

Fig. 2-6 Wiring diagram of an automobile starting circuit

ELECTRICAL PLAN

An integral part of any set of drawings for the construction of a building is the wiring plan or layout.
Architects, electrical designers, and contractors use floor-plan diagrams to locate components of the building’s
electrical system, such as receptacle outlets, switches, lighting fixtures, and other wiring devices. These devices
and wiring arrangements are represented by means of symbols (Fig. 2-7). The living-room plan (Fig. 2-7) shows
two three-way switching arrangements. In one arrangement, a ceiling outlet is switched from two door locations.
Similarly, two receptacle outlets on the north wall are switched from two separate locations. The connection
between switch and ceiling outlet is drawn with a medium-weight solid line, indicating that the connection
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(conduit or cable) is to be concealed in the walls or ceiling above. The cross lines indicate the conductors in
the conduit or cable. If cross lines are omitted, two wires are understood to be in the connection.

Fig. 2-7 Floor plan of a room with fixtures, outlets, and switches. Standard wiring symbols are shown

Solved Problems

2.63 Write the word or words which most correctly complete the following statements.

(a) A picture showing the actual parts of a circuit and their connections is called a
diagram.

(b) On a schematic diagram, the components are represented by .

(c) Schematic diagrams are often drawn with the input on the and the output on
the .

(d) Example of letter symbols to identify components on a schematic diagram are
for diodes, for capacitors, and for inductors.

(e) A single-line diagram is also called a diagram.

(f ) Color coding is shown on a diagram.

Ans. (a) pictorial; (b) symbols; (c) left, right; (d) CR, C, L; (e) one-line; (f ) wiring or
connection



 

34 ELECTRICAL STANDARDS AND CONVENTIONS [CHAP. 2

2.64 In Fig. 2-3, identify the following symbols:

(a) C1

(b) C2, C3, C4

(c) CR

(d) Q1 and Q2

(e) J1 and J2

(f ) S1

(g)

(h)

(i) R1, R2, R3

(j ) L1

(k) B1

(l)

(a) Variable capacitor (g) Conductors crossing but not connected

(b) Fixed capacitors (h) Conductor electrically connected

(c) Crystal rectifier (CR) diode (i) Fixed resistors

(d) PNP transistors (j ) Variable iron-core inductor (antenna coil)

(e) Jacks (k) Battery

(f ) Single-pole single-throw switch (l) Antenna

2.65 Using the circuit symbols in Fig. 2-2, draw a schematic circuit containing an ac generator, a switch,
an ammeter, a bell, and a buzzer. Label the diagram carefully.

See Fig. 2-8.

Fig. 2-8

2.66 Identify the symbols for transformers shown in Fig. 2-9.

Fig. 2-9

(a) Air-core transformer; (b) Iron-core transformer; (c) Iron-core variable transformer. The heavy
lines between the coils represent an iron core. The iron core is simply a piece of iron around which
the coils are wrapped. An arrow running through the coils of a transformer means the transformer is
variable.

2.67 Since an electric circuit is a path for current to flow through, a break in this path would stop current
flow. Switches are simply ways to break this path or to control the flow of current. Some more symbols
for switches are shown in Fig. 2-10. To remember these switches, think of the number of poles as the
number of wires coming to either side of the switch. The throws can be thought of as the number of
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on positions. Answer the following questions:

(a) The number of wires coming to each side of a double-pole switch is .

(b) The number of on positions a DPST switch has is .

(c) The number of on positions a DPDT switch has is .

(a) two; (b) one; (c) two

Fig. 2-10

2.68 The ground symbol is often used in schematic diagrams. Some components are grounded to the frame
or chassis of the equipment in which they are located. Aircraft, automobiles, and TV sets are grounded
in this fashion. A frame or other ground must be a good conductor. The ground (frame) is the return
path for current back to the power source. For the circuit shown in Fig. 2-11, complete the circuit by
putting in the ground symbols:

Fig. 2-11 Fig. 2-12

See Fig. 2-12. In this circuit, current flows from the plus terminal of the battery, through the switch
to the lamp to ground, and then to the negative terminal of the battery. Since both the battery and the
lamp are grounded to the frame, there is a complete circuit.
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Supplementary Problems

2.69 Write the words which correctly complete the following statements.

(a) The use of a schematic diagram makes it possible to trace the function of a circuit from
to .

(b) Examples of letter symbols to identify components on a schematic diagram are
for transformers, for resistors, and for transistors.

(c) The symbol is used to show that wires are electrically at that
point.

(d) The diagram is most often used to show complex electrical systems.

(e) The diagram is an easy way to show the relationships of various parts of a
circuit.

(f ) Floor-plan diagrams are used with electrical systems.

Ans. (a) input, output; (b) T , R, Q; (c) dot, connected; (d) one-line or single-line; (e) block;
(f ) wiring

2.70 Draw a schematic diagram showing a dc generator, a switch, a fuse, an arc lamp, and a resistor. Label
the diagram carefully. Ans. See Fig. 2-13.

Fig. 2-13

2.71 A rectifier is a device that changes alternating current to direct current. Show a symbol for the rectifier.

Ans.

2.72 Match each symbol with its respective component.

1. 6.

2. 7.

3. 8.

4. 9.

5. 10.

(a) Voltmeter

(b) Resistor

(c) Cell

(d) Ammeter

(e) Battery

(f ) Rheostat

(g) Iron-core transformer

(h) Variable resistor

(i) Ground

(j ) Air-core transformer

(k) Capacitor

(l) Lamp

(m) Variable capacitor
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Ans. 1. (j ) 2. (e) 3. (a) 4. (k) 5. (g) 6. (i) 7. (d) 8. (h) 9. (f ) 10. (c)

2.73 Place a ground symbol wherever one is needed in the diagram of Fig. 2-14. Ans. See Fig. 2-15

Fig. 2-14 Fig. 2-15

2.74 For the wire connections shown below, identify each as “connection” or “no connection.”

(a)

(b)

(c)

(d)

Ans. (a) no connection; (b) connection; (c) connection; (d) no connection

2.75 A fuse is a safety device which operates as a switch to turn a circuit off when the current exceeds a
specific value. A circuit breaker performs the same protective function as a fuse, but unlike a fuse it
can be reset. Show the symbols for a fuse and circuit breaker.

Ans. Fuse: Circuit breaker:

2.76 Match the name of each component with its respective symbol.

1. Unconnected wire

2. Ground

3. Lamp

4. Voltmeter

5. Zener diode

6. PNP transistor

7. Circuit breaker

8. Variable capacitor

9. Air-core transformer

10. Connected wire

(a) (h)

(b) (i)

(c) (j )

(d) (k)

(e) (l)

(f ) (m)

(g)

Ans. 1. (b) 2. (g) 3. (m) 4. (e) 5. (j ) 6. (d) 7. (a) 8. (c) 9. (h) 10. (f )
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2.77 An elementary radio receiver consists of four major stages: an antenna, a tunable resonant circuit, a
detector circuit, and headphones. Draw a block diagram of this elementary receiver.
Ans. See Fig. 2-16.

Fig. 2-16

2.78 Match each symbol with its meaning used in architectural floor-plan diagrams.

Symbol
1. S2

2.

3.

4.

5.

Meaning
(a) Special-purpose connection, dishwasher

(b) Duplex receptacle outlet

(c) Four wires

(d) Range outlet

(e) Three wires

(f ) Double-pole switch

Ans. 1. (f ) 2. (c) 3. (d) 4. (a) 5. (b)



 

Chapter 3

Ohm’s Law and Power

THE ELECTRIC CIRCUIT

A practical electric circuit has at least four parts: (1) a source of electromotive force, (2) conductors,
(3) a load, and (4) a means of control (Fig. 3-1). The emf is the battery, the conductors are wires that connect
the various parts of the circuit and conduct the current, the resistor is the load, and the switch is the control
device. The most common sources of emf are batteries and generators. Conductors are wires which offer low
resistance to a current. The load resistor represents a device that uses electric energy, such as a lamp, bell,
toaster, radio, or a motor. Control devices might be switches, variable resistances, fuses, circuit breakers, or
relays.

Fig. 3-1 Closed circuit

A complete or closed circuit (Fig. 3-1) is an unbroken path for current from the emf, through a load, and
back to the source. A circuit is called incomplete or open (Fig. 3-2a) if a break in the circuit does not provide
a complete path for current.

Fig. 3-2 Open and short circuits

To protect a circuit, a fuse is placed directly into the circuit (Fig. 3-2b). A fuse will open the circuit
whenever a dangerously large current starts to flow. A fuse will permit currents smaller than the fuse value to
flow but will melt and therefore break or open the circuit if a larger current flows. A dangerously large current
will flow when a “short circuit” occurs. A short circuit is usually caused by an accidental connection between
two points in a circuit which offers very little resistance (Fig. 3-2b).

A ground symbol is often used to show that a number of wires are connected to a common point in a
circuit. For example, in Fig. 3-3a, conductors are shown making a complete circuit, while in Fig. 3-3b, the
same circuit is shown with two ground symbols at G1 and G2. Since the ground symbol means that the two
points are connected to a common point, electrically the two circuits (Fig. 3-3a and b) are exactly the same.

39
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Fig. 3-3 Closed circuits a and b are the same

Example 3.1 Replace with ground symbols the return wire of the closed circuit (in Fig. 3-4a).
See Fig. 3-4b.

Fig. 3-4

RESISTANCE

Resistance is the opposition to current flow. To add resistance to a circuit, electrical components called
resistors are used. A resistor is a device whose resistance to current flow is a known, specified value. Resistance
is measured in ohms and is represented by the symbol R in equations. One ohm is defined as that amount of
resistance that will limit the current in a conductor to one ampere when the voltage applied to the conductor
is one volt.

Resistors are common components of many electrical and electronic devices. Some frequent uses for
resistors are to establish the proper value of circuit voltage, to limit current, and to provide a load.

FIXED RESISTORS

A fixed resistor is one that has a single value of resistance which remains constant under normal conditions.
The two main types of fixed resistors are carbon-composition and wire-wound resistors.

Carbon-Composition Resistors

The resistance element is primarily graphite or some other form of solid carbon carefully made to provide
the desired resistance. These resistors generally are inexpensive and have resistance values that range from
0.1 � to 22 M�.

Wire-Wound Resistors

The resistance element is usually nickel–chromium wire wound on a ceramic rod. The entire assembly
is normally covered with a ceramic material or a special enamel. They have resistance values from 1 � to
100 k�.

The actual resistance of a resistor may be greater or less than its rated or nominal value. The limit of
actual resistance is called tolerance. Common tolerances of carbon-composition resistors are ±5, ±10, and
±20 percent. For example, a resistor having a rated resistance of 100 � and a tolerance of ±10 percent may
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have an actual resistance of any value between 90 and 110 �, that is, 10 � less or more than the rated value
of 100. Wire-wound resistors usually have a tolerance of ±5 percent.

Resistors having high tolerances of ±20 percent can still be used in many electric circuits. The advantage
of using a high-tolerance resistor in any circuit where it is permissible is that it is less expensive than a
low-tolerance resistor.

The power rating of a resistor (sometimes called the “wattage” rating) indicates how much heat a resistor
can dissipate, or throw off, before being damaged. If more heat is generated than can be dissipated, the resistor
will be damaged. The power rating is specified in watts. Carbon-composition resistors have wattage ratings
which range from 1/16 to 2 W, while wire-wound resistors have ratings from 3 W to hundreds of watts.

The physical size of a resistor is no indication of its resistance. A tiny resistor can have a very low or a
very high resistance. The physical size, however, gives some indication of its power rating. For a given value
of resistance, the physical size of a resistor increases as the power rating increases.

VARIABLE RESISTORS

Variable resistors are used to vary or change the amount of resistance in a circuit. Variable resistors are
called potentiometers or rheostats. Potentiometers generally consist of carbon-composition resistance elements,
while the resistance element in a rheostat is usually made of resistance wire. In both devices, a sliding arm
makes contact with the stationary resistance element (Fig. 3-5).

Fig. 3-5 When the sliding arm of a variable resistor is moved, the resistance between the center terminal and end terminals
changes

As the sliding arm rotates, its point of contact on the resistance element changes, thus changing the
resistance between the sliding arm terminal and the terminals of the stationary resistance (Fig. 3-5).

Rheostats are often used to control very high currents such as those found in motor and lamp loads
(Fig. 3-6).

Fig. 3-6 Use of rheostat to control current in a lamp
circuit

Fig. 3-7 Use of potentiometer to change voltage

Potentiometers can be used to vary the value of voltage applied to a circuit (Fig. 3-7). In this circuit, the
input voltage is applied across the terminals AC of the stationary resistance. By varying the position of the
sliding arm (terminal B), the voltage across terminals BC will change. As the sliding arm moves closer to
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terminal C, the voltage of the output circuit decreases. As the sliding arm moves closer to terminal A, the output
voltage of the circuit increases. Potentiometers as control devices are found in amplifiers, radios, television sets,
and electrical instruments. The rating of a variable resistor is the resistance of the entire stationary resistance
element from one end terminal to the other.

OHM’S LAW

Ohm’s law defines the relationship between current, voltage, and resistance. There are three ways to
express Ohm’s law mathematically.

1. The current in a circuit is equal to the voltage applied to the circuit divided by the resistance of the
circuit:

I = V

R
(3-1)

2. The resistance of a circuit is equal to the voltage applied to the circuit divided by the current in the
circuit:

R = V

I
(3-2)

3. The applied voltage to a circuit is equal to the product of the current and the resistance of the circuit:

V = I × R = IR (3-3)

where I = current, A
R = resistance, �

V = voltage, V

If you know any two of the quantities V , I , and R, you can calculate the third.
The Ohm’s law equations can be memorized and practiced effectively by using an Ohm’s law circle

(Fig. 3-8a). To find the equation for V , I , or R when two quantities are known, cover the unknown third
quantity with your finger.

Fig. 3-8 The Ohm’s law circle

The other two quantities in the circle will indicate how the covered quantity may be found (Fig. 3-8b).

Example 3.2 Find I when V = 120 V and R = 30 �. Use Eq. (3-1) to find the unknown I .

I = V

R

= 120

30
= 4 A Ans.
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Example 3.3 Find R when V = 220 V and I = 11 A. Use Eq. (3-2) to find the unknown R.

R = V

I

= 220

11
= 20 � Ans.

Example 3.4 Find V when I = 3.5 A and R = 20 �. Use Eq. (3-3) to find the unknown V.

V = IR = 3.5(20) = 70 V Ans.

Example 3.5 An electric light bulb draws 1.0 A when operating on a 120-V dc circuit. What is the resistance of the
bulb?

The first step in solving a circuit problem is to sketch a schematic diagram of the circuit itself, labeling each of the
parts and showing the known values (Fig. 3-9).

Fig. 3-9

Since I and V are known, we use Eq. (3-2) to solve for R.

R = V

I
= 120

1
= 120 � Ans.

ELECTRIC POWER

The electric power P used in any part of a circuit is equal to the current I in that part multiplied by the
voltage V across that part of the circuit. Its formula is

P = VI (3-4)

where P = power, W
V = voltage, V
I = current, A

Other forms for P = VI are I = P/V and V = P/I .
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If we know the current I and the resistance R but not the voltage V , we can find the power P by using
Ohm’s law for voltage, so that substituting

V = IR (3-3)

into Eq. (3-4) we have

P = IR × I = I 2R (3-5)

In the same manner, if we know the voltage V and the resistance R but not the current I , we can find the
power P by using Ohm’s law for current, so that substituting

I = V

R
(3-1)

into Eq. (3-4) we have

P = V
V

R
= V 2

R
(3-6)

If you know any two of the quantities, you can calculate the third.

Example 3.6 The current through a 100-� resistor to be used in a circuit is 0.20 A. Find the power rating of the resistor.
Since I and R are known, use Eq. (3-5) to find P .

P = I2R = (0.20)2(100) = 0.04(100) = 4 W Ans.

To prevent a resistor from burning out, the power rating of any resistor used in a circuit should be twice the wattage
calculated by the power equation. Hence, the resistor used in this circuit should have a power rating of 8 W.

Example 3.7 How many kilowatts of power are delivered to a circuit by a 240-V generator that supplies 20 A to the
circuit?

Since V and I are given, use Eq. (3-4) to find P .

P = VI = 240(20) = 4800 W = 4.8 kW Ans.

Example 3.8 If the voltage across a 25 000-� resistor is 500 V, what is the power dissipated in the resistor?
Since R and V are known, use Eq. (3-6) to find P .

P = V 2

R
= 5002

25 000
= 250 000

25 000
= 10 W Ans.

HORSEPOWER

A motor is a device which converts electric power into the mechanical power of a rotating shaft. The
electric power supplied to a motor is measured in watts or kilowatts; the mechanical power delivered by
a motor is measured in horsepower (hp). One horsepower is equivalent to 746 W of electric power. The
metric system will be used to express horsepower in watts. For most calculations, it is sufficiently accurate
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to consider 1 hp = 750 W or 1 hp = 3/4 kW. To convert between horsepower and kilowatt ratings, use the
following equations.

hp = 1000 × kW

750
= 4

3
× kW (3-7)

kW = 750 × hp

1000
= 3

4
× hp (3-8)

Example 3.9 Change the following units of measurements: (a) 7.5 kW to horsepower, and (b) 3/4 hp to watts.

(a) Use Eq. (3-7):

hp = 4

3
× kW = 4

3
(7.5) = 10 Ans.

(b) Use Eq. (3-8):

kW = 3

4
× hp = 3

4
× 3

4
= 9

16
= 0.563

1 kW = 1000 W

W = 1000(0.563) = 563 Ans.

ELECTRIC ENERGY

Energy and work are essentially the same and are expressed in identical units. Power is different, however,
because it is the time rate of doing work. With the watt unit for power, one watt used during one second equals
the work of one joule, or one watt is one joule per second. The joule (J) is a basic practical unit of work or
energy (see Table 2-3).

The kilowatthour (kWh) is a unit commonly used for large amounts of electric energy or work. The amount
of kilowatthours is calculated as the product of the power in kilowatts (kW) and the time in hours (h) during
which the power is used.

kWh = kW × h (3-9)

Example 3.10 How much energy is delivered in 2 h by a generator supplying 10 kW?
Write Eq. (3-9) and substitute given values.

kWh = kW × h = 10(2) = 20

Energy delivered = 20 kWh Ans.

Solved Problems

3.1 Write the word or words which most correctly complete the following statements.

(a) The four basic parts of a complete circuit are the _____________, _____________,
_____________, and ____________.

(b) A fixed resistor is one which has a ______________ resistance value.

(c) In a carbon-film resistor, a film of ______________ is deposited upon a ceramic core.

(d) The _______________ rating of a resistor indicates how much current the resistor can conduct
before becoming ___________.
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(e) The physical size of a resistor has no relationship to its ___________.

(f ) The two most common types of variable resistors are called _____________ and ___________.

(g) The rated resistance of a variable resistor is the resistance between its _______________
terminals.

(h) _______________ are used as current-limiting devices.

(i) If the voltage applied to a circuit is doubled and the resistance remains the same, the current in
the circuit will increase to __________ the original value.

(j ) If the current through a conductor is doubled and the resistance is constant, the power consumed
by the conductor will increase to _________ times the original amount.

Ans. (a) voltage source, conductors, load, control device (f ) rheostats, potentiometers

(b) specific or single (g) end

(c) carbon (h) Rheostats

(d) wattage or power, overheated or damaged (i) twice (I = V /R)

(e) resistance (j ) four (P = I 2R)

3.2 In Fig. 3-10, the resistor limits the current in the circuit to 5 A when connected to a 10-V battery.
Find its resistance.

Fig. 3-10

Since I and V are known, solve for R by Ohm’s law.

R = V

I
(3-2)

= 10

5
= 2 � Ans.

3.3 Figure 3-11 shows a doorbell circuit. The bell has a resistance of 8 � and requires a 1.5 A current to
operate. Find the voltage required to ring the bell.

Fig. 3-11
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Since R and I are known, solve for V by Ohm’s law.

V = IR (3-3)

= 1.5(8) = 12 V Ans.

3.4 What current will flow through a lamp when it has a resistance of 360 � and is connected to an ordinary
house voltage of 115 V as shown in Fig. 3-12?

Fig. 3-12

Since R and V are given, calculate I by Ohm’s law.

I = V

R
(3-1)

= 115

360
= 0.319 A Ans.

Values generally will be computed to three significant figures.

3.5 Find the current drawn by a 60-W incandescent lamp rated for 120-V operation. Also find the current
drawn by a 150-W, 120-V lamp and a 300-W, 120-V lamp. As the wattage increases, what happens to
the current?

P and V are known and we wish to find I . Solving for I in Eq. (3-4),

I = P

V

For the 60-W, 120-V lamp:

I = 60

120
= 0.5 A Ans.

For the 150-W, 120-V lamp:

I = 150

120
= 1.25 A Ans.

For the 300-W, 120-V lamp:

I = 300

120
= 2.5 A Ans.

We see that if V remains unchanged, the greater the value of P, the greater will be the value of I .
That is to say, higher wattages draw higher currents for the same voltage rating.
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3.6 Find the power consumed by a fixed 25-� resistor for each of the following currents: 3 A, 6 A, and
1.5 A. What effect does a change in current have on the amount of power dissipated by a fixed resistor?

I and R are known and we wish to find P .

P = I 2R (3-5)

at 3 A: P = 32(25) = 225 W Ans.

6 A: P = 62(25) = 900 W Ans.

1.5 A: P = (1.5)2 = (25) = 56.2 W Ans.

If the current is doubled to 6A from 3 A, the power will increase by 22, or 4, so 900 W = 4 ×
225 W. If the current is halved to 1.5 A from 3 A, the power will decrease by (1/2)2, or 1/4, so
56.2 W = 1/4 × 225 W. We see that if R does not change, power will change according to the square
of the change in current.

3.7 The efficiency of a motor is calculated by dividing its output by its input. The output is measured in
horsepower, while the input is measured in watts or kilowatts. Before the efficiency can be calculated,
the output and the input must be expressed in the same units of measurement. Find the efficiency of a
motor which receives 4 kW and delivers 4 hp.

Step 1. Express all measurements in the same units.

Input = 4 kW

Output = 3

4
× hp = 3

4
4 = 3 kW (3-8)

Step 2. Find the efficiency by dividing output by input.

Efficiency = output

input
= 3 kW

4 kW
= 0.75

Efficiency is not expressed in any units. To change the decimal efficiency into a percent
efficiency, move the decimal point two places to the right and add a percent sign (%).

Efficiency = 0.75 = 75% Ans.

3.8 The motor in a washing machine uses 1200 W. How much energy in kilowatthours is used in a week
by a laundromat with eight washers if they are all in use 10 hours per day (h/day) for a 6-day week?

Change 1200 W to 1.2 kW.

For one motor: Energy = 1.2 kW × 10 h

��day
× 6 ���days = 72 kWh

For eight motors: Energy = 8 × 72 kWh = 576 kWh Ans.

3.9 A radio receiver draws 0.9 A at 110 V. If the set is used 3 h/day, how much energy does it consume in
7 days?

Find the power.

P = VI = 110(0.9) = 99 W = 0.099 kW

Then find the energy.

Energy = 0.099 kW × 3 h

��day
× 7 ���days = 2.08 kWh Ans.
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3.10 Electric utility companies establish their rates at a given number of cents per kilowatthour. Rates for
electric energy in the United States depend upon the method by which the electricity is generated, the
type and complexity of the transmission and distribution systems, the maintenance cost, and many
other factors. By knowing the amount of energy you use (from the meter readings) and the cost per
kilowatthour of energy in your area, you can calculate your own monthly electric bill.

One residence used 820 kWh of electric energy in one month. If the utility rate is 6 cents per
kilowatthour, what was the owner’s electrical bill for the month?

A convenient formula for calculating the total cost is:

Total cost = kWh × unit cost

= 820 × 6 cents = 4920 cents = $49.20∗ Ans.

∗Here we are using an average unit cost. Most utility rates are stepped according to blocks of kilowatthour usage plus minimum

charges, not to mention full adjustment charges and taxes.

Supplementary Problems

3.11 Write the word or words which most correctly complete the following statements.

(a) Common sources of energy used in electric circuits are __________ and __________.

(b) In a circuit, an incandescent lamp is treated as a __________ load.

(c) The resistance element of a wire-wound resistor is made of __________ wire.

(d) The amount by which the actual resistance of a resistor may vary from its rated value is called
its __________.

(e) A large resistor of a given type has a higher __________ rating than a smaller resistor of the
same type.

(f ) A common resistor defect is an open or burned-out condition caused by excessive __________
through a resistor.

(g) The amount of resistance can be changed in a circuit by a __________ resistor.

(h) A variable resistor used to change the value of voltage applied to a circuit is the __________.

(i) If the resistance of a circuit is doubled and the current remains unchanged, the voltage will
increase to __________ its original value.

(j ) If a toaster rated at 1000 W is operated for 30 min, the energy used is __________ kWh.

Ans. (a) batteries, generators; (b) resistive; (c) nickel–chromium; (d) tolerance; (e) wattage
or power; (f ) current; (g) variable; (h) potentiometer; (i) twice (V = IR); (j ) 0.5

3.12 Use Ohm’s law to fill in the indicated quantity.

V I R Ans. V I R

(a) ? 2 A 3 � (a) 6 V . . . . . . . .

(b) 120 V ? 2400 � (b) . . . . 0.05 A . . . .

(c) 120 V 24 A ? (c) . . . . . . . . 5 �

--··-



 

50 OHM’S LAW AND POWER [CHAP. 3

V I R Ans. V I R

(d) ? 8 mA 5 k� (d) 40 V . . . . . . . .

(e) 60 V ? 12 k� (e) . . . . 5 mA . . . .

(f ) 110 V 2 mA ? (f ) . . . . . . . . 55 k�

(g) ? 2.5 A 6.4 � (g) 16 V . . . . . . . .

(h) 2400 V ? 1 M� (h) . . . . 2.4 mA . . . .

3.13 A circuit consists of a 6-V battery, a switch, and a lamp. When the switch is closed, 2 A flows in the
circuit. What is the resistance of the lamp? Ans. 3 �

3.14 Suppose you replace the lamp in Problem 3.13 with another one, requiring the same 6 V across it but
drawing only 0.04 A. What is the resistance of the new lamp? Ans. 150 �

3.15 A voltage of 20 V is measured across a 200-� resistor. What is the current flowing through the resistor?
Ans. 0.10A or 100 mA

3.16 If the resistance of the air gap in an automobile spark plug is 2500 �, what voltage is needed to force
0.20 A through it? Ans. 500 V

3.17 The filament of a television tube has a resistance of 90 �. What voltage is required to produce the
tube’s rated current of 0.3 A? Ans. 27 V

3.18 A 110-V line is protected with a 15-A fuse. Will the fuse “carry” a 6-� load? Ans. No

3.19 A sensitive dc meter takes 9 mA from a line when the voltage is 108 V. What is the resistance of the
meter? Ans. 12 k�

3.20 An automobile dashboard ammeter shows 10.8 A of current flowing when the headlights are lit.
If the current is drawn from the 12-V storage battery, what is the resistance of the headlights?
Ans. 1.11 �

3.21 A 160-� telegraph relay coil operates on a voltage of 6.4 V. Find the current drawn by the relay.
Ans. 0.04 A

3.22 What is the power used by a soldering iron taking 3 A at 110 V? Ans. 330 W

3.23 A 12-V battery is connected to a lamp that has a 10-� resistance. How much power is delivered to the
load? Ans. 14.4 W

3.24 An electric oven uses 35.5 A at 118 V. Find the wattage generated by the oven. Ans. 4190 W

3.25 A 12-� resistor in a power supply circuit carries 0.5 A. How many watts of power are dissipated in
the resistor? What must be the wattage rating of the resistor in order to dissipate this power safely as
heat? Ans. 3 W, 6 W

3.26 Find the power used by a 10-k� resistor drawing 0.01 A. Ans. 1 W

3.27 Find the current through a 40-W lamp at 110 V. Ans. 0.364 A

3.28 An electric dryer requires 360 W and draws 3.25 A. Find its operating voltage. Ans. 111 V
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3.29 Fill in the indicated quantity.

hp kW W

(a) 2 1
4 ? ?

(b) ? 8.75 ?

(c) ? ? 1000

Ans. hp kW W

(a) . . . . 1.69 1690

(b) 11 2
3 . . . . 8750

(c) 1 1
3 1 kW . . . .

3.30 A motor delivers 2 hp and receives 1.8 kW of energy. Find its efficiency (see Problem 3.7).
Ans. 83.3 percent

3.31 A generator receives 7 hp and supplies 20 A at 220 V. Find the power supplied by the generator and its
efficiency. Ans. 4400 W, 83.8 percent

3.32 A 4-hp lathe motor runs 8 h/day. Find the electric energy in kilowatthours used in a day.
Ans. 24 kWh

3.33 How much power and energy is drawn from a 110-V line by a 22-� electric iron in 3 h?
Ans. 550 W, 1.65 kWh

3.34 What does it cost to operate a 5.5-kW electric range for 3 1
2 h at 3.8 cents per kilowatthour?

Ans. 73 cents

3.35 In a certain community, the average rate of electric energy is 4.5 cents per kilowatthour. Find the cost
of operating a 200-W stereo receiver in this community for 12 h. Ans. 11 cents



 

Chapter 4

Direct-Current Series Circuits

VOLTAGE, CURRENT, AND RESISTANCE IN SERIES CIRCUITS

A series circuit is a circuit in which there is only one path for current to flow along. In the series circuit
(Fig. 4-1), the current I is the same in all parts of the circuit. This means that the current flowing through R1
is the same as the current through R2, is the same as the current through R3, and is the same as the current
supplied by the battery.

Fig. 4-1 A series circuit

When resistances are connected in series (Fig. 4-1), the total resistance in the circuit is equal to the sum
of the resistances of all the parts of the circuit, or

RT = R1 + R2 + R3 (4-1)

where RT = total resistance, �
R1, R2, and R3 = resistance in series, �

Example 4.1 A series circuit has a 50-�, a 75-�, and a 100-� resistor in series (Fig. 4-2). Find the total resistance of
the circuit.

Fig. 4-2

Use Eq. (4-1) and add the values of the three resistors in series.

RT = R1 + R2 + R3 = 50 + 75 + 100 = 225 � Ans.

The total voltage across a series circuit is equal to the sum of the voltages across each resistance of the
circuit (Fig. 4-3), or

VT = V1 + V2 + V3 (4-2)

52
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where VT = total voltage, V
V1 = voltage across resistance R1, V
V2 = voltage across resistance R2, V
V3 = voltage across resistance R3, V

Although Eqs. (4-1) and (4-2) were applied to circuits containing only three resistances, they are applicable
to any number of resistances n; that is,

RT = R1 + R2 + R3 + · · · + Rn (4-1a)

VT = V1 + V2 + V3 + · · · + Vn (4-2a)

Ohm’s law may be applied to an entire series circuit or to the individual parts of the circuit. When it is
used on a particular part of a circuit, the voltage across that part is equal to the current in that part multiplied
by the resistance of the part. For the circuit shown in Fig. 4-3,

V1 = IR1

V2 = IR2

V3 = IR3

Fig. 4-3 Fig. 4-4

Example 4.2 A series circuit has 6 V across R1, 30 V across R2, and 54 V across R3 (Fig. 4-4). What is the total voltage
across the circuit?

Write Eq. (4-2) and add the voltage across each of the three resistances.

VT = V1 + V2 + V3 = 6 + 30 + 54 = 90 V Ans.

To find the total voltage across a series circuit, multiply the current by the total resistance, or

VT = IRT (4-3)

where VT = total voltage, V
I = current, A

RT = total resistance, �

Remember that in a series circuit, the same current flows in every part of the circuit. Do not add the current
in each part of the circuit to obtain I in the Eq. (4-3).

Example 4.3 A resistor of 45 � and a bell of 60 � are connected in series (Fig. 4-5). What voltage is required across
this combination to produce a current of 0.3 A?
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Fig. 4-5

Step 1. Find the current I . The value of the current is the same in each part of a series circuit.

I = 0.3 A (Given)

Step 2. Find the total resistance RT . Add the two resistances.

RT = R1 + R2 (4-1)

= 45 + 60 = 105 �

Step 3. Find the total voltage VT . Use Ohm’s law.

VT = IRT (4-3)

= 0.3(105) = 31.5 V Ans.

Example 4.4 A 95-V battery is connected in series with three resistors: 20 �, 50 �, and 120 � (Fig. 4-6). Find the
voltage across each resistor.

Fig. 4-6

Step 1. Find the total resistance RT .

RT = R1 + R2 + R3 (4-1)

= 20 + 50 + 120 = 190 �
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Step 2. Find the current I . Write Ohm’s law,

VT = IRT (4-3)

from which we get

I = VT

RT
= 95

190
= 0.5 A

Step 3. Find the voltage across each part. In a series circuit, the current is the same in each part; that is, I = 0.5 A
through each resistor.

V1 = IR1 = 0.5(20) = 10 V Ans.

V2 = IR2 = 0.5(50) = 25 V Ans.

V3 = IR3 = 0.5(120) = 60 V Ans.

The voltages V1, V2, and V3 found in Example 4.4 are known as voltage drops or IR drops. Their effect
is to reduce the voltage that is available to be applied across the rest of the components in the circuit. The
sum of the voltage drops in any series circuit is always equal to the voltage that is applied to the circuit. This
relationship is expressed in Eq. (4-2), where the total voltage VT is the same as the applied voltage, and can
be verified in Example 4.4.

VT = V1 + V2 + V3

95 = 10 + 25 + 60

95 V = 95 V Check

POLARITY OF VOLTAGE DROPS

When there is a voltage drop across a resistance, one end must be more positive or more negative than
the other end. The polarity of the voltage drop is determined by the direction of conventional current from a
positive to a more negative potential. Current direction is through R1 from point A to B (Fig. 4-7). Therefore
the end of R1 connected to point A has a more positive potential than point B. We say that the voltage
across R1 is such that point A is more positive than point B. Similarly, the voltage of point C is positive

Fig. 4-7 Polarity of voltage drops
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with respect to point D. Another way to look at polarity between any two points is that the one nearer to
the positive terminal of the voltage source is more positive; also, the point nearer to the negative terminal of
the applied voltage is more negative. Therefore, point A is more positive than B, while D is more negative
than C (Fig. 4-7).

Example 4.5 Refer to Example 4.4. Ground the negative terminal of the 95-V battery (Fig. 4-6). Mark the polarity of
voltage drops in the circuit (Fig. 4-8), and find the voltage values at points A, B, C, and D with respect to ground.

Fig. 4-8

Trace the complete circuit in the direction of current from the positive terminal of the battery to A, A to B, B to C,
C to D, and D to the negative terminal. Mark plus (+) where current enters each resistor and minus (−) where current
leaves each resistor (Fig. 4-8).

The voltage drops calculated in Example 4.4 are indicated (Fig. 4-8). Point A is the nearest point to the positive side
of the terminal, so voltage at A is

VA = +95 V Ans.

There is a voltage drop of 10 V across R1, so voltage at B is

VB = 95 − 10 = +85 V Ans.

There is a voltage drop of 25 V across R2, so voltage at C is

VC = 85 − 25 = +60 V Ans.

There is a voltage drop of 60 V across R3, so voltage at D is

VD = 60 − 60 = 0 V Ans.

Since we grounded the circuit at D, VD must equal 0 V. If on tracing the voltage values, we find that VD is not equal
to 0 V, then we have made an error.

CONDUCTORS

A conductor is a material having many free electrons. Three good electrical conductors are copper,
silver, and aluminum. Generally most metals are good conductors. Copper is the most common material
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used in electrical conductors. Second to copper is aluminum. Certain gases are also used as conductors
under special conditions. For example, neon gas, mercury vapor, and sodium vapor are used in various
kinds of lamps.

Conductors have very low resistance. A typical value for copper wire is less than 1 � for 10 feet (ft).
The function of the wire conductor is to connect a source of applied voltage to a load resistance with a
minimum IR voltage drop in the conductor so that most of the applied voltage can produce current in the load
resistance.

Example 4.6 The resistance of two 10-ft lengths of copper wire conductors is about 0.05 �, which is very small
compared with the 150-� resistance of the tungsten filament in the bulb shown in Fig. 4-9a. The conductors should have
minimum resistance to light the bulb with full brilliance. When the current of 0.8 A flows in the bulb and series conductors,
the IR voltage drop across the conductors is 0.04 V, with 109.96 V across the bulb (Fig. 4.9b). Practically all the applied
voltage of 110 V is across the filament of the bulb.

Fig. 4-9

Wire Measurement

Table 4-1 lists the standard wire sizes which correspond to the American Wire Gauge (AWG). The gauge
numbers specify the size of round wire in terms of its diameter and cross-sectional circular area. Note the
following:

1. As the gauge numbers increase from 1 to 40, the diameter and circular area decrease. Higher gauge
numbers mean smaller wire sizes. Thus, No. 12 is a smaller wire than No. 4.

2. The circular area doubles for every three gauge sizes. For example, No. 12 wire has about twice the
area of No. 15 wire.

3. The higher the gauge number and the smaller the wire, the greater the resistance of the wire for
any given length. Therefore, for 1000 ft of wire, No. 12 has a resistance of 1.62 � while No. 4 has
0.253 �.

In typical house wiring applications, No. 14 or No. 12 wire is used for circuits where the current is not
expected to exceed 15 A. Hookup wire for radio receiver circuits with current in milliamperes is about No. 22
wire. For this size, 0.5–1 A is the maximum current the wire can carry without excessive heating.

The cross-sectional area of round wire is measured in circular mils (abbreviated cmil or CM). A mil is
one-thousandth of an inch (0.001 in). One circular mil is the cross-sectional area of a wire having a diam-
eter of one mil. The number of circular mils in any circular area is equal to the square of the diameter
in mils, or

cmil = CM = d2 (4-4)
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Table 4-1 Copper Wire Table

Gauge
No.

Diameter, d,
mil

Circular-mil

Area, d2

Ohms per
1000 ft

of Copper
Wire

at 25◦C∗
Gauge

No.
Diameter, d,

mil
Circular-mil

Area, d2

Ohms per
1000 ft

of Copper
Wire

at 25◦C∗

1 289.3 83 690 0.1264 21 28.46 810.1 13.05

2 257.6 66 370 0.1593 22 25.35 642.4 16.46

3 229.4 52 640 0.2009 23 22.57 509.5 20.76

4 204.3 41 740 0.2533 24 20.10 404.0 26.17

5 181.9 33 100 0.3195 25 17.90 320.4 33.00

6 162.0 26 250 0.4028 26 15.94 254.1 41.62

7 144.3 20 820 0.5080 27 14.20 201.5 52.48

8 128.5 16 510 0.6405 28 12.64 159.8 66.17

9 114.4 13 090 0.8077 29 11.26 126.7 83.44

10 101.9 10 380 1.018 30 10.03 100.5 105.2

11 90.74 8 234 1.284 31 8.928 79.70 132.7

12 80.81 6 530 1.619 32 7.950 63.21 167.3

13 71.96 5 178 2.042 33 7.080 50.13 211.0

14 64.08 4 107 2.575 34 6.305 39.75 266.0

15 57.07 3 257 3.247 35 5.615 31.52 335.0

16 50.82 2 583 4.094 36 5.000 25.00 423.0

17 45.26 2 048 5.163 37 4.453 19.83 533.4

18 40.30 1 624 6.510 38 3.965 15.72 672.6

19 35.89 1 288 8.210 39 3.531 12.47 848.1

20 31.96 1 022 10.35 40 3.145 9.88 1069

∗20–25◦C or 68–77◦F is considered average room temperature.

Example 4.7 Find the area in circular mils of a wire with a diameter of 0.004 in.
First, convert the diameter to mils: 0.004 in = 4 mil. Then use Eq. (4-4) to find the cross-sectional area.

CM = d2 = (4 mil)2 = 16 Ans.

To prevent the conductors from short-circuiting to each other or to some other metal in the circuit, the wires
are insulated. The insulator material should have very high resistance, be tough, and age without becoming
brittle.

Resistivity

For any conductor, the resistance of a given length depends upon the resistivity of the material, the length
of the wire, and the cross-sectional area of the wire according to the formula

R = ρ
l

A
(4-5)

where R = resistance of the conductor, �

l = length of the wire, ft
A = cross-sectional area of the wire, CM
ρ = specific resistance or resistivity, CM · �/ft
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The factor ρ (Greek letter rho, pronounced “roe”) permits different materials to be compared for resistance
according to their nature without regard to different lengths or areas. Higher values of ρ mean more resistance.

Table 4-2 lists resistance values for different metals having the standard wire size of a 1-ft length with a
cross-sectional area of 1 CM. Since silver, copper, gold, and aluminum have the lowest values of resistivity,
they are the best conductors. Tungsten and iron have a much higher resistivity.

Table 4-2 Properties of Conducting Materials∗

Material

ρ = Specific
Resistance,
at 20◦C,
CM · �/ft

Temperature
Coefficient,
� per ◦C, α

Aluminum 17 0.004

Carbon † −0.0003

Constantan 295 (average)

Copper 10.4 0.004

Gold 14 0.004

Iron 58 0.006

Nichrome 676 0.0002

Nickel 52 0.005

Silver 9.8 0.004

Tungsten 33.8 0.005

∗Listings approximate only, since precise values depend on exact
composition of material.

†Carbon has about 2500–7500 times the resistance of copper.
Graphite is a form of carbon.

Example 4.8 What is the resistance of 500 ft of No. 20 copper wire?
From Table 4-1, the cross-sectional area for No. 20 wire is 1022 CM. From Table 4-2, ρ for copper is 10.4 CM ·�/ft.

Use Eq. (4-5) to find the resistance of 500 ft of wire.

R = ρ
l

A
= (10.4) ×

(
500

1022

)
= 5.09 � Ans.

Example 4.9 What is the resistance of 500 ft of No. 23 copper wire?
From Table 4-1,

A = 509.5 CM

From Table 4-2,

ρ = 10.4 CM · �/ft

Substituting into Eq. (4-5),

R = ρ
I

A
= (10.4) ×

(
500

509.5

)
= 10.2 � Ans.

Note from Examples 4.8 and 4.9 that the increase in gauge size of 3 from No. 20 to No. 23 gives one-half
the circular area and doubles the resistance for the same wire length.
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Temperature Coefficient

The temperature coefficient of resistance, α (Greek letter alpha), indicates how much the resistance changes
for a change in temperature. A positive value for α means R increases with temperature; a negative α means
R decreases; and a zero α means R is constant, not varying with changes in temperature. Typical values of α

are listed in Table 4-2.
Although for a given material, α may vary slightly with temperature, an increase in wire resistance caused

by a rise in temperature can be approximately determined from the equation

Rt = R0 + R0(α�T ) (4-6)

where Rt = higher resistance at higher temperature, �

R0 = resistance at 20◦C, �

α = temperature coefficient, �/◦C
�T = temperature rise above 20◦C, ◦C

Note that carbon has a negative temperature coefficient (Table 4-2). In general, α is negative for all
semiconductors such as germanium and silicon. A negative value for α means less resistance at higher tem-
peratures. Therefore, the resistance of semiconductor diodes and transistors can be reduced considerably when
they become hot with normal load current. Observe also that constantan has a value of zero for α (Table 4-2).
Thus it can be used for precision wire-wound resistors, which do not change resistance when the temperature
increases.

Example 4.10 A tungsten wire has a 10-� resistance at 20◦C. Find its resistance at 120◦C.
From Table 4-2,

α = 0.005 �/◦C

The temperature rise is

�T = 120 − 20 = 100◦C

Substituting into Eq. (4-6),

Rt = R0 + R0(α�T ) = 10 + 10(0.005 × 100) = 10 + 5 = 15 � Ans.

Because of the 100◦C rise in temperature, the wire resistance is increased by 5 �, or 50 percent of its original value
of 10 �.

TOTAL POWER IN A SERIES CIRCUIT

We found that Ohm’s law could be used for total values in a series circuit as well as for individual parts
of the circuit. Similarly, the formula for power may be used for total values.

PT = IVT (4-7)

where PT = total power, W
I = current, A

VT = total voltage, V

The total power PT produced by the source in a series circuit can also be expressed as the sum of the
individual powers used in each part of the circuit.

PT = P1 + P2 + P3 + · · · + Pn (4-8)
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where PT = total power, W
P1 = power used in first part, W
P2 = power used in second part, W
P3 = power used in third part, W
Pn = power used in nth part, W

Example 4.11 In the circuit shown (Fig. 4-10), find the total power PT dissipated by R1 and R2.

Step 1. Find I by Ohm’s law.

I = VT

RT
= VT

R1 + R2
= 60

5 + 10
= 4 A

Fig. 4-10

Step 2. Find the power used in R1 and R2.

P1 = I2R1 = 42(5) = 80 W

P2 = I2R2 = 42(10) = 160 W

Step 3. Find the total power PT by adding P1 and P2.

PT = P1 + P2 = 80 + 160 = 240 W Ans.

An alternative method is to use Eq. (4-7 ) directly.

PT = IVT

I = 4 A

PT = 4(60) = 240 W Ans.

Calculated either way, the total power produced by the battery is 240 W and equals the power used by
the load.

VOLTAGE DROP BY PROPORTIONAL PARTS

In a series circuit, each resistance provides a voltage drop V equal to its proportional part of the applied
voltage. Stated as an equation,

V = R

RT

VT (4-9)

where V = voltage, V
R = resistance, �

RT = total resistance, �

R/RT = proportional part of resistance
VT = total voltage, V

A higher resistance R has a greater voltage drop than a smaller resistance in the same series circuit. Equal
resistances have equal voltage drops.

Example 4.12 The circuit (Fig. 4-11) is an example of a proportional voltage divider. Find the voltage drop across each
resistor by the method of proportional parts.

Write the formulas, using Eq. (4-9).

V1 = R1

RT
VT V2 = R2

RT
VT V3 = R3

RT
VT
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Find RT .

RT = R1 + R2 + R3 = 20 + 30 + 50 = 100 k�

Substitute values.

V1 = 20

100
100 = 20 V Ans.

V2 = 30

100
100 = 30 V Ans.

V3 = 50

100
100 = 50 V Ans.

Fig. 4-11

The formula for the proportional method is derived from Ohm’s law. For example, add V1, V2, and V3 to obtain

V1 + V2 + V3 = R1

RT
VT + R2

RT
VT + R3

RT
VT

Factor the right side of the equation.

V1 + V2 + V3 = VT

RT
(R1 + R2 + R3)

Use the relationships

VT = V1 + V2 + V3

RT = R1 + R2 + R3

and substitute.

VT = VT

RT
RT = VT Check

Solved Problems

4.1 Find the voltage needed so that a current of 10 A will flow through the series circuit shown in Fig. 4-12a.

Step 1. Find total resistance.

RT = R1 + R2 + R3

= 2 + 3 + 5 = 10 � (4-1)

Step 2. Find the voltage (we show the series circuit with RT in Fig. 4-12b).

VT = IRT (4-3)

= 10(10) = 100 V Ans.
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Fig. 4-12

4.2 Find the voltage across each resistor in the circuit of Fig. 4-12a. Show that the sum of the voltage
drops equals the applied voltage of 100 V.

V1 = IR1 = 10(2) = 20 V Ans.

V2 = IR2 = 10(3) = 30 V Ans.

V3 = IR3 = 10(5) = 50 V Ans.

See Fig. 4-12c. Remember that the polarity signs next to the resistors indicate the direction of
voltage drops not current direction as the + and − next to the source indicate.

Sum of voltage drops = applied voltage

V1 + V2 + V3 = VT (4-2)

20 + 30 + 50 = 100

100 V = 100 V Check

4.3 In Fig. 4-13, a 12-V battery supplies a current of 2 A. If R2 = 2 �, find R1 and V1.

Step 1. Find RT . By Ohm’s law,

RT = VT

I
= 12

2
= 6 �

Step 2. Find R1.

RT = R1 + R2 (4-1)
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Fig. 4-13

Transposing,

R1 = RT − R2 = 6 − 2 = 4 � Ans.

Step 3. Find V1.

V1 = IR1 = 2(4) = 8 V Ans.

An alternative method of solution is using voltage drops.

Step 1. Find V1.

VT = V1 + V2

Transposing,

V1 = VT − V2 = 12 − V2

But V2 = IR2

so V1 = 12 − IR2 = 12 − 2(2) = 12 − 4 = 8 V Ans.

Step 2. Find R1.

R1 = V1

I
= 8

2
= 4 � Ans.

4.4 For the circuit in Fig. 4-14, find the voltage drop of R3.

Sum of voltage drops = applied voltage

10 + 15 + V3 + 8 + 10 = 60

43 + V3 = 60

V3 = 60 − 43 = 17 V Ans.
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Fig. 4-14

4.5 A series circuit (Fig. 4-15a) uses ground as a common connection and a reference point for voltage
measurement. (The ground connection is at 0 V.) Mark the polarity of the voltage drops across the
resistances R1, R2, and find the voltage drops at points A and B with respect to ground.

Fig. 4-15

Step 1. Mark the polarities. The current I flows from the positive terminal of the battery through R1,
through ground, up through R2, and back to the negative terminal of the battery (Fig. 4-15b).
Assign a + sign where the current enters the resistance and a − sign to the end where
the current emerges (Fig. 4-15b). Mark the ground voltage 0 V as the reference to measure
voltage drops.

Step 2. Find the total resistance, using Eq. (4-1).

RT = R1 + R2 = 100 + 100 = 200 �

Step 3. Find the current in the circuit.

I = VT

RT

= 100

200
= 0.5 A

Step 4. Find the voltage drops.

V1 = IR1 = 0.5(100) = 50 V

V2 = IR2 = 0.5(100) = 50 V

Step 5. Find voltage polarity at points A and B. Point A is 50 V positive with respect to ground,
while point B is 50 V negative with respect to ground (Fig. 4-15c). Point A is nearer to the
positive terminal, while point B is nearer to the negative terminal.
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Step 6. Verify the voltage drops.

Sum of voltage drops = applied voltage

VT = V1 + V2

100 = 50 + 50

100 V = 100 V Check

4.6 The terminal voltage of the motor (Fig. 4-16) should be not less than 223 V at a rated current of
20 A. Utility voltage variations produce a minimum of 228 V at the panel. What size branch circuit
conductors are needed?

Find the minimum allowable wire size for the voltage drop by calculating its resistance. The max-
imum voltage drop is 228−223 = 5 V. Then the maximum wire resistance is 5/20 = 0.25 �/500 ft =
0.50 �/1000 ft. From Table 4-1, No. 6 wire is satisfactory since it has 0.40 �/1000 ft (No. 7 wire has
0.51 �/1000 ft).

Fig. 4-16 Fig. 4-17

4.7 How much current will flow in the circuit (Fig. 4-17) if No. 12 conductors are (a) copper, (b) tungsten,
and (c) nichrome? (Temperature is 20◦C.)

(a) Copper conductor:

ρ = 10.4 (Table 4-2)

A = 6530 CM (Table 4-1)

Copper conductor resistance:

R = ρ
l

A
(4-5)

= 10.4(200)

6530
= 0.319 �

Total circuit resistance = conductor resistance + load resistance

RT = R + RL = 0.319 + 10 = 10.319 �

I = V

RT

= 120

10.319
= 11.6 A Ans.

(b) Tungsten conductor:

ρ = 33.8 (Table 4-2)

A = 6530 CM (equal diameter of copper conductor)
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R = ρ
l

A
(4-5)

= 33.8(200)

6530
= 1.035 �

RT = R + RL = 1.035 + 10 = 11.035 �

I = V

RT

= 120

11.035
= 10.9 A Ans.

(c) Nichrome conductor:

ρ = 676 (Table 4-2)

A = 6530 CM (equal diameter of copper conductor)

R = ρ
l

A
(4-5)

= 676(200)

6530
= 20.7 �

RT = R + RL = 20.7 + 10 = 30.7 �

I = V

RT

= 120

30.7
= 3.91 A Ans.

Notice that as the factor ρ increases, the circuit resistance increases and the circuit current
decreases.

4.8 Five lamps are connected in series (Fig. 4-18). Each lamp requires 16 V and 0.1 A. Find the total power
used.

Fig. 4-18

The total voltage VT equals the sum of the individual voltage across all parts in the series circuit.

VT = V1 + V2 + V3 + V4 + V5 (4-2)

= 16 + 16 + 16 + 16 + 16 = 80 V

The current through each resistance (lamp) is the single current in the series circuit.

I = 0.1 A
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So the total power is PT = IVT (4-7)

= 0.1(80) = 8 W Ans.

Also total power is the sum of the individual powers.

For one lamp, P1 = V1I = 16(0.1) = 1.6 W

For five lamps, PT = 5P1 = 5(1.6) = 8 W Ans.

4.9 Find I , V1, V2, P2, and R2 in the circuit shown (Fig. 4-19).

Fig. 4-19

Step 1. Find I .
Use the power formula, P1 = I 2

1 R1. Then

I 2
1 = P1

R1
= 80

5
= 16

Taking the square root,

I1 = √
16 = 4 A

Since this is a series circuit,

I = I1 = 4 A Ans.

Step 2. Find V1, V2.

V1 = IR1 = 4(5) = 20 V Ans.

V2 = VT − V1 = 120 − 20 = 100 V Ans.

Step 3. Find P2, R2.

P2 = V2I = 100(4) = 400 W Ans.

R2 = V2

I
= 100

4
= 25 � Ans.
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4.10 Three 20-k� resistors R1, R2, and R3 are in series across an applied voltage of 120 V. What is the
voltage drop across each resistor?

Since R1, R2, and R3 are equal, each has exactly one-third the total resistance of the series circuit
and one-third the total voltage drop. So

V = 1

3
120 = 40 V Ans.

4.11 Use the voltage-divider method to find voltage drop (Fig. 4-20) across each resistor.

V1 = R1

RT

VT = 3

10
10 = 3 V Ans.

V2 = R2

RT

VT = 7

10
10 = 7 V Ans.

Fig. 4-20

An important advantage of using the voltage-divider formula is that we can find the voltage drops
from VT and the resistances without finding the current.

If we found the current first, then we could calculate the voltage drop by multiplying current and
resistance. For example,

I = VT

RT

= VT

R1 + R2
= 10

3 + 7
= 10

10
= 1 A

Then V1 = IR1 = 1(3) = 3 V Check

V2 = IR2 = 1(7) = 7 V Check

4.12 Compare the effect on voltage drop of a 1-� resistor and a 99-� resistor in series.

Because series voltage drops are proportional to the resistances, a very small resistance (1 �) has
a very small effect in series with a much larger resistance (99 �). For example, if the applied voltage
were 100 V, the voltage drop across the 1-� resistor would be 1 V [(1/100)(100) = 1 V], while across
the 99-� resistor it would be 99 V [(99/100)(100) = 99 V].

4.13 A voltage of 5 V is to be made available from a 12-V source using a two-resistor voltage divider
(Fig. 4-21). The current in the divider is to be 100 mA. Find the values for resistors R1 and R2.

Step 1. Find RT .

RT = VT

I
= 12

100 × 10−3
= 120 �
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Fig. 4-21

Step 2. Find R1. From Fig. 4-21, tracing the voltage across the resistors from ground at 0 V, we
have 5 V across R2 (V2 = 5 V), so that there is 7 V across R1 (V1 = 7 V) for a total of 12 V
(VT = 12 V). Use the voltage-divider formula.

V1 = R1

RT

VT (4-9)

Then R1

RT

= V1

VT

= 7

12

The ratio of the two resistors is known because the ratio of the two voltages is 7/12. So

R1 = 7

12
RT = 7

12
120 = 70 � Ans.

Step 3. Find R2.

RT = R1 + R2

Transpose and substitute.

R2 = RT − R1 = 120 − 70 = 50 � Ans.

Supplementary Problems

4.14 What is the total resistance of three 20-� resistors connected in series? Ans. 60 �

4.15 A car has a 3-V, 1.5-� dash light and a 3-V, 1.5-� taillight connected in series to a battery delivering
2 A (Fig. 4-22). Find the battery voltage and total resistance of the circuit.
Ans. VT = 6 V; RT = 3.0 �

4.16 A 3-�, a 5-�, and a 4-� resistor are connected in series across a battery. The voltage drop across a
3-� resistor is 6 V. What is the battery voltage? Ans. 24 V

4.17 If three resistors are connected in series across a 12-V battery and the voltage drop across one resistor
is 3 V and the voltage drop across the second resistor is 7 V, what is the voltage drop across the third
resistor? Ans. 2 V
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Fig. 4-22

4.18 A lamp using 10 V, a 10-� resistor drawing 4 A, and a 24-V motor are connected in series. Find the
total voltage and the total resistance. Ans. VT = 74 V; RT = 18.5 �

4.19 Find the missing values of current, voltage, and resistance in a high-voltage regulator circuit in a color
television receiver (Fig. 4-23). The voltage drop across each resistor is used to supply voltage in other
parts of the receiver.
Ans. V1 = 700 V, I2 = 0.07 mA; V2 = 105 V, I3 = 0.07 mA;

R3 = 500 k�, VT = 840 V; RT = 12 M�, I = 0.07 mA

Fig. 4-23 Fig. 4-24

4.20 Given I = 2 A, R1 = 10 �, V2 = 50 V, and V3 = 40 V, find V1, VT , R2, R3, and RT (Fig. 4-24).
Ans. V1 = 20 V ; VT = 110 V; R2 = 25 �; R3 = 20 �; RT = 55 �

4.21 A current of 3 mA flows through a resistor that is connected to a 1.5-V dry cell. If three additional
1.5-V cells are connected in series to the first cell, find the current flowing through the resistor.
Ans. I = 0.012 A = 12 mA

4.22 A voltage divider consists of a 3000-�, a 5000-�, and 10 000-� resistor in series. The series current
is 15 mA. Find (a) the voltage drop across each resistance, (b) the total voltage, and (c) the total
resistance.
Ans. (a) V1 = 45 V, V2 = 75 V, V3 = 150 V; (b) VT = 270 V; (c) RT = 18 000 �

4.23 A dc circuit to a specialized transistor circuit can be represented as shown in Fig. 4-25. Find the total
resistance and voltage between points A and B. Ans. RT = 50 k�; VAB = 30 V

4.24 A 12-� spotlight in a theater is connected in series with a dimming resistor of 32 � (Fig. 4-26). If the
voltage drop across the light is 31.2 V, find the missing values indicated in Fig. 4-26.



 

72 DIRECT-CURRENT SERIES CIRCUITS [CHAP. 4

Fig. 4-25 Fig. 4-26

Ans. I1 = I2 = I = 2.6 A; V2 = 83.2 V; VT = 114.4 V; RT = 44 �

4.25 Find all missing values of current, volt-
age, and resistance in the circuit shown
in Fig. 4-27.

Ans. V3 = 30 V;
I = I1 = I2 = I3 = 0.667 A;

R1 = 30 �,

R2 = 90 �,

R3 = 45 �

Fig. 4-27

4.26 Find voltage values at points A, B, C, and D shown in the circuit (Fig. 4-28) with respect to ground.
Ans. VA = +60 V; VB = +50 V; VC = +30 V; VD = 0 V

Fig. 4-28
Fig. 4-29

4.27 Find the voltage at points A and B with respect to ground (Fig. 4-29).
Ans. VA = +20 V; VB = −30 V

4.28 A coil is wound with 4000 turns of No. 20 copper wire. If the average amount of wire in a turn is 3 in,
how much is the total resistance of the coil? What will be its resistance if No. 25 wire is used instead?
(The temperature is 25◦C.) Ans. 10.35 �, 33.0 �
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4.29 Find the voltage drop across 1000 ft of No. 10 gauge copper wire connected to a 3-A load.
Ans. 3.05 V

4.30 If total line length is 200 ft, find the smallest size copper wire that will limit the line drop to 5 V with
115 V applied and a 6-A load. Ans. No. 16 copper wire

4.31 A copper wire has a diameter of 0.031 96 in. Find (a) the circular-mil area, (b) its AWG size, and
(c) the resistance of a 200-ft length. Ans. (a) 1024 CM; (b) No. 20; (c) 2.07 �

(for No. 20 wire)

4.32 What is the resistance of a 200-ft length of (a) No. 16 copper wire and (b) No. 20 aluminum wire?
(Obtain diameter from Table 4-1.) Ans. (a) 0.805 �; (b) 1.32 �

4.33 A copper conductor measures 0.8 � at 20◦C. What is its resistance at 25◦C? Ans. 0.816 �

4.34 If a copper wire has a resistance of 4 � at 20◦C, how much is its resistance at 75◦C? If the wire is No.
10, what is its length in feet? Ans. 4.88 �, 4800 ft

4.35 Calculate the load current I (Fig. 4-30) for the wire IR drop of 24.6 V with a supply of 115 V. Also
find the value of RL. Ans. I = 30 A; RL = 3.01 �

Fig. 4-30 Fig. 4-31

4.36 Two resistors form the base-bias voltage divider for an audio amplifier. The voltage drops across them
are 2.4 V and 6.6 V in the 1.5-mA circuit. Find the power used by each resistor and the total power
used in milliwatts (mW). Ans. P1 = 3.6 mW; P2 = 9.9 mW; PT = 13.5 mW

4.37 Find I , V1, V2, P1, P2, and PT (Fig. 4-31).
Ans. I = 5 mA; V1 = 10 V; V2 = 30 V; P1 = 50 mW; P2 = 150 mW; PT = 200 mW

4.38 Find V1, V2, V3, P1, P2, P3, PT , and R3 (Fig. 4-32).
Ans. V1 = 30 V; V2 = 15 V; V3 = 55 V; P1 = 150 mW; P2 = 75 mW; P3 = 275 mW;

PT = 500 mW; R3 = 11 k�

Fig. 4-32 Fig. 4-33
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4.39 Find PT , P2, and V3 (Fig. 4-33). Ans. PT = 298 µW; P2 = 99.5 µW; V3 = 13 V

4.40 A 90-� and a 10-� resistor are in series across a 3-V source. Find the voltage drop across each resistor
by the voltage-divider method. Ans. 2.7 V, 0.3 V

4.41 Eight 10-� resistances are in series across a 120-V source. What is the voltage drop across each
resistance? Ans. 15 V

4.42 A potentiometer can be considered a simple two-resistor voltage divider (Fig. 4-34). To what resistance
point would the control arm have to be set in a 120-� potentiometer to obtain 2.5 V between the arm
(point A) of the potentiometer and ground (point B)? Ans. 25-� point from ground

Fig. 4-34

4.43 Find the IR drop across each resistor in the following circuits by the voltage-divider method (Fig. 4-35).

Ans. (a) V1 = 60 V; V2 = 180 V (b) V1 = 25 V; V2 = 50 V; V3 = 35 V (c) V1 = 11.5 V;
V2 = 23 V; V3 = 34.5 V; V4 = 46 V

Fig. 4-35



 

Chapter 5

Direct-Current Parallel Circuits

VOLTAGE AND CURRENT IN A PARALLEL CIRCUIT

A parallel circuit is a circuit in which two or more components are connected across the same voltage
source (Fig. 5-1). The resistors R1, R2, and R3 are in parallel with each other and with the battery. Each
parallel path is then a branch with its own individual current. When the total current IT leaves the voltage
source V , part I1 of the current IT will flow through R1, part I2 will flow through R2, and the remainder I3
through R3. The branch currents I1, I2, and I3 can be different. However, if a voltmeter (an instrument for
measuring the voltage of a circuit) is connected across R1, R2, and R3, the respective voltages V1, V2, and V3
will be equal. Therefore,

V = V1 = V2 = V3 (5-1)

Fig. 5-1 A parallel circuit

The total current IT is equal to the sum of all branch currents.

IT = I1 + I2 + I3 (5-2)

This formula applies for any number of parallel branches whether the resistances are equal or unequal.
By Ohm’s law, each branch current equals the applied voltage divided by the resistance between the two

points where the voltage is applied. Hence (Fig. 5-1), for each branch we have the following equations:

Branch 1: I1 = V1

R1
= V

R1

Branch 2: I2 = V2

R2
= V

R2
(5-3)

Branch 3: I3 = V3

R3
= V

R3

With the same applied voltage, any branch that has less resistance allows more current through it than a branch
with higher resistance.

Example 5.1 Two lamps each drawing 2 A and a third lamp drawing 1 A are connected in parallel across a 110-V line
(Fig. 5-2). What is the total current?

75
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Fig. 5-2

The formula for total current is

IT = I1 + I2 + I3 (5-2)

= 2 + 2 + 1 = 5 A Ans.

The total current is 5 A.

Example 5.2 Two branches R1 and R2 across a 110-V power line draw a total line current of 20 A (Fig. 5-3). Branch R1
takes 12 A. What is the current I2 in branch R2?

Fig. 5-3

Starting with Eq. (5-2), transpose to find I2 and then substitute given values.

IT = I1 + I2

I2 = IT − I1

= 20 − 12 = 8 A Ans.

The current in branch R2 is 8 A.

Example 5.3 A parallel circuit consists of a coffee maker, a toaster, and a frying pan plugged into a kitchen appliance
circuit on a 120-V line (Fig. 5-4a). What currents will flow in each branch of the circuit and what is the total current drawn
by all the appliances?

First, draw the circuit diagram (Fig. 5-4b). Show the resistance for each appliance. There is a 120-V potential across
each appliance. Then, using Eq. (5-3), apply Ohm’s law to each appliance.

Coffee maker: I1 = V

R1
= 120

15
= 8 A Ans.

Toaster: I2 = V

R2
= 120

15
= 8 A Ans.

Frying pan: I3 = V

R3
= 120

12
= 10 A Ans.
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Fig. 5-4

Now find total current, using Eq. (5-2).

IT = I1 + I2 + I3

= 8 + 8 + 10 = 26 A Ans.

With this load of 26 A, a 20-A circuit breaker or fuse will open the circuit. This example shows the desirability of having
two 20-A kitchen appliance circuits.

RESISTANCES IN PARALLEL

Total Resistance

The total resistance in a parallel circuit is found by applying Ohm’s law: Divide the common voltage
across the parallel resistances by the total line current.

RT = V

IT

(5-4)

RT is the total resistance of all the parallel branches across the voltage source V , and IT is the sum of all the
branch currents.

Example 5.4 What is the total resistance of the circuit shown in Fig. 5-4 (Example 5.3)?
In Example 5.3 the line voltage is 120 V and the total line current is 26 A. Therefore,

RT = V

IT
= 120

26
= 4.62 � Ans.
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The total load connected to the 120-V line is the same as the single equivalent resistance of 4.62 � connected across the
line (Fig. 5-5). The words total resistance and equivalent resistance are used interchangeably.

Fig. 5-5 Equivalent circuit to
that of Fig. 5-4

General Reciprocal Formula

The total resistance in parallel is given by the formula

1

RT

= 1

R1
+ 1

R2
+ 1

R3
+ · · · + 1

Rn

(5-5)

where RT is the total resistance in parallel and R1, R2, R3, and Rn are the branch resistances.

Example 5.5 Find the total resistance of a 2-�, a 4-�, and an 8-� resistor in parallel (Fig. 5-6).

Fig. 5-6

Write the formula for three resistances in parallel.

1

RT
= 1

R1
+ 1

R2
+ 1

R3
(5-5)

Substitute the resistance values.

1

RT
= 1

2
+ 1

4
+ 1

8

Add fractions.

1

RT
= 4

8
+ 2

8
+ 1

8
= 7

8
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Invert both sides of the equation to solve for RT .

RT = 8

7
= 1.14 � Ans.

Note that when resistances are connected in parallel, the total resistance is always less than the resistance of any single
branch. In this case, RT = 1.14 � is less than R1 = 2 �, R2 = 4 �, and R3 = 8 �.

Example 5.6 Add a fourth resistor of 2 � in parallel to the circuit in Fig. 5-6. What is the new total resistance and what
is the net effect of adding another resistance in parallel?

Write the formula for four resistances in parallel.

1

RT
= 1

R1
+ 1

R2
+ 1

R3
+ 1

R4
(5-5)

Substitute values.

1

RT
= 1

2
+ 1

4
+ 1

8
+ 1

2

Add fractions.

1

RT
= 4

8
+ 2

8
+ 1

8
+ 4

8
= 11

8

Invert.

RT = 8

11
= 0.73 � Ans.

Thus we see that the net effect of adding another resistance in parallel is a reduction of the total resistance from 1.14
to 0.73 �.

Simplified Formulas

The total resistance of equal resistors in parallel is equal to the resistance of one resistor divided by the
number of resistors.

RT = R

N
(5-6)

where RT = total resistance of equal resistors in parallel, �

R = resistance of one of the equal resistors, �

N = number of equal resistors

Example 5.7 Four lamps, each having a resistance of 60 �, are connected in parallel. Find the total resistance.
Given are

R = R1 = R2 = R3 = R4 = 60 �

N = 4

Write Eq. (5-6) and substitute values.

RT = R

N
= 60

4
= 15 � Ans.
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When any two unequal resistors are in parallel, it is often easier to calculate the total resistance by
multiplying the two resistances and then dividing the product by the sum of the resistances.

RT = R1R2

R1 + R2
(5-7)

where RT is the total resistance in parallel and R1 and R2 are the two resistors in parallel.

Example 5.8 Find the total resistance of a 6-� and an 18-� resistor in parallel.
Given are R1 = 6 �, R2 = 18 �.
Write Eq. (5-7) and substitute values.

RT = R1R2

R1 + R2
= 6(18)

6 + 18
= 108

24
= 4.5 � Ans.

In some cases with two parallel resistors, it is useful to find what size Rx to connect in parallel with a
known R in order to obtain a required value of RT . To find the appropriate formula, we start with Eq. (5-7)
and transpose the factors as follows:

RT = RRx

R + Rx

Cross-multiply. RT R + RT Rx = RRx

Transpose. RRx − RT Rx = RT R

Factor. Rx(R − RT ) = RT R

Solve for Rx . Rx = RRT

R − RT

(5-8)

Example 5.9 What value of resistance must be added in parallel with a 4-� resistor to provide a total resistance of 3 �

(Fig. 5-7)?

Fig. 5-7

Given are R = 4 � and RT = 3 �. Write Eq. (5-8) and substitute values.

Rx = RRT

R − RT
= 4(3)

4 − 3
= 12

1
= 12 � Ans.

OPEN AND SHORT CIRCUITS

An “open” in any part of a circuit is, in effect, an extremely high resistance that results in no current
flow in the circuit. When there is an open in the main line (the “X” in Fig. 5-8a), current to all the parallel
branches is stopped. When there is an open in one branch (branch 2 in Fig. 5-8b), only that branch will have no
current. However, current in branches 1 and 3 will continue to flow as long as they are connected to the voltage
source.
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Fig. 5-8 Open parallel circuits

Fig. 5-9 Short in parallel circuit

A “short” in any part of a circuit is, in effect, an extremely low resistance. The result is that very high current
will flow through the short circuit. Assume that a conducting wire at point a in Fig. 5-9 should accidentally
contact the wire at point b. Since the wire is an excellent conductor, the short circuit offers a parallel path with
practically zero resistance from points a to b. Almost all the current will flow in this path. Since the resistance
of the short circuit is practically zero, the voltage drop across ab will be almost zero (by Ohm’s law). Thus
resistors R1, R2, and R3 will not draw their normal current.

Example 5.10 Find the current in each parallel branch (Fig. 5-10a). If the resistor in the second branch burns out,
causing an open circuit (Fig. 5-10b), find the new branch currents.

Use Eq. (5-3) and substitute values. With circuits normal (Fig. 5-10a),

Fig. 5-10

I1 = V

R1
= 10

20
= 0.5 A Ans.

I2 = V

R2
= 10

20
= 0.5 A Ans.
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With branch 2 open (Fig. 5-10b),

I1 = V

R1
= 10

20
= 0.5 A Ans.

I2 = 0 A Ans.

Branch 1 still operates normally at 0.5 A. This example shows the advantage of wiring components in parallel. An open
circuit in one component merely opens the branch containing the component, while the other parallel branch keeps its
normal voltage and current.

DIVISION OF CURRENT IN TWO PARALLEL BRANCHES

It is sometimes necessary to find the individual branch currents in a parallel circuit if the resistances and
total current are known, but the voltage across the resistance bank is not known. When only two branches are
involved, the current in one branch will be some fraction of the total current. This fraction is the quotient of
the second resistance divided by the sum of the resistances.

I1 = R2

R1 + R2
IT (5-9)

I2 = R2

R1 + R2
IT (5-10)

where I1 and I2 are the currents in the respective branches. Notice that the equation for each branch current
has the opposite R in the numerator. The reason is that each branch current is inversely proportional to
the branch resistance. The denominator is the same in both equations, equal to the sum of the two branch
resistances.

Example 5.11 Find the branch currents I1 and I2 for the circuit shown in Fig. 5-11.

Fig. 5-11

Given are IT = 18 A, R1 = 3 �, and R2 = 6 �. Write the equations and substitute values.

I1 = R2

R1 + R2
IT (5-9)

= 6

3 + 6
18 = 6

9
18 = 12 A Ans.

I2 = R2

R1 + R2
IT = 3

9
18 = 6 A Ans. (5-10)
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Since IT and I1 were known, we could have found I2 simply by subtracting:

IT = I1 + I2

I2 = IT − I1 = 18 − 12 = 6 A Ans.

CONDUCTANCES IN PARALLEL

Conductance is the opposite of resistance. The less the resistance, the higher the conductance. The symbol
for conductance is G and its unit is siemens (S). G is the reciprocal of R, or

G = 1

R
(5-11)

For example, 6 � resistance is equal to 1/6 S conductance.
Since conductance is equal to the reciprocal of resistance, the reciprocal resistance equation, Eq. (5-5),

can be written for conductance as

GT = G1 + G2 + G3 + · · · + Gn (5-12)

where GT is the total conductance in parallel and G1, G2, G3, and Gn are the branch conductances.

Example 5.12 Find the total conductance of the circuit in Fig. 5-12. Then find the total resistance RT and check the
value with that computed in Example 5.5.

Fig. 5-12

This circuit is the same as that of Fig. 5-6 used in Example 5.5. Convert each branch resistance to conductance, using
Eq. (5-11), and then add the values of conductance to obtain GT .

G1 = 1

R1
= 1

2
= 0.5 S

G2 = 1

R2
= 1

4
= 0.25 S

G3 = 1

R3
= 1

8
= 0.125 S

GT = G1 + G2 + G3 (5-12)

= 0.5 + 0.25 + 0.125 = 0.875 S Ans.

Finally

RT = 1

GT
= 1

0.875
= 1.14 � Ans.

which agrees with the RT value found in Example 5.5.
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Ohm’s law can be written in terms of conductance. Recall that

RT = V

IT

(5-4)

IT = V

RT

But 1/RT = GT , so

IT = V GT (5-13)

Example 5.13 If the source voltage across the parallel bank in Fig. 5-12 is 100 V, find the total current.
Given are V = 100 V and GT = 0.875 S. Using Eq. (5-13),

IT = V GT = 100(0.875) = 87.5 A Ans.

POWER IN PARALLEL CIRCUITS

Since the power dissipated in the branch resistance must come from the voltage source, the total power
equals the sum of the individual values of power in each branch.

PT = P1 + P2 + P3 + · · · + Pn (5-14)

where PT is the total power and P1, P2, P3, and Pn are the branch powers.
Total power can also be calculated by the equation

PT = V IT (5-15)

where PT is the total power, V is the voltage source across all parallel branches, and IT is the total current.
The power P dissipated in each branch is equal to VI and equal to V 2/R.
In both parallel and series arrangements, the sum of the individual values of power dissipated in the circuit

equals the total power generated by the source. The circuit arrangements cannot change the fact that all power
in the circuit comes from the source.

Example 5.14 Find the power dissipated in each branch and the total power of the circuit in Fig. 5-13.

Fig. 5-13



 

CHAP. 5] DIRECT-CURRENT PARALLEL CIRCUITS 85

First find the branch current and the power in each branch.

I1 = V

R1
= 20

10
= 2 A

I2 = V

R2
= 20

5
= 4 A

P1 = V I1 = 20(2) = 40 W Ans.

P2 = V I2 = 20(4) = 80 W Ans.

Then add these values for power in each branch to find PT .

PT = P1 + P2 (5-14)

= 40 + 80 = 120 W Ans.

Another way to find PT is to solve for IT .

IT = I1 + I2 = 2 + 4 = 6A

Then PT = V IT (5-15)

= 20(6) = 120 W Ans.

The 120 W of power supplied by the source is dissipated in the branch resistances.
There are still other ways to find power used in each branch and total power.

P1 = V 2

R1
= (20)2

10
= 40 W

P2 = V 2

R2
= (20)2

5
= 80 W

PT = V 2

RT
= V 2GT = (20)2(0.3) = 120 W

where
GT = 1

RT
= R1 + R2

R1R2
= 10 + 5

10(5)
= 0.3 S

Solved Problems

5.1 Write the word or words which most correctly complete the following statements.

(a) The equivalent resistance RT of parallel branches is ___________ than the smallest branch
resistance since all the branches must take ___________ current from the source than any one
branch.

(b) When two resistances are connected in parallel, the voltage across each is the ___________.

(c) An open in one branch results in ___________ current through that branch, but the other branches
can have their ___________ current.
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(d) A short circuit has ___________ resistance, resulting in ___________ current.

(e) If each of two resistances connected in parallel dissipates 5 W, the total power supplied by the
voltage source equals ___________ W.

Ans. (a) less, more; (b) same; (c) zero, normal; (d) zero, excessive; (e) 10

5.2 Branch circuits in a house wiring system are parallel circuits. A toaster, a coffee maker, and a frying
pan are plugged into a kitchen appliance circuit across a 110-V line (Fig. 5-14). The current through
the toaster is 8.3 A; through the coffee maker, 8.3 A; and through the frying pan, 9.6 A. Find (a) the
total current from the main line, (b) the voltage across each appliance, and (c) the total resistance of
the circuit.

Fig. 5-14

(a) Find IT .

IT = I1 + I2 + I3 (5-2)

= 8.3 + 8.3 + 9.6 = 26.2 A Ans.

(b) Find V1, V2, V3, using Eq. (5-1).

V = V1 = V2 = V3 = 110 V Ans.

(c) Find RT .

RT = V

IT

(5-4)

= 110

26.2
= 4.198 = 4.20 � Ans.

5.3 Four 60-W lamps, each having the same resistance, are connected in parallel across a household
terminal of 120 V, producing a line current of 2 A (Fig. 5-15a). The schematic diagram shows resistances
that represent the lamps (Fig. 5-15b). What is (a) the equivalent resistance of the circuit, (b) the
resistance R of each lamp, and (c) the current that each lamp draws?

(a)
RT = V

IT

= 120

2
= 60 � Ans.

(b)
RT = R

N
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Fig. 5-15

so that

R = RT N = 60(4) = 240 � Ans.

(c) I1 = I2 = I3 = I4 = IT

N
= 2

4
= 0.5 A Ans.

With equal resistance in each branch, the current in each branch is equal and the power consumed
by each branch is equal.

5.4 For the circuit in Fig. 5-16, find (a) the total resistance, (b) each branch current, and (c) the total
current.

Fig. 5-16

(a) Since there are only two resistances in parallel, use the simplified formula, Eq. (5-7).

RT = R1R2

R1 + R2
= 20(30)

20 + 30
= 12 � Ans.
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(b) Use Eq. (5-3).

I1 = V

R1
= 12

20
= 0.6 A Ans.

I2 = V

R2
= 12

30
= 0.4 A Ans.

(c) IT = I1 + I2 = 0.6 + 0.4 = 1 A Ans.

Or, as a check,

IT = V

RT

= 12

12
= 1 A Ans.

5.5 Find the total resistance RT of each resistance arrangement in Fig. 5-17.

Fig. 5-17

(a) Use Eq. (5-7) for two parallel branches.

RT = R1R2

R1 + R2
= 12(20)

12 + 20
= 240

32
= 7.5 � Ans.

(b) Since all the resistances are equal, use Eq. (5-6).

RT = R

N
= 300

3
= 100 � Ans.

(c) For three parallel branches with different resistances, use Eq. (5-5).

1

RT

= 1

R1
+ 1

R2
+ 1

R3
= 1

12
+ 1

24
+ 1

36
= 11

72

RT = 72

11
= 6.55 � Ans.

Note that the total resistance of a parallel circuit is always less than the smallest resistance of any
individual resistor.
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5.6 A spotlight of unknown resistance is placed in parallel with an automobile cigarette lighter of 75 �

resistance (Fig. 5-18). If a current of 0.8 A flows when a voltage of 12 V is applied, find the resistance
of the spotlight.

Fig. 5-18

Find RT .

RT = V

IT

(5-4)

RT = 12

0.8
= 15 �

Then use Eq. (5-8) to the unknown resistance.

Rx = RRT

R − RT

= 75(15)

75 − 15
= 1125

60
= 18.8 � Ans.

Another way to find the answer is to use Ohm’s law and the total current equation.

Ilighter = 12

75
= 0.16 A Ans.

Ispot = 0.8 − 0.16 = 0.64 A Ans.

Rspot = 12

0.64
= 18.75 = 18.8 � Ans.

5.7 (a) Derive Eq. (5-7) RT = R1R2/(R1 +R2) from the reciprocal formula for two parallel resistances.

(b) Derive a formula for RT , given three parallel resistances.

(a) 1

RT

= 1

R1
+ 1

R2
(5-5)

Add fractions.

1

RT

= R2

R1R2
+ R1

R1R2
= R1 + R2

R1R2

Invert.

RT = R1R2

R1 + R2
which is Eq. (5-7)
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(b) Use the formula

1

RT

= 1

R1
+ 1

R2
= 1

R3
(5-5)

Find the common denominator and combine numerators.

1

RT

= R2R3 + R1R3 + R1R2

R1R2R3

Invert.

RT = R1R2R3

R1R2 + R1R3 + R2R3
Ans.

5.8 Find the voltage required to send 2 A through a parallel combination of a 20-�, a 30-�, and a 40-�
resistance (Fig. 5-19).

Fig. 5-19

Find RT .

1

RT

= 1

R1
+ 1

R2
+ 1

R3
(5-5)

= 1

20
+ 1

30
+ 1

40
= 13

120

RT = 120

13
= 9.23 �

Then V = IT RT = 2(9.23) = 18.5 V Ans.

As a check,

I1 = V

R1
= 18.5

20
= 0.925 A

I2 = V

R2
= 18.5

30
= 0.617 A

I3 = V

R3
= 18.5

40
= 0.463 A

IT = I1 + I2 + I3 = 0.925 + 0.617 + 0.463 = 2.005 ≈ 2 A

which checks with the given value. (The sum of the currents is not exactly 2 A due to rounding off the
individual branch currents.)
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5.9 Two resistances are arranged in parallel (Fig. 5-20). Find the current in each resistance.

Use formulas for the division of current.

I1 = R2

R1 + R2
IT (5-9)

= 18

18 + 72
30 = 18

90
30 = 6 mA Ans.

I2 = R1

R1 + R2
IT (5-10)

= 72

18 + 72
30 = 72

90
30 = 24 mA Ans.

Check: IT = I1 + I2 = 6 + 24 = 30 mA, which agrees with the given value.

Fig. 5-20 Fig. 5-21

5.10 Two resistors, each dissipating 2 W, are connected in parallel across 40 V (Fig. 5-21). What is the
current in each resistor? What is the total current drawn?

Find I1, I2, IT .

I1 = P1

V
= 2

40
= 0.05 A Ans.

I2 = P2

V
= 2

40
= 0.05 A Ans.

IT = I1 + I2 = 0.05 + 0.05 = 0.1 A Ans.

Check:

PT = P1 + P2 = 2 + 2 = 4 W

IT = PT

V
= 4

40
= 0.1 A

which agrees with the previously calculated value.

5.11 The combined resistance of a coffee percolator and toaster in parallel is 24 �. Find the total power
used if the line voltage is 120 V.

PT = V 2

RT

= (120)2

24
= 600 W Ans.
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5.12 Find I3 in the parallel current–divider circuit (Fig. 5-22).

Fig. 5-22

Find RT .

1

RT

= 1

R1
+ 1

R2
+ 1

R3
+ 1

R4

= 1

4
+ 1

4
+ 1

5
+ 1

10
= 32

40
(5-5)

RT = 40

32
= 1.25 �

Find V .

V = IT RT = 96(1.25) = 120 mV

Then find I3.

I3 = V

R3
= 120

5
= 24 mA Ans.

Supplementary Problems

5.13 Write the word or words which most correctly complete the following statements.

(a) There is only voltage across all components in parallel.

(b) If a parallel circuit is open in the main line, the current is in all the branches.

(c) For any number of conductances in parallel, their values are to obtain GT .

(d) When IT divides into branch currents, each branch current is proportional to
the branch resistance.

(e) The sum of the values of power dissipated in parallel resistances equals the
power produced by the source.

Ans. (a) one; (b) zero; (c) added; (d) inversely; (e) individual, total

5.14 A 100-� and a 150-� resistor are connected in parallel. What is the total resistance?
Ans. RT = 60 �

5.15 When the voltage across R4 is 10 V, what is the source voltage in Fig. 5-23?
Ans. V = 10 V
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Fig. 5-23

5.16 Find the equivalent resistances in the circuits shown in Fig. 5-24.
Ans. (a) RT = 1 �; (b) RT = 2 �; (c) RT = 4.8 �; (d) RT = 3.6 �

Fig. 5-24

5.17 Find the missing branch or total current as indicated in Fig. 5-25.
Ans. (a) IT = 3 A; (b) I3 = 2 A

Fig. 5-25

5.18 Four equal resistances are connected in parallel across a 90-V source. If the resistances are 36 � for
each branch, find the total resistance and the total current. Ans. RT = 9 �; IT = 10 A

5.19 Find the total resistance, each branch current, and total current (Fig. 5-26).
Ans. RT = 2.67 �; I1 = 2 A; I2 = 1 A; IT = 3 A

5.20 In the circuit shown (Fig. 5-27), find the total resistance, each branch current, and total current.
Ans. RT = 4 �; I1 = 20 A; I2 = 4 A; I3 = 1 A; IT = 25 A

5.21 If the 25-� resistor is removed from the circuit in Fig. 5-27, what is the total current and total
resistance? Ans. IT = 21 A; RT = 4.76 �
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Fig. 5-26 Fig. 5-27

5.22 An ammeter (instrument that measures current) carries 0.05 A and is in parallel with a shunt resistor
drawing 1.9 A (Fig. 5-28). If the voltage across the combination is 4.2 V, find (a) the total current,
(b) resistance of the shunt, (c) resistance of the ammeter, and (d) total resistance.
Ans. (a) IT = 1.95 A; (b) Shunt R = 2.21 �; (c) Ammeter R = 84.0 �; (d) RT = 2.15 �

Fig. 5-28

5.23 Find the total resistance, each branch current, and total current (Fig. 5-29).
Ans. RT = 2.67 �; I1 = 8 A; I2 = 6 A; I3 = 4 A; IT = 18 A

Fig. 5-29

5.24 A circuit consists of five identical resistances connected in parallel across a voltage source. If the total
circuit current is 1 A, what is the current through each resistance? Ans. I = 0.2 A

5.25 In the circuit of Fig. 5-30, find V if I3 = 0.2 A. Then find IT . Ans. V = 2 V; IT = 0.4 A

5.26 The ignition coil and the starting motor of a car are connected in parallel across a 12-V battery through
an ignition switch (Fig. 5-31). Find (a) the total current drawn from the battery, (b) the voltage across
the coil and the motor, and (c) the total resistance of the circuit.
Ans. (a) I = 105 A; (b) V1 = V2 = 12 V; (c) RT = 0.114 �
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Fig. 5-30 Fig. 5-31

5.27 Two headlight lamps, each drawing 4 A, and two taillight lamps, each drawing 1 A, are wired in parallel
across a 12-V storage battery. What is the total current drawn and the total resistance of the circuit?
Ans. IT = 10 A; RT = 1.2 �

5.28 What is the value of a resistor that must be connected in parallel across a 100-k� resistance to reduce
RT to (a) 50 k�, (b) 25 k�, and (c) 10 k�?
Ans. (a) Rx = 100 k�; (b) Rx = 33.3 k�; (c) Rx = 11.1 k�

5.29 What resistance must be connected in parallel with a 20-� and a 60-� resistor in parallel in order to
provide a total resistance of 10 �? Ans. 30 �

5.30 Two resistances are connected in parallel. R1 = 24 �, R2 = 24 �, and IT = 6 A. Find the current in
each branch. Ans. I1 = I2 = 3 A

5.31 Find the current in each branch of a parallel circuit consisting of a 20-� percolator and a 30-� toaster
if the total current is 10 A. Ans. I in percolator = 6 A; I in toaster = 4 A

5.32 Find the missing values in Fig. 5-32. Ans. V = 4.5 V; I1 = 1.50 A; I2 = 1.13 A; I3 = 0.38 A

Fig. 5-32 Fig. 5-33

5.33 Find the missing values in Fig. 5-33.
Ans. R3 = 40 �; RT = 5.33 �; I1 = 3.2 A; I2 = 2 A; IT = 6 A

5.34 Find the total conductance in siemens for the following parallel branches: G1 = 6000 µS, G2 =
7000 µS, and G3 = 20 000 µS. Ans. GT = 33 000 µS

5.35 IT is 12 mA for two branch resistances. R1 is 10 k� and R2 is 36 k�. Find I1 and I2 in this parallel
current–divider circuit. Ans. I1 = 9.39 mA; I2 = 2.61 mA

5.36 What is the total power used by a 4.5-A electric iron, a 0.9-A fan, and a 2.4-A refrigerator motor if
they are all connected in parallel across a 120-V line? Ans. PT = 936 W
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5.37 Find the power drawn from a 12-V battery by a parallel circuit of two headlights, each drawing 4.2 A,
and two taillights, each drawing 0.9 A. Ans. PT = 122.4 W

5.38 Five 150-W light bulbs are connected in parallel across a 120-V power line. If one bulb opens, how
many bulbs can light? Ans. Four

5.39 In Fig. 5-34 find (a) each branch current; (b) IT ; (c) RT ; and (d) P1, P2, P3, and PT .
Ans. (a) I1 = 30 mA, I2 = 14.6 mA, I3 = 60 mA; (b) IT = 104.6 mA; (c) RT = 1.15 k�;
(d) P1 = 3.60 W, P2 = 1.75 W, P3 = 7.20 W, PT = 12.6 W

Fig. 5-34

5.40 Find R2 in Fig. 5-35. Ans. R2 = 1 k�

Fig. 5-35

5.41 Refer to Fig. 5-34 and assume that R2 opens. (a) What is the current through R2? (b) What is the
current through R1? and through R3? (c) What is the line or total current? (d) What is the total
resistance of the circuit? (e) How much power is generated by the battery?
Ans. (a) I2 = 0 A; (b) I1 = 30 mA, I3 = 60 mA; (c) IT = 90 mA; (d) RT = 1.33 k�;
(e) PT = 10.8 W

5.42 Find I2 and I4 in the parallel current–divider circuit (Fig. 5-36). Ans. I2 = 2.5 A; I4 = 1.67 A

Fig. 5-36



 

Chapter 6

Batteries

THE VOLTAIC CELL

A voltaic chemical cell is a combination of materials used to convert chemical energy into electric energy.
The chemical cell consists of two electrodes made of different kinds of metals or metallic compounds, and an
electrolyte, which is a solution capable of conducting an electric current (Fig. 6-1a). A battery is formed when
two or more cells are connected.

Fig. 6-1 Basic chemical action of a voltaic cell

An excellent example of a pair of electrodes is zinc and copper. Zinc contains an abundance of negatively
charged atoms, while copper has an abundance of positively charged atoms. When plates of these metals are
immersed in an electrolyte, chemical action between the two begins. The zinc electrode accumulates a much
larger negative charge since it gradually dissolves into the electrolyte. The atoms which leave the zinc electrode
are positively charged. They are attracted by the negatively charged ions (−) of the electrolyte, while they
repel the positively charged ions (+) of the electrolyte toward the copper electrode (Fig. 6-1b). This causes

97
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electrons to be removed from the copper, leaving it with an excess of positive charge. If a load such as a
light bulb is connected across the terminals on the electrodes, the forces of attraction and repulsion will cause
free electrons in the negative zinc electrode, connecting wires, and light bulb filament to move toward the
positively charged copper electrode (Fig. 6-1c). The potential difference that results permits the cell to function
as a source of applied voltage V (Fig. 6-1d).

The electrolyte of a cell may be liquid or a paste. If the electrolyte is a liquid, the cell is often called a
wet cell. If the electrolyte is in a paste form, the cell is referred to as a dry cell.

SERIES AND PARALLEL CELLS

When cells are connected in series (Fig. 6-2), the total voltage across the battery of cells is equal to the
sum of the voltage of each of the individual cells. In Fig. 6-2, the four 1.5-V cells in series provide a total
battery voltage of 6 V. When cells are placed in series, the positive terminal of one cell is connected to the
negative terminal of the other cell. The current flowing through such a battery of series cells is the same as for
one cell because the same current flows through all the series cells.

Fig. 6-2 Cells in series

To obtain a greater current, the battery has cells in parallel (Fig. 6-3). When cells are placed in parallel, all
the positive terminals are connected together and all the negative terminals are connected together. Any point

Fig. 6-3 Cells in parallel
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on the positive side can serve as the positive terminal of the battery and any point on the negative side can be
the negative terminal.

The total voltage output of a battery of three parallel cells is the same as that for a single cell (Fig. 6-3), but
the available current is three times that of one cell. The parallel connection has the same effect of increasing
the size of the electrodes and electrolyte in a single cell, which increases the current capacity.

Identical cells in parallel all supply equal parts of the current to the load. For example, of three identical
parallel cells producing a load current of 270 mA, each cell contributes 90 mA.

PRIMARY AND SECONDARY CELLS

Primary cells are those which cannot be recharged or returned to good condition after their voltage output
drops too low. Dry cells used in flashlights and transistor radios are examples of primary cells.

Secondary cells are those which are rechargeable. During recharging, the chemicals which provide electric
energy are restored to their original condition. Recharging is done by passing direct current through a cell in
a direction opposite to the direction of the current which the cell delivers to a circuit.

A cell is recharged by connecting it to a battery charger in “like-to-like” polarity (Fig. 6-4). Some battery
chargers have a voltmeter and an ammeter which indicate the charging voltage and current.

Fig. 6-4 Recharging a secondary cell with
a battery charger

The most common example of a secondary cell is an automobile storage battery. Secondary cells or batteries
are particularly useful for powering mobile equipment where a generator is available to keep them charged.
Smaller, sealed secondary cells are used to power such portable equipment as shavers, electronic calculators,
radios, and television receivers. These can be easily charged from ordinary house current by simple, low-cost
chargers often built into the equipment or appliance itself.

TYPES OF BATTERIES

Lead–Acid Battery

The lead–acid battery consists of a number of lead–acid cells. Each cell has two groups of lead plates; one
set is the positive terminal and the other is the negative terminal. All positive plates are connected together with
a connecting strap (Fig. 6-5). All negative plates are similarly connected together. The positive and negative
plates are interlaced so that alternately, there is a positive plate and a negative plate. Between the plates are
sheets of insulating material called separators, made either of porous wood, perforated wood, or fiberglass.
The separators prevent the positive and negative plates from touching each other and producing a short circuit,
which would destroy the cell. The positive plate is treated chemically to form lead peroxide (a combination
of lead and oxygen), and the negative electrode consists of porous, spongy lead. The two sets of plates with
the separators between them are placed in a container filled with a dilute solution of sulfuric acid and water.
The term lead–acid battery refers to the lead plates and sulfuric acid that are the principal components of the
battery.

The voltage in this type of cell is slightly more than 2 V. Batteries used in modern automobiles con-
tain six cells connected in series so that the output voltage from the battery is slightly more than 12 V.
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Fig. 6-5 Cutaway view of a lead–acid battery. (From
B. Grob, Basic Electronics, 4th ed., McGraw-Hill,
New York, 1977, p. 247.)

Older automobiles made before the mid-1950s used batteries in which three cells were connected in series to
give an output voltage of slightly more than 6 V.

The storage battery can supply current for a much longer time than the average dry cell. When the storage
battery is discharged and is no longer able to supply the current required by the circuit, the battery can be
removed from the circuit and recharged by passing current through it in the opposite direction. Once the battery
has been recharged, it can again be connected to the circuit and will supply current to the circuit.

In an automobile, the battery is connected to a device called an alternator. As long as the car is running at
a reasonable speed, the alternator is both charging the battery and supplying the current needed to operate the
car. However, when the car is operated at a slow speed or when it is stopped, the alternator is not turning fast
enough to provide the electricity needed by the car. The battery then supplies this energy, causing it to slowly
discharge.

When the battery discharges, some of the acid of the electrolyte combines with the active material on the
plates (Fig. 6-6a). This chemical action changes the material in both plates to lead sulfate. When the battery is
being charged by the alternator, the reverse action takes place, and the acid which was absorbed by the plates
is returned to the electrolyte (Fig. 6-6b). The result is that the active material on the plates is changed back into
the original (charged condition) lead peroxide and sponge lead, and the electrolyte is restored to its original
strength.

Whenever a battery is charging, the chemical action produces hydrogen gas on one plate surface and
oxygen gas on the other. These gases bubble to the surface and escape through the vent hole in the cap on the
cell. Thus water (H2O) is lost to the cell when the gases leave. The water that escapes must be replaced to
maintain the proper electrolyte level. Only distilled water should be added to the cell. Otherwise, any impurity
in the added water will combine chemically with the sulfuric acid on the plates and form a stable compound
that will not enter into the charge or discharge action of the battery.

Carbon–Zinc Cell

This is one of the oldest and most widely used commercial types of dry cell. The carbon, in the form of
a rod that is placed in the center of the cell, is the positive terminal. The case of the cell is made of zinc,
which is the negative electrode (Fig. 6-7). Between the carbon electrode and the zinc case is the electrolyte
of a chemical pastelike mixture. The cell is sealed to prevent the liquid in the paste from evaporating. The
voltage of a cell of this type is about 1.5 V.
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Fig. 6-6 Chemical actions of a lead–acid cell

Fig. 6-7 Construction of carbon–zinc cell,
size No. 6. (Courtesy NRI Schools.)



 

102 BATTERIES [CHAP. 6

Alkaline Cell

The secondary alkaline cell is so called because it has an alkaline electrolyte of potassium hydroxide. One
battery type that goes by the name alkaline battery has a negative electrode of zinc and a positive electrode of
manganese dioxide. It generates 1.5 V.

The primary alkaline cell is similar in construction to the rechargeable type and has the same operating
voltage (Fig. 6-8). This cell has extended life over a carbon–zinc cell of the same size.

Fig. 6-8 Manganese–alkaline battery.
(From Grob, p. 251.)

Fig. 6-9 Nickel–cadmium battery.
(From Grob, p. 253.)

Nickel–Cadmium Cell

In the secondary nickel–cadmium dry cell, the electrolyte is potassium hydroxide, the negative electrode
is nickel hydroxide, and the positive electrode is cadmium oxide. The operating voltage is 1.25 V. These cells
are manufactured in several sizes, including flat button shapes. The nickel–cadmium battery is the only dry
battery that is a true storage battery with a reversible chemical reaction, allowing recharging many times
(Fig. 6-9). It is a rugged device which gives dependable service under extreme conditions of shock, vibration,
and temperature. Therefore, it is ideally suited for use in powering portable communication equipment such
as a two-way radio.

Edison Cell

A lighter, more rugged secondary cell than the lead–acid cell is the Edison, or nickel–iron–alkaline, cell.
It operates at a no-load voltage of 1.4 V. When the voltage drops to 1.0 V, the cell should be recharged. When
fully charged, it has a positive plate of nickel and nickel hydrate and a negative plate of iron. Like the lead–acid
cell, the Edison cell also produces hydrogen and oxygen gases. As a result, the electrolyte requires filling up
with distilled water.

Mercury Cell

There are two different types of mercury cells. One is a flat cell that is shaped like a button, while the
other is a cylindrical cell that looks like a standard flashlight cell. The advantage of the button-type cell is that
several of them can be stacked inside one container to form a battery. A typical battery is made up of three flat
cells (Fig. 6-10). A cell produces 1.35 V.

Mercury cells and batteries have a good shelf life and are very rugged. Because they produce a constant
output voltage under different load conditions, they are used in many different products, including electric
watches, hearing aids, test instruments, and alarm systems.
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Fig. 6-10 A typical mercury battery.
(Courtesy NRI Schools.)

BATTERY CHARACTERISTICS

Internal Resistance

A battery is a dc voltage generator. All generators have internal resistance, Ri . In a chemical cell, the resis-
tance of the electrolyte between electrodes is responsible for most of the cell’s internal resistance (Fig. 6-11).
Since any current in the battery must flow through the internal resistance, Ri is in series with the gener-
ated voltage VB (Fig. 6-12a). With no current, the voltage drop across Ri is zero so that the full generated
voltage VB develops across the output terminals (Fig. 6-12a). This is the open-circuit voltage, or no-load
voltage. If a load resistance RL is connected across the battery, RL is in series with Ri (Fig. 6-12b). When
current IL flows in this circuit, the internal voltage drop, ILRi , decreases the terminal voltage VL of the battery
so that VL = VB − ILRi .

Fig. 6-11 Internal resistance in a cell

Fig. 6-12 Internal ILRi drop
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Example 6.1 A dry battery has an open-circuit, or no-load, voltage of 100 V (Fig. 6-13). If the internal resistance is
100 � and the load resistance is 600 �, find the voltage VL across the output terminals.

The battery is marked 100 V because 100 V is its open-circuit voltage. With no load, the load current is zero. When
load resistance RL is added, there is a closed circuit, and the load current is calculated by Ohm’s law.

IL = V

Ri + RL
= 100

100 + 600
= 100

700
= 0.143 A

The internal battery drop is

ILRi = 0.143(100) = 14.3 V

so that the voltage at the battery’s terminal is

VL = VB − ILRi = 100 − 14.3 = 85.7 V Ans.

Fig. 6-13

Specific Gravity

The specific gravity of any liquid is a ratio comparing its weight with the weight of an equal volume of
water. Pure sulfuric acid has a specific gravity of 1.835 since it weighs 1.835 times as much as water per unit
volume.

The specific gravity of the electrolyte solution in a lead–acid cell ranges from 1.210 to 1.300 for new,
fully charged batteries. The higher the specific gravity, the less internal resistance of the cell and the higher
the possible load current. As the cell discharges, the water formed dilutes the acid and the specific gravity
gradually decreases to about 1.150, at which time the cell is considered to be fully discharged. Specific gravity is
measured with a hydrometer of the syringe type, which has a compressible rubber bulb at the top, a glass barrel,
and a rubber hose at the bottom of the barrel. In taking readings with a hydrometer, the decimal point is usually
omitted. For example, a specific gravity of 1.270 is read simply as “twelve-seventy.” A hydrometer reading of
1210 to 1300 indicates full charge; about 1250 is half-charge; and 1150 to 1200 is complete discharge.

Capacity

The capacity of a battery is rated in ampere-hours (Ah). The capacity of a storage battery determines how
long it will operate at a given discharge rate. For example, a 90-Ah battery must be recharged after 9 h of an
average 10-A discharge.

A cell of a lead–acid automobile battery, when fully charged, has an initial voltage of about 2.1 V at
no load, but discharges rapidly. The battery is “dead” after about 2 h of discharging under load condition.
However, under normal use, this battery type is constantly recharged by the alternator in the automobile.
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Shelf Life

The shelf life of a cell is that period of time during which the cell can be stored without losing more
than approximately 10 percent of its original capacity. The capacity of a cell is its ability to deliver a given
amount of current to the circuit in which it is used. The loss of capacity of a stored cell is primarily due
to the drying out of its electrolyte (wet cell) and to chemical actions which change the materials within the
cell. Since heat stimulates both these actions, the shelf life of a cell can be extended by keeping it in a cool,
dry place.

Comparison of Types

Table 6-1 compares the types of cells described.

Table 6-1 Types of Cells

Name Voltage Wet or Dry
Primary or

Secondary Type Examples and Characteristics

Lead–acid cell 2.2 Wet Secondary Very low Ri and high current
ratings; 6- and 12-V batteries

Carbon–zinc cell 1.5 Dry Primary AA, A, B, C, and D size cells;
flashlight batteries; lowest price;
short shelf life; low capacity

Manganese–alkaline cell 1.5 Dry Both types Manganese dioxide and zinc in
hydroxide; currents above
300 mA

Nickel–cadmium cell 1.25 Dry Secondary Hydroxide electrolyte; constant
voltage; reversible chemical
reaction; used in rechargeable
flashlights, portable power tools

Edison cell 1.4 Wet Secondary Nickel and iron in hydroxide;
industrial uses

Mercury cell 1.35 Dry Both types Mercuric oxide and zinc in
hydroxide; constant voltage, long
shelf life; B batteries; miniature
button cells for hearing aids,
cameras, watches, calculators

Solved Problems

6.1 Write the word or words which most correctly complete the following statements.

(a) A consists of or more cells connected in series or parallel.

(b) A chemical cell consists basically of electrodes of different kinds of metals or
metallic compounds separated by an .

(c) Cells which cannot be effectively recharged are called cells.

(d) A cell or a battery is recharged by passing current through it in a direction to
the direction of its discharge current.

(e) In order to obtain higher voltages, cells are connected in .

Ans. (a) battery, two; (b) two, electrolyte; (c) primary; (d) opposite; (e) series
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6.2 Match the type of cell in column 1 to its characteristic in column 2 (use a letter once only).

Column 1 Column 2

1. Lead–acid (a) Long shelf life

2. Carbon–zinc (b) 1.4-V voltage

3. Nickel–cadmium (c) Automobile battery

4. Edison cell (d) Inexpensive flashlight cell

5. Mercury (e) Potassium hydroxide electrolyte

(f ) 3-V voltage

Ans. 1. (c) 2. (d) 3. (e) 4. (b) 5. (a)

6.3 A 6-V battery is temporarily short-circuited. The short-circuit current ISC is 30 A. What is the internal
resistance?

The battery rating of 6 V in this case is the open-circuit, or no-load, voltage. So

Ri = V

ISC
= 6

30
= 0.2 � Ans.

Note that the presence of internal resistance prevents the current from becoming very high.

6.4 A battery has a 12-V output on an open circuit, which drops to 11.5 V with a load current of 1 A. Find
the internal resistance.

Open-circuit voltage = internal resistance drop + terminal voltage

VB = ILRi + VL

Solving of Ri ,

ILRi = VB − VL

Ri = VB − VL

IL

= 12 − 11.5

1
= 0.5

1
= 0.5 � Ans.

We see that the internal resistance of any battery can be calculated by determining how much the
output voltage drops for a specific amount of load current.

6.5 A discharged storage battery of three cells connected in series has an open-circuit voltage of 1.8 V per
cell. Each cell has an internal resistance of 0.1 �. What is the minimum voltage of a charging battery
to produce an initial charging rate of 10 A?

Charging battery voltage = battery voltage + internal resistance drop

Battery voltage (cells in series) = 3 cells × 1.8 V

cell
= 5.4 V

Internal resistance drop = IRi = 10(3 × 0.1) = 3 V

Then,

Charging battery voltage = 5.4 + 3 = 8.4 V Ans.
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6.6 A lead–acid battery is rated at 200 Ah. Based on an 8-h discharge, what average load current can this
battery supply?

In units, Capacity = amperes × hours

Then, Load current (in amperes) = capacity

hours

and Load current = 200

8
= 25 A Ans.

6.7 What is the no-load voltage across four carbon–zinc cells in series?

Voltage = 4 × no-load voltage of a single cell

= 4(1.5) = 6 V Ans.

6.8 What is the specific gravity of a solution with equal parts of sulfuric acid and water?

A solution with equal parts of sulfuric acid and water has a weight equally distributed between
sulfuric acid and water (that is, each accounts for one-half the weight of the solution). If pure sulfuric
acid has a specific gravity of 1.835, then

Specific gravity of solution = 1

2
(1.835) + 1

2
(1) = 0.918 + 0.500 = 1.418 Ans.

Supplementary Problems

6.9 Write the word or words which most correctly complete the following statements.

(a) A cell which converts energy into energy is called a
chemical cell.

(b) A cell in which the electrolyte is a liquid is commonly referred to as a cell,
while a cell in which the electrolyte is in a paste form is called a cell.

(c) Cells which can be effectively recharged are called cells.

(d) When charging a cell or a battery, its positive terminal is connected to the
terminal of the battery charger, and its negative terminal is connected to the
terminal of the charger.

(e) In order to obtain a greater current capacity, cells are connected in .

Ans. (a) chemical, electric; (b) wet, dry; (c) secondary; (d) positive, negative; (e) parallel

6.10 Match the type of cell in column 1 to its characteristic in column 2.

Column 1 Column 2

1. Lead–acid (a) Nickel–iron–alkaline

2. Carbon–zinc (b) 12-V battery

3. Nickel–cadmium (c) Secondary dry battery

4. Edison cell (d) 1.5-V primary cell

5. Mercury (e) 5-V battery

(f ) Ideal for transistorized equipment

Ans. 1. (b) 2. (d) 3. (c) 4. (a) 5. (f )
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6.11 Fill in the missing quantities (Fig. 6-14).

VB , V Ri , � RL, � IL, A ILRi , V VL, V

100 ? ? 2 ? 80
6 0.2 1 ? ? ?

12 ? 5 ? ? 2

Ans.

VB , V Ri , � RL, � IL, A ILRi , V VL, V

…. 10 40 …. 20 ….
…. …. …. 5 1 5
…. 25 …. 0.4 10 …. Fig. 6-14

6.12 The terminal voltage VL drops as the load current IL increases. For a 12-V battery with internal
resistance of 1 �, we vary the load resistance from a very high value to zero in order to observe how
the terminal voltage varies with changing load current. Fill in the missing values of the table.

VB , V Ri , � RL, � RT = RL + Ri , � IL, A ILRi , V VL = VB − ILRi , V

12 1 ∞ ? ? ? ?
12 1 9 ? ? ? ?
12 1 5 ? ? ? ?
12 1 3 ? ? ? ?
12 1 1 ? ? ? ?
12 1 0 ? ? ? ?

Ans. VB , V Ri , � RL, � RT = RL + Ri , � IL, A ILRi , V VL = VB − ILRi , V

…. …. …. ∞ 0 0 12
…. …. …. 10 1.2 1.2 10.8
…. …. …. 6 2 2 10
…. …. …. 4 3 3 9
…. …. …. 2 6 6 6
…. …. …. 1 12 12 0

6.13 For Problem 6.12 make a plot with terminal voltage VL as the ordinate and load current IL as the
abscissa. Describe the plot.
Ans. See Fig. 6-15. The plot is a straight line, where VL is a maximum when the circuit is open
(IL is zero) and a minimum when the circuit is shorted (IL is a maximum).

6.14 A 6-V lead–acid battery has an internal resistance of 0.02 �. How much current will flow if the battery
has a short circuit? Ans. 300 A

6.15 A new carbon–zinc cell has a voltage of 1.5 V. A battery made up of 30 cells connected in series ages
so that its no-load voltage drops 15 percent. What is the no-load voltage of the cell and battery?
Ans. 1.28 V, 38.2 V
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Fig. 6-15

6.16 What is the specific gravity of the electrolyte of a lead–acid battery with one-fourth part sulfuric
acid and three-fourths part water? Would a hydrometer reading of that solution indicate full charge,
half-charge, or discharge? Ans. 1.209, full charge

6.17 How many cells are necessary to produce a battery with double the voltage and current rating of a
single cell? Draw a schematic diagram. Ans. Four cells; see Fig. 6-16

Fig. 6-16

6.18 Draw pictorial schematic diagrams showing two 12-V lead–acid batteries being charged by a 15-V
source. Show the direction of current during charge. Ans. See Fig. 6-17

Fig. 6-17



 

Chapter 7

Kirchhoff’s Laws

KIRCHHOFF’S VOLTAGE LAW (KVL)

Kirchhoff’s voltage law states that the voltage applied to a closed circuit equals the sum of the voltage
drops in that circuit. This fact was used in the study of series circuits and was expressed as follows:

Voltage applied = sum of voltage drops

VA = V1 + V2 + V3 (7-1)

where VA is the applied voltage and V1, V2, and V3 are voltage drops.
Another way of stating KVL is that the algebraic sum of the voltage rises and voltage drops must be equal

to zero. A voltage source or emf is considered a voltage rise; a voltage across a resistor is a voltage drop.
Often for convenience in labeling, letter subscripts are shown for voltage sources and numerical subscripts
for voltage drops. This form of the law can be written by transposing the right members of Eq. (7-1) to the
left side.

Voltage applied − sum of voltage drops = 0

Substitute letters:

VA − V1 − V2 − V3 = 0

or VA − (V1 + V2 + V3) = 0

Using a new symbol, �, the Greek capital letter sigma, we have

�V = VA − V1 − V2 − V3 = 0 (7-2)

in which �V , the algebraic sum of all the voltages around any closed circuit, equals zero. � means “sum of.”
We assign a + sign to a voltage rise and a − sign to a voltage drop for the �V = 0 formula (Fig. 7-1).

In tracing voltage drops around a circuit, start at the negative terminal of the voltage source. The path from the
negative terminal to the positive terminal through the source is a voltage rise. We continue to trace the circuit
from the positive terminal through all resistors and back to the negative terminal of the source. In Fig. 7-1 if
we start at point a, the negative terminal of the battery, and move around the circuit in the direction abcda,
we go through VA from − to + and VA = +100 V. If we start at point b and move in the opposite direction
badcb, we go through VA from + to − and VA = −100 V. The voltage drop across any resistance will be

Fig. 7-1 Illustration of �V = 0

110
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negative (−) if we trace it in the + to − direction. Thus in Fig. 7-1, if we trace the circuit in the direction
abcda, V1 = −50 V, V2 = −30 V, and V3 = −20 V. The voltage drop will be positive (+) if we go through
the resistance in the − to + direction. So in tracing the circuit in the direction abcda, we have

�V = 0

VA − V1 − V2 − V3 = 0

100 − 50 − 30 − 20 = 0

0 = 0

Example 7.1 Determine the direction of voltage around the circuit abcda (Fig. 7-2), and then write the expression for
voltages around the circuit.

Assume direction of current as shown. Mark the + and − polarities of each resistor.

VA is a voltage source (+). (It is a voltage rise in the current direction assumed.)

V1 is a voltage drop (−). (It is a decrease in the direction assumed.)

V2 is a voltage drop (−). (It is a decrease in the direction assumed.)

VB is a voltage source (−). (It is a decrease in voltage in the current direction assumed.)

V3 is a voltage drop (−). (It is a decrease in the direction assumed.)

�V = 0

+VA − V1 − V2 − VB − V3 = 0

Group the voltage rises and the voltage drops.

VA − (V1 + V2 + V3 + VB)

Notice that the voltage drops include a voltage source VB . Ordinarily a source would be positive. In this case the polarity
of the source is acting against the assumed direction of current. Therefore, its effect is to decrease the voltage.

Fig. 7-2 KVL illustration with two sources Fig. 7-3 Finding a source voltage

Example 7.2 Determine the voltage VB (Fig. 7-3).
The direction of current flow is shown by the arrow. Mark the polarity of the voltage drops across the resistors. Trace

the circuit in the direction of current flow starting at point a. Write the voltage equation around the circuit.

�V = 0 (7-2)
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Use + and − rules for voltage rises and voltage drops.

VA − V1 − V2 − VB − V3 = 0

Solve for VB .

VB = VA − V1 − V2 − V3 = 15 − 3 − 6 − 2 = 4 V Ans.

Since VB was found to be positive, the assumed direction of current is in fact the actual direction of
current.

KIRCHHOFF’S CURRENT LAW (KCL)

Kirchhoff’s current law states that the sum of the currents entering a junction is equal to the sum of the
currents leaving the junction. Suppose we have six currents leaving and entering a common junction or point,
shown as P (Fig. 7-4). This common point is also called a node.

Fig. 7-4 Currents at a common point

Sum of all currents entering = sum of all currents leaving

Substitute letters:

I1 + I3 + I4 + I6 = I2 + I5

If we consider that the currents flowing toward a junction are positive (+) and those currents flowing away
from the same junction are negative (−), then this law also states that the algebraic sum of all the currents
meeting at a common junction is zero. Using the symbol �, we have

�I = 0 (7-3)

where �I , the algebraic sum of all the currents at the common point, is zero.

I1 − I2 + I3 + I4 − I5 + I6 = 0

If the negative terms are transposed to the right side of the equal sign, we would have the same form as the
original equation.
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Example 7.3 Write the equation for current I1 for part a and part b of Fig. 7-5.

Fig. 7-5 KCL illustration

The algebraic sum of all currents at the node is zero. Entering currents are +; leaving currents are −.

(a) +I1 − I2 − I3 = 0

I1 = I2 + I3 Ans.

(b) +I1 − I2 − I3 − I4 = 0

I1 = I2 + I3 + I4 Ans.

Example 7.4 Find the unknown currents in part a and part b of Fig. 7-6.

Fig. 7-6 Finding current

The algebraic sum of all currents at the node is zero. Entering currents are +; leaving currents are −.

(a) −I1 + I2 − I3 = 0

I1 = I2 − I3 = 7 − 3 = 4 A Ans.

(b) +I1 + I2 − I3 + I4 = 0

I4 = −I1 − I2 + I3 = −2 − 3 + 4 = −1 A Ans.

The negative sign for I4 means that the assumed direction of I4 is incorrect and that I4 is actually flowing
away from point P .



 

114 KIRCHHOFF’S LAWS [CHAP. 7

MESH CURRENTS

A simplification of Kirchhoff’s laws is a method that makes use of mesh or loop currents. A mesh is any
closed path of a circuit. It does not matter whether the path contains a voltage source. In solving a circuit
with mesh currents, we must first decide which paths will be the meshes. Then we assign a mesh current to
each mesh. For convenience, mesh currents are usually assigned in a clockwise direction. This direction is
arbitrary, but the clockwise direction is usually assumed. Kirchhoff’s voltage law is then applied about the
path of each mesh. The resulting equations determine the unknown mesh currents. From these currents, the
current or voltage of any resistor can be found.

Fig. 7-7 Two-mesh circuit

In Fig. 7-7, we have a two-mesh circuit marked mesh 1 and mesh 2. Mesh 1 is path abcda and mesh 2 is
path adefa. All voltage sources and resistances are known. A procedure for finding mesh currents I1 and I2 is
as follows:

Step 1. After the meshes are selected, show the direction of mesh currents I1 and I2 in a clockwise direction.
Mark the voltage polarity across each resistor, consistent with the assumed current. Remember that
conventional current flow in a resistor produces positive polarity where the current enters.

Step 2. Apply Kirchhoff’s voltage law, �V = 0, around each mesh. Trace each mesh in the direction of mesh
current. Note that there are two different currents (I1, I2) flowing in opposite directions through the
same resistor, R2, which is common to both meshes. For this reason two sets of polarities are shown
by R2 (Fig. 7-7). Trace mesh 1 in direction abcda.

+VA − I1R1 − I1R2 + I2R2 = 0

+VA − I1(R1 + R2) + I2R2 = 0

+I1(R1 + R2) − I2R2 = VA (1)

Note that in the first expression I2R2 is + since we go through a voltage drop from − to +.
Trace mesh 2 in direction adefa.

−I2R2 + I1R2 − I2R3 − VB = 0

+I1R2 − I2(R2 + R3) = VB (2)

Note that I1R2 is a + voltage drop since we go through a voltage drop from − to +.

Step 3. Find I1 and I2 by solving Eqs. (1) and (2) simultaneously.

Step 4. When mesh currents are known, find all resistor voltage drops by using Ohm’s law.
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Step 5. Check the solution of mesh currents by tracing mesh abcdefa.

VA − I1R1 − I2R3 − VB = 0

Example 7.5 Given VA = 58 V, VB = 10 V, R1 = 4 �, R2 = 3 �, and R3 = 2 � (Fig. 7-8a), find all mesh currents
and voltage drops in the circuit.

Fig. 7-8 Finding mesh currents and voltage drops

Step 1. Choose the two loops or meshes shown. Show mesh current in the clockwise direction. Show polarity marks
across each resistor.

Step 2. Apply �V = 0 in mesh 1 and mesh 2 and trace the mesh in the direction of mesh current.

Mesh 1, abcda: + 58 − 4I1 − 3I1 + 3I2 = 0

+7I1 − 3I2 = 58 (1)

Mesh 2, adefa: 3I1 − 3I2 − 2I2 − 10 = 0

3I1 − 5I2 = 10 (2)

Note that mesh currents I1 and I2 flow through the common resistor R2.

Step 3. Find I1 and I2 by solving Eqs. (1) and (2) simultaneously.

7I1 − 3I2 = 58 (1)

3I1 − 5I2 = 10 (2)

Multiply Eq. (1) by 5 and multiply Eq. (2) by 3, getting Eqs. (1a) and (2a) and then subtract Eq. (2a)
from Eq. (1a).

35I1 − 15I2 = 290 (1a)

9I1 − 15I2 = 30 (2a)

26I1 = 260

I1 = 10 A Ans.
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Substitute I1 = 10 A in Eq. (1) to find I2.

7I1 − 3I2 = 58

7(10) − 3I2 = 58

−3I2 = 58 − 70

I2 = 70 − 58

3
= 12

3
= 4 A Ans.

The current through branch da is

Ida = I1 − I2 = 10 − 4 = 6 A Ans.

In this case, the assumed mesh current direction was correct because the current values are positive. If the current
value were negative, the true direction would be opposite to the assumed direction of current. (See Fig. 7-8b.)

Step 4. Find all voltage drops.

V1 = I1R1 = 10(4) = 40 V Ans.

V2 = (I1 − I2)R2 = 6(3) = 18 V Ans.

V3 = I2R3 = 4(2) = 8 V Ans.

Step 5. Check mesh current solution by tracing loop abcdefa and applying KVL.

VA − V1 − V3 − VB = 0

58 − 40 − 8 − 10 = 0

58 − 58 = 0

0 = 0 Check

NODE VOLTAGES

Another method for solving a circuit with mesh currents uses the voltage drops to specify the currents at
a node. Then node equations of currents are written to satisfy Kirchhoff’s current law. By solving the node
equations, we can calculate the unknown node voltages. A node is a common connection for two or more
components. A principal node has three or more connections. To each node in a circuit a letter or number is
assigned. A, B, G, and N are nodes, and G and N are principal nodes, or junctions (Fig. 7-9). A node voltage
is the voltage of a given node with respect to one particular node called the reference node. Select node G

connected to chassis ground as the reference node. Then VAG is the voltage between nodes A and G, VBG is
the voltage between nodes B and G, and VNG is the voltage between nodes N and G. Since the node voltage
is always determined with respect to a specified reference node, the notations VA for VAG, VB for VBG, and
VN for VNG are used.

With the exception of the reference node, equations using KCL can be written at each principal node.
Thus the required number of equations is one less than the number of principal nodes. Since the circuit shown
(Fig. 7-9) has two principal nodes (N and G), only one equation need be written at node N to find all voltage
drops and currents in the circuit.



 

CHAP. 7] KIRCHHOFF’S LAWS 117

Fig. 7-9 Nodes in a two-mesh circuit

Assume that branch currents I1 and I2 enter node N , and I3 leaves the node (Fig. 7-9). The selection of
the direction of the currents is arbitrary. From KCL,

�I = 0

I1 + I2 − I3 = 0

I3 = I1 + I2 (1)

By Ohm’s law,

I3 = VN

R2
(1a)

I1 = VA − VN

R1
(1b)

I2 = VB − VN

R3
(1c)

Substitute these expressions into Eq. (1).

VN

R2
= VA − VN

R1
+ VB − VN

R3
(2)

If VA, VB , R1, R2, and R3 are known, VN can be calculated from Eq. (2). Then all voltage drops and currents
in the circuit can be determined.

Example 7.6 The circuit of Fig. 7-8 (Example 7.5) solved by the method of branch currents is redrawn in Fig. 7-10.
Solve by node-voltage analysis.

Step 1. Assume the direction of currents shown (Fig. 7-10). Mark nodes A, B, N , and G. Mark the voltage polarity
across each resistor consistent with assumed direction of current.

Step 2. Apply KCL at principal node N and solve for VN .

I3 = I1 + I2
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Fig. 7-10 Node-voltage analysis for same circuit as in Fig. 7-8

VN

R2
= VA − VN

R1
+ VB − VN

R3

VN

3
= 58 − VN

4
+ 10 − VN

2

Clear fractions by multiplying each term by 12.

4VN = 3(58 − VN) + 6(10 − VN)

4VN = 174 − 3VN + 60 − 6VN

13VN = 234

VN = 18 V

Step 3. Find all voltage drops and currents.

V1 = VA − VN = 58 − 18 = 40 V Ans.

V2 = VN = 18 V Ans.

V3 = VB − VN = 10 − 18 = −8 V Ans.

The negative value for V3 means I2 is flowing opposite to the assumed direction and the polarity of V3 is the
reverse of the signs shown across R3 (Fig. 7-10).

I1 = V1

R1
= 40

4
= 10 A Ans.

I2 = V3

R3
= −8

2
= −4 A Ans.

I3 = I1 + I2 = 10 − 4 = 6 A Ans.

I3 = V2

R2
= 18

3
= 6 A Check

All calculated values agree with those of Example 7.5.
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Solved Problems

7.1 Find the signs of the voltages when tracing the mesh afedcba and write the expression for KVL
(Fig. 7-11).

Fig. 7-11 Tracing two meshes

Assume directions of current flow as indicated. Mark the polarities across each resistor.

V3 is − since we go through a voltage drop + to −.

VC is − since we go through a voltage rise + to −.

V2 is − since we go through a voltage drop + to −.

VB is − since we go through a voltage rise + to −.

VA is + since we go through a voltage rise − to +.

V1 is − since we go through a voltage drop + to −.

�V = 0

−V3 − VC − V2 − VB + VA − V1 = 0

VA − VB − VC − V1 − V2 − V3 = 0

(VA − VB − VC)︸ ︷︷ ︸
Voltage rise

− (V1 + V2 − V3)︸ ︷︷ ︸
Voltage drop

= 0

Ans.

7.2 Find I3 and I4 (Fig. 7-12).

Fig. 7-12 Finding currents by KCL
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Apply KCL, �I = 0 at node a.

30 − 12 − I4 = 0

I4 = 30 − 12 = 18 A Ans.

Apply KCL, �I = 0 at node b.

18 − 10 − I3 = 0

I3 = 18 − 10 = 8 A Ans.

Check solution.

IT = I1 + I2 + I3

30 = 12 + 10 + 8

30 = 30 Check

7.3 Solve the two-mesh circuit for all mesh currents (Fig. 7-13).

Fig. 7-13 Two meshes with voltage source in
middle leg

Step 1. Show mesh currents in clockwise direction.

Step 2. Apply �V = 0 for mesh 1 and mesh 2 and trace each mesh from a in the direction of mesh
current.

Mesh 1: 85 − 10I1 − 45 = 0

10I1 = 40

I1 = 4 A Ans.

Mesh 2: 45 − 5I2 = 0

5I2 = 45

I2 = 9 A Ans.

Step 3. Check by tracing the loop of mesh 1 and 2 by using �V = 0.

VA − I1R1 − I2R2 = 0

85 − 4(10) − 9(5) = 0

85 − 40 − 45 = 0

85 − 85 = 0 Check
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7.4 Find all mesh currents and voltage drops for the two-mesh circuit shown in Fig. 7-14.

Fig. 7-14 Two meshes with voltage source and resistor in middle leg

Step 1. Show the direction of mesh currents as indicated.

Step 2. Apply �V = 0 for meshes 1 and 2, in the direction of mesh current.

Mesh 1, abcda: 110 − 5I1 − 190 − 5I1 + 5I2 = 0

−10I1 + 5I2 − 80 = 0

−10I1 + 5I2 = 80 (1)

Mesh 2, adefa: 5I1 − 5I2 + 190 − 15I2 − 20I2 = 0

5I1 − 40I2 = −190 (2)

Step 3. Find I1 and I2 by solving Eqs. (1) and (2) simultaneously.

−10I1 + 5I2 = 80 (1)

5I1 − 40I2 = −190 (2)

Multiply Eq. (2) by 2 to get Eq. (2a); then add.

−10I1 + 5I2 = 80 (1)
10I1 − 80I2 = −380 (2a)

− 75I2 = −300

I2 = 300

75
= 4 A Ans.

Substitute I2 = 4 A in Eq. (1) to find I1.

−10I1 + 5(4) = 80

−10I1 = 60

I1 = −6 A Ans.

The negative sign means that the assumed direction for I1 was not correct. I1 is actually
going in a counterclockwise direction. In branch ad, I1 and I2 are going in the same direction.
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Therefore,

Iad = I1 + I2 = 6 + 4 = 10 A Ans.

Step 4. Find the voltage drops.

V1 = I1R1 = 6(5) = 30 V Ans.

V2 = (I1 + I2)R2 = 10(5) = 50 V Ans.

V3 = I2R3 = 4(15) = 60 V Ans.

V4 = I2R4 = 4(20) = 80 V Ans.

Step 5. Check. Trace the loop abcdefa (use the original assumed direction for I1 and I2).

+VA − I1R1 − I2R3 − I2R4 = 0

110 − (−6)(5) − 4(15) − 4(20) = 0

110 + 30 − 60 − 80 = 0

140 − 140 = 0 Check

7.5 Find the voltage V2 across R2 by the method of node-voltage analysis (Fig. 7-15a).

Fig. 7-15 Finding V2 by the node-voltage method

Step 1. Assume direction of currents shown. Mark voltage polarities. Show nodes A, B, N, G.

Step 2. Apply �I = 0 at principal node N .

I3 = I1 + I2 (1)

I3 = V2

R2
= VN

2
(1a)

I1 = V1

R1
= VA − VN

R1
= 12 − VN

8
(1b)

I2 = V3

R3
= VB − VN

R3
= VB − VN

4
(1c)
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We are unable to determine VB by inspection in Eq. (1c) because voltage drop V4 is not
given (Fig. 7-15a). So we use KVL to find VB by tracing the complete circuit from G to B

in the direction of I2 (Fig. 7-15b). GBG is a complete path because VB is the voltage at B

with respect to ground.

−6 − 2I2 − VB = 0

VB = −6 − 2I2

Substitute expression for VB into Eq. (1c),

I2 = −6 − 2I2 − VN

4

from which we obtain

I2 = −6 − VN

6

Substitute the three expressions for current into Eq. (1).

VN

2
= 12 − VN

8
+ −6 − VN

6
(2)

Now Eq. (2) has one unknown, VN .

Step 3. Find V2 (V2 = VN ). Multiply each member of Eq. (2) by 24.

12VN = (36 − 3VN) + (−24 − 4VN)

19VN = 12

VN = 12

19
= 0.632 V

V2 = VN = 0.632 V Ans.

7.6 Write the mesh equations for the three-mesh circuit (Fig. 7-16). Do not solve.

Fig. 7-16 A three-mesh circuit

Show mesh currents in clockwise direction. Trace loops in assumed direction of current, using
KVL, �V = 0.

Mesh 1: 20 − 2I1 − 3I1 + 3I2 = 0 (1)

Mesh 2: −4I2 − 5I2 + 5I3 − 3I2 + 3I1 = 0 (2)

Mesh 3: −6I3 + 5 − 5I3 + 5I2 = 0 (3)
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Combine and rearrange terms in each equation.

Mesh 1: 20 = 5I1 − 3I2 Ans. (1a)

Mesh 2: 0 = −3I1 + 12I2 − 5I3 Ans. (2a)

Mesh 3: 5 = −5I2 + 11I3 Ans. (3a)

A set with any number of simultaneous equations, for any number of meshes, can be solved by using
determinants. Solution by determinants is shown in Chapter 8.

Supplementary Problems

7.7 Find the unknown quantities indicated in Fig. 7-17a and b. Ans. (a) I = 8 A; (b) VB = 10 V

Fig. 7-17

7.8 Find the series current and voltage drops across R1 and R2 (Fig. 7-18).
Ans. I = 1 A; V1 = 10 V; V2 = 20 V

Fig. 7-18 Fig. 7-19

7.9 A current of 6 A flows in the circuit (Fig. 7-19). Find the value of R. Ans. R = 5 �

7.10 Find I2, I3, and VA (Fig. 7-20). Ans. I2 = 6 A; I3 = 2 A; VA = 152 V

7.11 Find mesh currents I1 and I2 and all voltage drops by the mesh-current method (Fig. 7-21).
Ans. I1 = 5 A; I2 = 3 A; V1 = 30 V; V2 = 30 V; V3 = 60 V; V4 = 6 V; V5 = 9 V; V6 = 15 V
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Fig. 7-20 Fig. 7-21

7.12 Find all currents through the resistances by the mesh-current method (Fig. 7-22).
Ans. I1 = 3 A; I2 = 1 A; I1 − I2 = 2 A (flowing from a to b)

Fig. 7-22 Fig. 7-23

7.13 Find the current in each resistor, using the mesh-current method (Fig. 7-23).
Ans. I1 = 2 A; I2 = −1 A (current direction was assumed incorrectly), or I2 = 1 A in counter-
clockwise direction; I1 + I2 = 3 A (flowing from a to b)

7.14 Find currents I1 and I2 and the current through the 20-V battery using the mesh-current method
(Fig. 7-24). Ans. I1 = 2 A; I2 = 5 A; I2 − I1 = 3 A (flowing from b to a)

7.15 Find currents I1 and I2 and current through the resistor in series with the 20-V battery (Fig. 7-25). Use
the mesh-current method.
Ans. I1 = −0.1 A (direction assumed incorrectly. I1 is actually going in the counterclockwise
direction); I2 = 0.7 A; I1 + I2 = 0.8 A (flowing from b to a)

7.16 Find currents I1 and I2 and current through the 20-� resistor common to meshes 1 and 2 (Fig. 7-26).
Use the mesh-current method. Ans. I1 = 0.6 A; I2 = 0.4 A; I1 − I2 = 0.2 A (flowing from
a to b)

7.17 Find all the currents in the circuit shown by the mesh-current method (Fig. 7-27).
Ans. I1 = 6 A; I2 = 7 A; I2 − I1 = 1 A (flowing from b to a)
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Fig. 7-24 Fig. 7-25

Fig. 7-26 Fig. 7-27

7.18 Find all the currents and voltage drops by the method of node-voltage analysis (Fig. 7-28).
Ans. I1 = 5 A; I2 = −1 A (opposite to direction shown); I3 = 4 A; V1 = 60 V; V2 = 24 V;
V3 = 3 V

7.19 Find by the node-voltage method all currents and voltage drops (Fig. 7-29).
Ans. I1 = 1.42 A; I2 = −1.10 A (opposite to direction shown); I3 = 0.32 A; V1 = 11.4 V; V2 =
0.64 V; V3 = 2.2 V; V4 = 4.4 V

Fig. 7-28 Fig. 7-29
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7.20 Write the mesh equations for the circuit (Fig. 7-30). Do not solve.
Ans. 6I1 − 2I2 = 10; −2I1 + 8I2 − 2I3 = 0; −2I2 + 6I3 = −4

Fig. 7-30

7.21 Verify values of currents in circuit shown in Fig. 7-23 (Problem 7.13) by the node-voltage method.

7.22 Verify values of currents in circuit of Fig. 7-25 (Problem 7.15) by the node-voltage method.

7.23 Find the magnitude of all currents
and show their directions at node N

(Fig. 7-31). (Hint: VN = 1.67 V.)

Fig. 7-31

7.24 If the 20-� resistor (Fig. 7-31) is replaced by a 30-� resistor, what is the nodal voltage VN ?
Ans. VN = 3.75 V



 

Chapter 8

Determinant Solutions for DC Networks

SECOND-ORDER DETERMINANTS

A determinant is an array of numbers or letters written in a square between vertical lines. The value of a
determinant is found by multiplying the elements (numbers or letters) of the determinant in a specified way.

A second-order determinant has four elements arrayed in two rows and two columns, such as

Column 1 Column 2⏐⏐
 ⏐⏐

Row 1 −−−−→
Row 2 −−−−→

∣∣∣∣∣∣
a11 a12

a21 a22

∣∣∣∣∣∣
The four elements are a11, a12, a21, and a22. The first subscript indicates the row, while the second subscript
indicates the column. Thus, the element a21 is in the second row and in the first column.

The value of the second-order determinant by definition is

(8-1)

The rule for finding the value is to multiply together the elements on the diagonal lines, adding together those
on lines that slope down to the right, and subtracting those on lines that slope down to the left.

Example 8.1 Find the value of the following second-order determinants.

THIRD-ORDER DETERMINANTS

A third-order determinant has nine elements arrayed in three rows and three columns, such as

Column 1 Column 2 Column 3⏐⏐
 ⏐⏐
 ⏐⏐

Row 1 −−−−→
Row 2 −−−−→
Row 3 −−−−→

∣∣∣∣∣∣∣∣∣∣

a11 a12 a13

a21 a22 a23

a31 a32 a33

∣∣∣∣∣∣∣∣∣∣
128
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The value of the third-order determinant is∣∣∣∣∣∣
a11 a12 a13
a21 a22 a23
a31 a32 a33

∣∣∣∣∣∣ = a11

∣∣∣∣a22 a23
a32 a33

∣∣∣∣ − a21

∣∣∣∣a12 a13
a32 a33

∣∣∣∣ + a31

∣∣∣∣a12 a13
a22 a23

∣∣∣∣ (8-2)

The rule for finding the value of a higher-order determinant is found by expanding the determinant in
terms of any one of its rows or columns. The selection of a row or column is random. For illustration, the first
column is selected for expanding. When a11 is selected, a sub array (second-order determinant) is formed by
eliminating the row and column that intersects a11. This sub array is called a minor.

Similarly,

The cofactor of the element aij is defined as the product of (−1)i+j and the minor determinant obtained
by deleting the ith row and j th column.

In the previous example, when a11 is selected, (−1)i+j = (−1)1+1 = (−1)2 = 1, so its cofactor

is +1

∣∣∣∣a22 a23
a32 a33

∣∣∣∣.
When a21 is selected, (−1)i+j = (−1)1+2 = (−1)3 = −1, so its cofactor is −1

∣∣∣∣a12 a13
a32 a33

∣∣∣∣.
When a31 is selected, (−1)i+j = (−1)1+3 = (−1)4 = 1, so its cofactor is +1

∣∣∣∣a12 a13
a22 a23

∣∣∣∣.
A convenient way to remember the algebraic signs is to refer to a checker board arrangement:∣∣∣∣∣∣

+ − +
− + −
+ − +

∣∣∣∣∣∣
Start with the upper left-hand corner with the + sign. All the other signs follow automatically, regardless of
the number of elements in the determinant. Another way to remember the sign is when the sum of the row and
column values is even, the sign is +; and when the sum is odd, the sign is −. Thus, for the minor of a11, the
sum is 1 + 1 = 2, so the sign is +; and for a21, the sum is 2 + 1 = 3, so the sign is −.

Example 8.2 Find the value of the following third-order determinants by expanding the elements of the first column.

(a)

∣∣∣∣∣∣
1 2 −1
3 1 1
1 −1 2

∣∣∣∣∣∣ (b)

∣∣∣∣∣∣
1 −3 −1

−3 3 0
−1 0 5

∣∣∣∣∣∣
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(a) Refer to Eq. (8-2): a11 = 1, a12 = 2, a13 = −1, a21 = 3, a22 = 1, a23 = 1, a31 = 1, a32 = −1, and
a33 = 2. Expand the first column of the determinant into its cofactors (second-order determinants).

(b) Refer to Eq. (8-2): a11 = 1, a12 = −3, a13 = −1, a21 = −3, a22 = 3, a23 = 0, a31 = −1, a32 = 0,

and a33 = 5. Expand the first column of the determinant.

(c) Solve (b) by expanding the elements of the 2nd column. Refer to the checkerboard arrangement for algebraic
signs. The answer should be the same.

(d) Solve (b) now by expanding the elements of the 3rd row. The answer should be the same.

CRAMER’S RULE

Cramer’s rule is a method to solve simultaneous linear equations by use of determinants. As an example,
consider two equations with two unknowns, x and y, where A and B are constants. (A linear equation is an
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equation where the unknown terms, as x, y, z, . . . n, are only to the 1st degree. If the equation has the term x2

or xy, it is of the 2nd degree and therefore not linear.)

a11x + a12y = A (8-3a)

a21x + a22y = B (8-3b)

Write the determinant of the coefficients of x and y, which we call � (the Greek capital letter delta).

� =
∣∣∣∣∣∣
a11 a12

a21 a22

∣∣∣∣∣∣ (8-4)

If � = 0, the equations have no solution. If � �= 0, the equations are solved by writing

Coefficients of yConstant terms
replace the

coefficients of x

Constant terms
replace the

coefficients of y

Coefficients of x

(8-5a)

(8-5b)

The numerators for x and y, Nx and Ny , are also determinants and are formed from � by substituting A

and B for the coefficients of the desired unknown. For example, in the numerator determinant for x, Nx , we
substitute A and B for a11 and a21, the coefficients of x.

Let’s expand this example by considering three equations with three unknowns, x, y, and z, where A, B,
and C are constants.

a11x + a12y + a13z = A (8-6a)

a21x + a22y + a23z = B (8-6b)

a31x + a32y + a33z = C (8-6c)

Write the determinant of the coefficients x, y, and z, which again we call �.

� =
∣∣∣∣∣∣
a11 a12 a13
a21 a22 a23
a31 a32 a33

∣∣∣∣∣∣ (8-7)

If � = 0, the equations have no solution. If � �= 0, the equations are solved by writing

Coefficients of z

Coefficients of y

Constant terms
replace the

coefficients of x (8-8)
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Constant terms
replace the

coefficients of y (8-9)

Constant terms
replace the

coefficients of z
(8-10)

The numerators for x, y, and z are also determinants and are formed from � by substituting A, B, and C for
the coefficients of the desired unknown.

Example 8.3 Refer to Example 7.5. Step 2 shows that the simultaneous equations for the two-mesh circuit in
Fig. 7-8 are

7I1 − 3I2 = 58 (1)

3I1 − 5I2 = 10 (2)

Solve for I1 and I2 by use of determinants.

Step 1. Solve for �.

� =
∣∣∣∣a11 a12
a21 a22

∣∣∣∣ (8-4)

� =
∣∣∣∣7 −3
3 −5

∣∣∣∣ = (7)(−5) − (−3)(3) = −35 + 9

= −26

Step 2. Solve for I1.

x = Nx

�
=

∣∣∣∣A a12
B a22

∣∣∣∣
�

(8-5a)

Substituting I1 for x, I1 = NI1

�
=

∣∣∣∣58 −3
10 −5

∣∣∣∣
−26

= (58)(−5) − (−3)(10)

−26

= −290 + 30

−26
= −260

−26
= 10 A Ans.

Step 3. Solve for I2.

y = Ny

�
=

∣∣∣∣a11 A

a21 B

∣∣∣∣
�

(8-5b)

Substituting I2 for y, I2 = NI2

�
=

∣∣∣∣7 58
3 10

∣∣∣∣
−26

= (7)(10) − (58)(3)

−26

= 70 − 174

−26
= −104

−26
= 4 A Ans.

Current value answers check with those of Example 7.5.
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Example 8.4 In Solved Problem 7.6, three simultaneous equations are written for a three-mesh circuit (Fig. 8-1). Solve
for the mesh currents by determinants.

Fig. 8-1

5I1 − 3I2 = 20 (1)

−3I1 + 12I2 − 5I3 = 0 (2)

−5I2 + 11I3 = 5 (3)

Step 1. Solve for the coefficient determinant �.

� =
∣∣∣∣∣∣
a11 a12 a13
a21 a22 a23
a31 a32 a33

∣∣∣∣∣∣ (8-7)

� =
∣∣∣∣∣∣

5 −3 0
−3 12 −5

0 −5 11

∣∣∣∣∣∣ = 5

∣∣∣∣ 12 −5
−5 11

∣∣∣∣ − (−3)

∣∣∣∣−3 0
−5 11

∣∣∣∣ + 0

∣∣∣∣−3 0
12 −5

∣∣∣∣
= 5[(12)(11) − (−5)(−5)] + 3[(−3)(11) − (0)(−5)] + 0

= 5(107) + 3(−33)

= 436

Step 2. Solve for I1.

x = Nx

�
=

∣∣∣∣∣∣
A a12 a13
B a22 a23
C a32 a33

∣∣∣∣∣∣
�

(8-8)

Substituting I1 for x, I1 = NI1

�
=

∣∣∣∣∣∣
20 −3 0

0 12 −5
5 −5 11

∣∣∣∣∣∣
436

=
20

∣∣∣∣ 12 −5
−5 11

∣∣∣∣ − 0

∣∣∣∣−3 0
−5 11

∣∣∣∣ + 5

∣∣∣∣−3 0
12 −5

∣∣∣∣
436

= 20[(12)(11) − (−5)(−5)] − 0 + 5[(−3)(−5) − (0)(12)]
436

= 20(107) + 5(15)

436
= 2215

436

I1 = 5.08 A Ans.
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Step 3. Solve for I2.

y = Ny

�
=

∣∣∣∣∣∣
a11 A a13
a21 B a23
a31 C a33

∣∣∣∣∣∣
�

(8-9)

Substituting I2 for y, I2 = NI2

�
=

∣∣∣∣∣∣
5 20 0

−3 0 −5
0 5 11

∣∣∣∣∣∣
436

=
5

∣∣∣∣0 −5
5 11

∣∣∣∣ − (−3)

∣∣∣∣20 0
5 11

∣∣∣∣ + 0

∣∣∣∣20 0
0 −5

∣∣∣∣
436

= 5(25) + 3(220)

436
= 785

436

I2 = 1.80 A Ans.

Step 4. Solve for I3.

z = Nz

�
=

∣∣∣∣∣∣
a11 a12 A

a21 a22 B

a31 a32 C

∣∣∣∣∣∣
�

(8-10)

Substituting I3 for z, I3 = NI3

�
=

∣∣∣∣∣∣
5 −3 20

−3 12 0
0 −5 5

∣∣∣∣∣∣
436

=
5

∣∣∣∣ 12 0
−5 5

∣∣∣∣ − (−3)

∣∣∣∣−3 20
−5 5

∣∣∣∣ + 0

∣∣∣∣−3 20
12 0

∣∣∣∣
436

= 5(60) + 3(85)

436
= 555

436

I3 = 1.27 A Ans.

Step 5. Check the solutions.

5I1 − 3I2 = 20 (1 )

5(5.08) − 3(1.80) = 20

25.40 − 5.40 = 20

20 = 20 Check

−3I1 + 12I2 − 5I3 = 0 (2 )

−3(5.08) + 12(1.80) − 5(1.27) = 0

−15.24 + 21.60 − 6.35 = 0

0.01 = 0 Check, rounding error
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−5I2 + 11I3 = 5 (3 )

−5(1.80) + 11(1.27) = 5

−9.00 + 13.97 = 5

4.97 = 5 Check, rounding error

DETERMINANT METHOD FOR SOLVING CURRENTS IN A TWO-MESH NETWORK

The determinant method for solving mesh currents is one whereby the determinant solution for mesh
currents can be written directly by inspecting the network without writing first the proper simultaneous
equations.

For a network of two meshes, the determinant of the network is

� =
∣∣∣∣ R11 −R12
−R21 R22

∣∣∣∣ (8-11)

where R11 = total resistance of mesh 1
R22 = total resistance of mesh 2
R12 = mutual (common) resistance between mesh 1 and mesh 2
R21 = mutual (common) resistance between mesh 2 and mesh 1

Because the mutual resistances are equal, R12 = R21. Note that the sign for all mutual resistance is negative.
The formulas to solve for mesh currents I1 and I2 are

I1 = NI1

�
=

∣∣∣∣V1 −R12
V2 R22

∣∣∣∣
�

(8-12)

I2 = NI2

�
=

∣∣∣∣ R11 V1
−R21 V2

∣∣∣∣
�

(8-13)

where V1 = net voltage for mesh 1
V2 = net voltage for mesh 2

The numerator determinant for I1, NI1 , is formed by substituting the net voltage sources in column 1
of �; the numerator determinant for I2, NI2 , is formed by substituting the net voltage sources in column 2
of �. The polarity (+ or −) of V1 and V2 depends on the net voltage of the mesh as the mesh is traced in the
direction of the assumed current.

Example 8.5 Find the determinant solution for mesh current I1 and I2 (Fig. 8-2). (This problem was solved in
Example 8.3 by use of simultaneous equations.)

Fig. 8-2
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Step 1. Assume all mesh currents in the same clockwise direction. I1 and I2 are shown clockwise.

Step 2. Find the determinant of the network �.

R11 = total resistance in mesh 1 = R1 + R2 = 4 + 3 = 7 �

R22 = total resistance in mesh 2 = R2 + R3 = 3 + 2 = 5 �

R12 = R32 = mutual resistance between meshes 1 and 2 = R2 = 3 �

Substitute the proper values to find �.

� =
∣∣∣∣ R11 −R12
−R21 R22

∣∣∣∣ (8-11)

=
∣∣∣∣ 7 −3
−3 5

∣∣∣∣ = (7)(5) − (−3)(−3) = 26

Step 3. Find the numerator determinant for I1 and I2.

V1 = net voltage source for mesh 1 = VA = 58 V

(V1 is + since we go through a voltage source − to +)

V2 = net voltage source for mesh 2 = VB = −10 V

(V2 is − since we go through a voltage source + to −)

Substitute the proper values to find NI1 (see Eq. 8-12) and NI2 (see Eq. 8-13).

NI1 =
∣∣∣∣V1 −R12
V2 R22

∣∣∣∣ =
∣∣∣∣ 58 −3
−10 5

∣∣∣∣ = (58)(5) − (−3)(−10) = 260

NI2 =
∣∣∣∣ R11 V1
−R21 V2

∣∣∣∣ =
∣∣∣∣ 7 58
−3 −10

∣∣∣∣ = (7)(−10) − (58)(−3) = 104

Step 4. Find I1 and I2.

I1 = NI1

�
= 260

26
= 10 A Ans. (8-12)

I2 = NI2

�
= 104

26
= 4 A Ans. (8-13)

DETERMINANT METHOD FOR SOLVING CURRENTS IN A THREE-MESH NETWORK

For a network of three meshes, the determinant of the network is

� =
∣∣∣∣∣∣

R11 −R12 −R13
−R21 R22 −R23
−R31 −R32 R33

∣∣∣∣∣∣ (8-14)

where R11 = total resistance of mesh 1
R22 = total resistance of mesh 2
R33 = total resistance of mesh 3
R12 = mutual (common) resistance between mesh 1 and mesh 2
R21 = mutual (common) resistance between mesh 2 and mesh 1
R13 = mutual (common) resistance between mesh 1 and mesh 3
R31 = mutual (common) resistance between mesh 3 and mesh 1
R23 = mutual (common) resistance between mesh 2 and mesh 3
R32 = mutual (common) resistance between mesh 3 and mesh 2
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Because the mutual resistances between two meshes are equal, R12 = R21, R13 = R31, and R23 = R32. Note
that the sign for all mutual resistances is negative. The formulas for mesh currents I1, I2, and I3 are

I1 = NI1

�
=

∣∣∣∣∣∣
V1 −R12 −R13
V2 R22 −R23
V3 −R32 R33

∣∣∣∣∣∣
�

(8-15)

I2 = NI2

�
=

∣∣∣∣∣∣
R11 V1 −R13

−R21 V2 −R23
−R31 V3 R33

∣∣∣∣∣∣
�

(8-16)

I3 = NI3

�
=

∣∣∣∣∣∣
R11 −R12 V1

−R21 R22 V2
−R31 −R32 V3

∣∣∣∣∣∣
�

(8-17)

where V1 = net voltage sources for mesh 1
V2 = net voltage sources for mesh 2
V3 = net voltage sources for mesh 3

The numerator determinants for the three mesh currents and the polarity of the net voltage sources are found
in a similar manner to those for the two mesh currents.

Example 8.6 Find the determinant solution for mesh currents I1, I2, and I3 (Fig. 8-3).

Fig. 8-3

Step 1. Assume all mesh currents in the same clockwise direction.

Step 2. Find the determinant of the network, �.

R11 = total resistance in mesh 1 = R1 + R2 = 9 + 4 = 13 �

R22 = total resistance in mesh 2 = R1 + R2 + R3 = 9 + 4 + 6 = 19 �

R33 = total resistance in mesh 3 = R3 + R4 + R5 = 6 + 3 + 6 = 15 �

R12 = R21 = mutual resistance between meshes 1 and 2

= R1 + R2 = 9 + 4 = 13 �

R13 = R31 = mutual resistance between meshes 1 and 3 = 0 �

R23 = R32 = mutual resistance between meshes 2 and 3 = R3 = 6 �

� =
∣∣∣∣∣∣

R11 −R12 −R13
−R21 R22 −R23
−R31 −R32 R33

∣∣∣∣∣∣ (8-14)
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Substitute the value of resistances and expanding the 1st column.

= 13(285 − 36) + 13(−195) = 13(249 − 195) = 13(54)

� = 702

Step 3. Find the numerator determinant for I1, I2, and I3.

V1 = net voltage source for mesh 1 = VT = 36 V

V2 = net voltage source for mesh 2 = 0 V

V3 = net voltage source for mesh 3 = 0 V

Substitute the proper values to find NI1 , NI2 , and NI3 .

NI1 =
∣∣∣∣∣∣
V1 −R12 −R13
V2 R22 −R23
V3 −R32 R33

∣∣∣∣∣∣ =
∣∣∣∣∣∣
36 −13 0

0 19 −6
0 −6 15

∣∣∣∣∣∣ (8-15)

= 36

∣∣∣∣ 19 −6
−6 15

∣∣∣∣ − 0

∣∣∣∣−13 0
−6 15

∣∣∣∣ + 0

∣∣∣∣−13 0
19 −6

∣∣∣∣
= 36[(19)(15) − (−6)(−6)] = 36(249) = 8964

NI2 =
∣∣∣∣∣∣

R11 V1 −R13
−R21 V2 −R23
−R31 V3 R33

∣∣∣∣∣∣ =
∣∣∣∣∣∣

13 36 0
−13 0 −6

0 0 15

∣∣∣∣∣∣ (8-16)

= 13

∣∣∣∣0 −6
0 15

∣∣∣∣ − (−13)

∣∣∣∣36 0
0 15

∣∣∣∣ + 0

∣∣∣∣36 0
0 −6

∣∣∣∣
= 13(36)(15)

= 7020

NI3 =
∣∣∣∣∣∣

R11 −R12 V1
−R21 R22 V2
−R31 −R32 V3

∣∣∣∣∣∣ =
∣∣∣∣∣∣

13 −13 36
−13 19 0

0 −6 0

∣∣∣∣∣∣ (8-17)

= 13

∣∣∣∣ 19 0
−6 0

∣∣∣∣ − (−13)

∣∣∣∣−13 36
−6 0

∣∣∣∣ + 0

∣∣∣∣−13 36
19 0

∣∣∣∣
= 13(36)(6)

= 2808

Step 4. Find I1, I2, and I3.

I1 = NI1

�
= 8964

702
= 12.77 A Ans.

I2 = NI2

�
= 7020

702
= 10 A Ans.

I3 = NI3

�
= 2808

702
= 4 A Ans.
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Step 5. Check solutions.

In mesh 1 by KVL (Fig. 8-3),

I1(R1 + R2) − I2(R1 + R2) = 36

(12.77)(13) − 10(13) = 36

166 − 130 = 36

36 = 36 Check

In mesh 3 by KVL (Fig. 8-3),

I2R3 − I3(R3 + R4 + R5) = 0

10(6) − 4(15) = 0

60 − 60 = 0

0 = 0 Check

Solved Problems

8.1 Evaluate the following second-order determinants.

(b)

∣∣∣∣5 −2
1 −6

∣∣∣∣ = (5)(−6) − (−2)(1) = −30 + 2 = −28 Ans.

(c)

∣∣∣∣0 3
2 −5

∣∣∣∣ = (0)(5) − (3)(2) = −6 Ans.

(d)

∣∣∣∣0 4
0 −2

∣∣∣∣ = (0)(−2) − (4)(0) = 0 Ans.

(e)

∣∣∣∣x2 x

y2 y

∣∣∣∣ = x2y − xy2 Ans.

8.2 Evaluate the following third-order determinants. Expand the first column into its cofactors to form a
series of second-order determinants.
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(c) Verify the answer to (b) by now expanding elements of the 2nd row.

8.3 Solve the following simultaneous equations by the use of determinants.

(a) x + y = 3 (1)

2x + 3y = 1 (2)

Step 1. Solve for the coefficient determinant �.

� =
∣∣∣∣a11 a12
a21 a22

∣∣∣∣ =
∣∣∣∣1 1
2 3

∣∣∣∣ = 3 − 2 = 1 (8-4)

Step 2. Solve for x and y.

x = Nx

�
=

∣∣∣∣A a12
B a22

∣∣∣∣
�

=

∣∣∣∣3 1
1 3

∣∣∣∣
1

= 9 − 1 = 8 Ans. (8-5a)

y = Ny

�
=

∣∣∣∣a11 A

a21 B

∣∣∣∣
�

=

∣∣∣∣1 3
2 1

∣∣∣∣
�

= 1 − 6 = −5 Ans. (8-5b)

Step 3. Check solutions of x = 8, y = −5 in Eqs. (1) and (2).

(1) 8 − 5 = 3

3 = 3 Check

(2) 2(8) + 3(−5) = 1

16 − 15 = 1

1 = 1 Check
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8.3 (b) 15I1 − 10I2 = 10 (1)

−10I1 + 20I2 = 0 (2)

Step 1. Solve for �.

� =
∣∣∣∣a11 a12
a21 a22

∣∣∣∣ =
∣∣∣∣ 15 −10
−10 20

∣∣∣∣ = (15)(20) − (−10)(−10) = 200 (8-4)

Step 2. Solve for I1 and I2.

I1 = NI1

�
=

∣∣∣∣A a12
B a22

∣∣∣∣
�

=

∣∣∣∣10 −10
0 20

∣∣∣∣
200

= 200

200
= 1 A Ans. (8-5)

I2 = NI2

�
=

∣∣∣∣a11 A

a21 B

∣∣∣∣
�

=

∣∣∣∣ 15 10
−10 0

∣∣∣∣
200

= 100

200
= 0.5 A Ans. (8-6)

Step 3. Check solutions.

(1) 15(1) − 10(0.5) = 10

15 − 5 = 10

10 = 10 Check

(2) −10(1) + 20(0.5) = 0

−10 + 10 = 0

0 = 0 Check

8.4 Find the determinant solution for mesh currents I1 and I2 (Fig. 8-4).

Fig. 8-4

Step 1. Show mesh currents I1 and I2 in the clockwise direction.

Step 2. Find the determinant of the network �.

R11 = R1 = 10 �

R22 = R2 = 5 �

R12 = R21 = 0 �
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� =
∣∣∣∣ R11 −R12
−R21 R22

∣∣∣∣ =
∣∣∣∣10 0

0 5

∣∣∣∣ = (10)(5) = 50 (8-11)

Step 3. Find the numerator determinant for I1 and I2.

V1 = VA − VB = 85 − 45 = 40 V

V2 = VB = 45 V

NI1 =
∣∣∣∣V1 −R12
V2 R22

∣∣∣∣ =
∣∣∣∣40 0
45 5

∣∣∣∣ = (40)(5) = 200

NI2 =
∣∣∣∣ R11 V1
−R21 V2

∣∣∣∣ =
∣∣∣∣10 40

0 45

∣∣∣∣ = (10)(45) = 450

Step 4. Find I1 and I2.

I1 = NI1

�
= 200

50
= 4 A Ans. (8-12)

I2 = NI2

�
= 450

50
= 9 A Ans. (8-13)

8.5 Equation (8-2) showed the value of a third-order determinant by expanding the first column. The specific
row or column selected for expanding is random. Show that by expanding the first row, the result is
the same.
Expand the first column:

Expand the first row:

by rearranging elements within the term, we show that by matching term by term, Eq. (1) = Eq. (2).

8.6 In Example 8.4, three mesh currents were found by solving three simultaneous equations by use of
determinants. Write by inspection the determinant expression for all mesh currents. Figure 8-1 is
repeated for convenience.
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Fig. 8-1

By inspection, R11 = 5 �, R22 = 12 �, R33 = 11 �

R12 = R21 = 3 �, R13 = R31 = 0 �, R23 = R32 = 5 �

V1 = 20 V, V2 = 0 V, V3 = 5 V

� =
∣∣∣∣∣∣

R11 −R12 −R13
−R21 R22 −R23
−R31 −R32 R33

∣∣∣∣∣∣ =
∣∣∣∣∣∣

5 −3 0
−3 12 −5

0 −5 11

∣∣∣∣∣∣ Ans. (8-14)

I1 = NI1

�
=

∣∣∣∣∣∣
V1 −R12 −R13
V2 R22 −R23
V3 −R32 R33

∣∣∣∣∣∣
�

=

∣∣∣∣∣∣
20 −3 0

0 12 −5
5 −5 11

∣∣∣∣∣∣
�

Ans. (8-15)

I2 = NI2

�
=

∣∣∣∣∣∣
R11 V1 −R13

−R21 V2 −R23
−R31 V3 R33

∣∣∣∣∣∣
�

=

∣∣∣∣∣∣
5 20 0

−3 0 −5
0 5 11

∣∣∣∣∣∣
�

Ans. (8-16)

I3 = NI3

�
=

∣∣∣∣∣∣
R11 −R12 V1

−R21 R22 V2
−R31 −R32 V3

∣∣∣∣∣∣
�

=

∣∣∣∣∣∣
5 −3 20

−3 12 0
0 −5 5

∣∣∣∣∣∣
�

Ans. (8-17)

Note that these current expressions are identical to those in Example 8.4. By inspection I1, I2, and I3
can be explicitly expressed as a ratio of determinants without writing first the simultaneous equations.

8.7 Solve for all mesh currents by the use of determinants (Fig. 8-5).

Fig. 8-5
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Step 1. Assume all currents in the same clockwise direction.

Step 2. Find the determinant of the network �.

� =
∣∣∣∣∣∣

R11 −R12 −R13
−R21 R22 −R23
−R31 −R32 R33

∣∣∣∣∣∣ (8-14)

By inspection, R11 = 6 �, R22 = 8 �, R33 = 6 �

R12 = R21 = 2 �

R13 = R31 = 0 �

R23 = R32 = 2 �

V1 = 10 V

V2 = 0 V

V3 = −4 V
Substituting R values and expanding the 1st column,

Step 3. Find the numerator determinant for I1, I2, and I3.

NI1 =
∣∣∣∣∣∣
V1 −R12 −R13
V2 R22 −R23
V3 −R32 R33

∣∣∣∣∣∣ (from 8-15)

=
∣∣∣∣∣∣

10 −2 0
0 8 −2

−4 −2 6

∣∣∣∣∣∣ = 10

∣∣∣∣ 8 −2
−2 6

∣∣∣∣ − 0

∣∣∣∣−2 0
−2 6

∣∣∣∣ + (−4)

∣∣∣∣−2 0
8 −2

∣∣∣∣
= 10[(8)(6) − (−2)(−2)] − 0 − 4[(−2)(−2) − (0)(8)]
= 10(44) − 4(4) = 440 − 16 = 424

NI2 =
∣∣∣∣∣∣

R11 V1 −R13
−R21 V2 −R23
−R31 V3 R33

∣∣∣∣∣∣ (from 8-16)

=
∣∣∣∣∣∣

6 10 0
−2 0 −2

0 −4 6

∣∣∣∣∣∣ = 6

∣∣∣∣ 0 −2
−4 6

∣∣∣∣ − (−2)

∣∣∣∣ 10 0
−4 6

∣∣∣∣ + 0

∣∣∣∣10 0
0 −2

∣∣∣∣
= 6[(0)(6) − (−2)(−4)] + 2[(10)(6) − (0)(−4)] + 0

= 6(−8) + 2(60) = −48 + 120 = 72

NI3 =
∣∣∣∣∣∣

R11 −R12 V1
−R21 R22 V2
−R31 −R32 V3

∣∣∣∣∣∣ (from 8-17)
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=
∣∣∣∣∣∣

6 −2 10
−2 8 0

0 −2 −4

∣∣∣∣∣∣ = 6

∣∣∣∣ 8 0
−2 −4

∣∣∣∣ − (−2)

∣∣∣∣−2 10
−2 −4

∣∣∣∣ + 0

∣∣∣∣−2 10
8 0

∣∣∣∣
= 6[(8)(−4) − (0)(−2)] + 2[(−2)(−4) − (10)(−2)] + 0

= 6(−32) + 2(28) = −192 + 56 = −136

Step 4. Find I1, I2, and I3.

I1 = NI1

�
= 424

240
= 1.77 A Ans. (8-15)

I2 = NI2

�
= 72

240
= 0.30 A Ans. (8-16)

I3 = NI3

�
= −136

240
= −0.57 A Ans. (8-17)

(I3 is counterclockwise)

Step 5. Check solutions.

In mesh 1 by KVL (Fig. 8-5),

10 = 6I1 − 2I2

10 = 6(1.77) − 2(0.30)

10 = 10.62 − 0.60

10 = 10.02 Check, rounding error

In mesh 2 by KVL (Fig. 8-5),

0 = −2I1 + 8I2 − 2I3

0 = −2(1.77) + 8(0.30) − 2(−0.57)

0 = −3.54 + 2.40 + 1.14

0 = 0 Check

8.8 (a) Solve for mesh currents I1, I2, and I3 by determinants (Fig. 8-6).
(b) What are the voltage drops across the resistors in mesh 1?

Fig. 8-6
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(a) Step 1. Write the determinant of the network �.

� =
∣∣∣∣∣∣

R11 −R12 −R13
−R21 R22 −R23
−R31 −R32 R33

∣∣∣∣∣∣ =
∣∣∣∣∣∣

4 −3 −1
−3 6 −2
−1 −2 6

∣∣∣∣∣∣ (8-14)

= 4

∣∣∣∣ 6 −2
−2 6

∣∣∣∣ − (−3)

∣∣∣∣−3 −1
−2 6

∣∣∣∣ + (−1)

∣∣∣∣−3 −1
6 −2

∣∣∣∣
= 4(36 − 4) + 3(−18 − 2) − (6 + 6)

= 4(32) + 3(−20) − 12

= 128 − 60 − 12

� = 56

Step 2. Find the numerator determinant for I1, I2, and I3.

Replace 1st column of � with values of V1, V2, V3 to find NI1 .

NI1 =
∣∣∣∣∣∣
14 −3 −1

0 6 −2
0 −2 6

∣∣∣∣∣∣
= 14

∣∣∣∣ 6 −2
−2 6

∣∣∣∣ − 0

∣∣∣∣−3 −1
−2 6

∣∣∣∣ + 0

∣∣∣∣−3 −1
6 −2

∣∣∣∣
= 14(36 − 4) = 14(32) = 448

Replace 2nd column of � with values of V1, V2, V3 to find NI2 .

NI2 =
∣∣∣∣∣∣

4 14 −1
−3 0 −2
−1 0 6

∣∣∣∣∣∣
= 4

∣∣∣∣0 −2
0 6

∣∣∣∣ − (−3)

∣∣∣∣14 −1
0 6

∣∣∣∣ + (−1)

∣∣∣∣14 −1
0 −2

∣∣∣∣
= 0 + 3(84) − (−28)

= 280

Replace 3rd column of � with values of V1, V2, V3 to find NI3 .

NI3 =
∣∣∣∣∣∣

4 −3 14
−3 6 0
−1 −2 0

∣∣∣∣∣∣
= 4

∣∣∣∣ 6 0
−2 0

∣∣∣∣ − (−3)

∣∣∣∣−3 14
−2 0

∣∣∣∣ + (−1)

∣∣∣∣−3 14
6 0

∣∣∣∣
= 0 + 3(28) − 1(−84) = 84 + 84

= 168
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Step 3. Find I1, I2, and I3.

I1 = NI1

�
= 448

56
= 8 A Ans. (8-15)

I2 = NI2

�
= 280

56
= 5 A Ans. (8-16)

I3 = NI3

�
= 168

56
= 3 A Ans. (8-17)

Step 4. Check solution.

At node A, �I = 0

I1 = I2 + I3

8 = 5 + 3

8 = 8 Check

(b) Across 3 �-resistor:

V3� = 3(I1 − I2) = 3(8 − 5) = 9 V Ans.

Across 1 �-resistor:

V1� = 1(I1 − I3) = 8 − 3 = 5 V Ans.

14 = V3� + V1� = 9 + 5

14 = 14 Check

8.9 As the number of meshes increases, writing by inspection the explicit solutions of mesh currents by
the ratio of determinants is far quicker and simpler than writing the simultaneous loop equations for
each mesh. Write the general expression for finding the determinant of n-meshes of a DC network.

The determinant of order n is a square array of n rows by n columns. Following the pattern for
2nd order [Eq. (8-11)] and 3rd order [Eq. (8-14)] determinants, we can write

� =

∣∣∣∣∣∣∣∣∣∣

+R11 −R12 −R13 · · · −R1n

−R21 +R22 −R23 · · · −R2n

−R31 −R32 +R33 · · · −R3n

· · · · · · ·
−Rn1 −Rn2 −Rn3 · · · +Rnn

∣∣∣∣∣∣∣∣∣∣
Ans. (8-18)

8.10 Given a network of n = 4 meshes, write the general expression for finding the value of I2.

Step 1. From Eq. 8-18, Solved Problem 8.9, write the network determinant for four meshes.

� =

∣∣∣∣∣∣∣∣
R11 −R12 −R13 −R14

−R21 R22 −R23 −R24
−R31 −R32 R33 −R34
−R41 −R42 −R43 R44

∣∣∣∣∣∣∣∣ (8-19)
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Step 2. Replace the elements of the 2nd column by the net voltages of each mesh to form the
numerator determinant of I2.

I2 = NI2

�
=

∣∣∣∣∣∣∣∣
R11 V1 −R13 −R14

−R21 V2 −R23 −R24
−R31 V3 R33 −R34
−R41 V4 −R43 R44

∣∣∣∣∣∣∣∣
�

Ans. (8-20)

8.11 Add a fourth mesh to Fig. 8-6 to form a four-mesh network (Fig. 8-7). Write the expression for I2. Do
not solve.

Fig. 8-7

Step 1. Find the network �. Refer to � for a three-mesh network in Solved Problem 8.8(a) and to
Eq. (8-20). The new � for the four-mesh network becomes

� =

∣∣∣∣∣∣∣∣
4 −3 −1 −R14

−3 6 −2 −R24
−1 −2 6 −R34
−R41 −R42 −R43 R44

∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣
4 −3 −1 0

−3 6 −2 −1
−1 −2 6 −3

0 −1 −3 5

∣∣∣∣∣∣∣∣
Step 2. Replace 2nd column elements by net voltages of each mesh to form NI2 and write I2

expression.

I2 = NI2

�
=

∣∣∣∣∣∣∣∣
4 14 −1 0

−3 0 −2 −1
−1 0 6 −3

0 −5 −3 5

∣∣∣∣∣∣∣∣
�

Ans.

By successive expanding of the elements of the first column, we reduce the order of the
determinant from four to three and then to two. By reducing the order of the determinant
eventually to two, you can solve explicitly for each mesh current. When n = 4, the expansion
of the first column elements have signs of +, −, +, and −. (Compare to n = 3 where the
signs are +, −, and +.)

Supplementary Problems

8.12 Evaluate the following second-order determinants.

(a)

∣∣∣∣5 −7
3 −5

∣∣∣∣ (b)

∣∣∣∣4 −5
3 2

∣∣∣∣ (c)

∣∣∣∣0 4
3 0

∣∣∣∣ (d) Find x:
∣∣∣∣x 3
1 6

∣∣∣∣ = 15

Ans. (a) −4; (b) 23; (c) −12; (d) x = 3
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8.13 Solve the following simultaneous equations by the determinant method and check each solution.

(a) 3x − 4y = 13 (b) 16I1 − 3I2 = 10 (c) 2I1 + 3I2 = 12

5x + 6y = 9 8I1 + 5I2 = 18 3I1 − I2 = 7

Ans. (a) x = 3, y = −1; (b) I1 = 1, I2 = 2; (c) I1 = 3, I2 = 2

8.14 Evaluate the following third-order determinants.

(a)

∣∣∣∣∣∣
4 4 2
3 1 1
2 −5 −1

∣∣∣∣∣∣ (b)

∣∣∣∣∣∣
4 5 2
1 4 1

−5 3 −1

∣∣∣∣∣∣ (c)

∣∣∣∣∣∣
6 −4 −2

−4 15 −6
−2 −6 11

∣∣∣∣∣∣ (d)

∣∣∣∣∣∣
1 3 0
2 0 1
0 4 3

∣∣∣∣∣∣
(e) Verify your answers for (a) and (c) by selecting a different row or column for expanding.

Ans. (a) 2; (b) −2; (c) 442; (d) −22

8.15 Solve the following simultaneous equations by the determinant method and check each solution.

(a) 2I1 + 3I2 + 5I3 = 0 (b) I1 + I2 + 2I3 = 3 (c) 6I1 − 4I2 + 5I3 = 10

6I1 − 2I2 − 3I3 = 3 2I1 + I2 + I3 = 16 3I1 + 2I2 = 60

8I1 − 5I2 − 6I3 = 1 I1 + 2I2 + I3 = 9 5I1 + 4I3 = 58

Ans. (a) I1 = 0.5, I2 = 3, I3 = −2 (� = −40)

(b) I1 = 9, I2 = 2, I3 = −4 (� = 4)

(c) I1 = 10, I2 = 15, I3 = 2 (� = 46)

8.16 Find the determinant solutions for mesh currents I1 and I2 in the following circuits. Assume the
clockwise direction for current. Check solutions.

Fig. 8-8

Fig. 8-9
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Fig. 8-10

Fig. 8-11

Fig. 8-12

Fig. 8-13

Fig. 8-14
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Ans. (a) I1 = −6 A, I2 = 4 A

(b) I1 = 5 A, I2 = 3 A

(c) I1 = 2 A, I2 = −1 A

(d) I1 = −0.3 A, I2 = 0.1 A

(e) I1 = −2 A, I2 = 3 A

(f ) I1 = 7 A, I2 = 4 A

(g) I1 = 6 A, I2 = 7 A

8.17 Find the voltage drops across the following resistors in the circuits of Supplementary Problem 8.16.

(a) 15-ohm resistor (Fig. 8-9)

(b) Common 2-ohm resistor (Fig. 8-10)

(c) 4-ohm and 6-ohm resistors (Fig. 8-12)

(d) 4-ohm resistor (Fig. 8-14)

Ans. (a) 30 V; (b) 6 V; (c) 8 V, 18 V; (d) 4 V

8.18 Find the determinant solution for mesh currents I1, I2, and I3 in the following networks. Assume the
clockwise direction for current. Check solutions.

Fig. 8-15

Fig. 8-16
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Fig. 8-17

Ans. (a) I1 = 6 A, I2 = 2 A, I3 = 3 A
(b) I1 = 2 A, I2 = 1 A, I3 = 1 A (� = 16 000)

(c) I1 = 0.357 A, I2 = −0.037 A, I3 = 0.280 A (� = 41 000)

8.19 Find the voltage drops across the following resistors in Fig. 8-15 of Supplementary Problem 8.18.

(a) 9-ohm and 4-ohm resistors

(b) 6-ohm common resistor between mesh 2 and mesh 3

(c) 6-ohm common resistor between mesh 1 and mesh 3

Ans. (a) V9� = 18 V, V4� = 12 V; (b) 6 V; (c) 18 V

8.20 Add a fourth mesh to Fig. 8-17 in Supplementary Problem 8.18c to form a four-mesh network
(Fig. 8-18). Write the expression for I1 as a ratio of determinants. Do not solve.

Fig. 8-18

Ans. I1 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

15 −20 0 0
−10 40 −5 0

10 −5 35 −15
0 0 −15 30

40 −20 0 0
−20 40 −5 0

0 −5 35 −15
0 0 −15 30

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣



 

Chapter 9

Network Calculations

Y AND DELTA NETWORKS

The network in Fig. 9-1 is called a T (“tee”) or Y (“wye”) network because of its shape. T and Y are different
names for the same network, except that in the Y network the Ra and Rb arms form the upper part of a Y.

Fig. 9-1 Form of a T or Y network

The network in Fig. 9-2 is called a Π (pi) or ∆ (delta) network because its shape resembles these Greek
letters; Π and ∆ are different names for the same network.

Fig. 9-2 Form of a Π or ∆ network

In analyzing networks it is helpful to convert Y to ∆ or ∆ to Y to simplify the solution. The formulas for
these conversions are derived from Kirchhoff’s laws. Note that resistances in Y have subscript letters, Ra, Rb,
and Rc, while the resistances in ∆ are numbered R1, R2, and R3.

Resistances are shown in a three-terminal network with three terminals a, b, and c. After the conversion
formulas are used, one network is equivalent to the other because they have equivalent resistances across any
one pair of terminals.

∆ to Y Conversion, or Π to T

See Fig. 9-3.

Ra = R1R3

R1 + R2 + R3
(9-1)

Rb = R1R2

R1 + R2 + R3
(9-2)

Rc = R2R3

R1 + R2 + R3
(9-3)

153
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Fig. 9-3 Conversion between Y and
∆ networks

Rule 1: The rule for ∆ to Y conversion can be stated as follows: The resistance of any branch of the Y
network is equal to the product of the two adjacent sides of the ∆ network divided by the sum of the
three ∆ resistances.

Y to ∆ Conversion, or T to Π

See Fig. 9-3.

R1 = RaRb + RbRc + RcRa

Rc

(9-4)

R2 = RaRb + RbRc + RcRa

Ra

(9-5)

R3 = RaRb + RbRc + RcRa

Rb

(9-6)

Rule 2: The rule for Y to ∆ conversion can be stated as follows: The resistance of any side of the ∆ network
is equal to the sum of the Y network resistances multiplied two at a time, divided by the resistance
of the opposite branch of the Y network.

As an aid in using Eqs. (9-1)–(9-6) the following scheme is useful. Place the Y inside the ∆ (Fig. 9-3). Note
that the ∆ has three closed sides, while the Y has three open arms. Also note how each resistor in the open has
two adjacent resistors in the closed sides. For Ra , adjacent resistors are R1 and R3; for Rb, adjacent resistors
are R1 and R2; and for Rc, adjacent resistors are R2 and R3. Furthermore, each resistor can be considered
opposite to each other in the two networks. For example, open arm Rc is opposite to closed side R1; Rb is
opposite to R3; and Ra is opposite to R2.

Example 9.1 A ∆ network is shown in Fig. 9-4a. Find the resistances of an equivalent Y network (Fig. 9-4b) and draw
the network.

Place Y network within ∆ network and find resistances by using ∆ to Y conversion rule (see Fig. 9-4c).

Ra = R1R3

R1 + R2 + R3
= 4(6)

10 + 6 + 4
= 24

20
= 1.2 � Ans. (9-1)
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Rb = R1R2

R1 + R2 + R3
= 4(10)

20
= 40

20
= 2 � Ans. (9-2)

Rc = R2R3

R1 + R2 + R3
= 10(6)

20
= 60

20
= 3 � Ans. (9-3)

Fig. 9-4 ∆ to Y conversion

The equivalent Y network is
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Example 9.2 Given the calculated resistances of the Y network in Example 9.1, Ra = 1.2 �, Rb = 2 �, and Rc = 3 �,
confirm the values of equivalent resistances in the ∆ network of R1 = 4 �, R2 = 10 �, and R3 = 6 �.

Place Y network within ∆ network as in previous example and find ∆ resistance by using Y to ∆ rule. (See Fig. 9-4d.)

R1 = RaRb + RbRc + RcRa

Rc
(9-4)

= 1.2(2) + 2(3) + 3(1.2)

3

= 2.4 + 6 + 3.6

3
= 12

3
= 4 � Ans.

R2 = RaRb + RbRc + RcRa

Ra
(9-5)

= 12

1.2
= 10 � Ans.

R3 = RaRb + RbRc + RcRa

Rb
(9-6)

= 12

2
= 6 � Ans.

The results show that the ∆ and Y networks (Fig. 9-4) are equivalent to each other when they have three resistance
values obtained with the conversion formulas.

Example 9.3 Use network conversion to find the equivalent or total resistance RT between a and d in a bridge circuit
consisting of two deltas (Fig. 9-5a).

Step 1. Transform ∆ network abc into its equivalent Y. Use the rule for ∆ to Y conversion (Fig. 9-5b).

Ra = 2(4)

2 + 4 + 6
= 8

12
= 0.667 �

Rb = 4(6)

12
= 24

12
= 2 �

Rc = 2(6)

12
= 12

12
= 1 �

Step 2. Replace the ∆ with its Y equivalent (Fig. 9-5c) in the original bridge circuit.

Step 3. Simplify the series–parallel circuit. First, combine series resistances. Resistances Rc and R4 are in series, and
Rb and R5 are in series [Fig. 9-5d(1)].

Rc + R4 = 1 + 5 = 6 �

Rb + R5 = 2 + 4 = 6 �

Next combine the parallel branches, Rc + R4 and Rb + R5. Since the resistances are equal [Fig. 9-5d(2)],

Rp = 6

2
= 3 �

Finally, combine series resistances Ra and Rp [Fig. 9-5d(3)].

RT = Ra + Rp = 0.667 + 3 = 3.67 � Ans.



 

CHAP. 9] NETWORK CALCULATIONS 157

Fig. 9-5 Reducing a bridge circuit by ∆ to Y conversion

SUPERPOSITION

The superposition theorem states that in a network with two or more sources the current or voltage for any
component is the algebraic sum of the effects produced by each source acting independently. In order to use
one source at a time, all other sources are removed from the circuit. A voltage source is removed by replacing
it with a short circuit. A current source is removed by replacing it with an open circuit.

In order to superimpose currents and voltages, all the components must be linear and bilateral. Linear
means that the current is proportional to the applied voltage; that is, the current and voltage obey Ohm’s
law, I = V/R. Then the currents calculated for different source voltages can be superimposed, that is, added
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algebraically. Bilateral means that the current is the same amount for opposite polarities of the source voltage.
Then the values for opposite directions of current can be added algebraically.

Example 9.4 Find branch currents I1, I2, and I3 by the superposition theorem (Fig. 9-6a).

Fig. 9-6 Superposition applied to a two-mesh circuit



 

CHAP. 9] NETWORK CALCULATIONS 159

Step 1. Find the currents produced by voltage source V1 only.

(a) Replace voltage source V2 with a short circuit (Fig. 9-6b). Use the subscript V1 after a comma to indicate
that only source V1 is supplying the circuit. For example, I1,V 1 is current I1 due only to source V1 and
I2,V 1 is current I2 due only to source V1.

(b) Combine series and parallel resistances to reduce the circuit to a single source and a single resistance
(Fig. 9-6c). Solve for currents produced by V1.

R4 = R1 + R2R3

R2 + R3
= 1 + 1(1)

1 + 1
= 1 + 0.5 = 1.5 �

I1,V 1 = V1

R4
= 3

1.5
= 2 A

I1,V 1 will divide symmetrically at point a because of equal resistances R2 and R3 (Fig. 9-6b) so that

I2,V 1 = −1

2
I1,V 1 = −1

2
2 = −1 A

I3,V 1 = 1

2
I1,V 1 = 1

2
2 = 1 A

The negative sign is used to show that I2,V 1 actually leaves point a rather than enters point a as assumed.

Step 2. Find the currents produced by voltage source V2 only.

(a) Replace voltage source V1 with a short circuit (Fig. 9-6d). Use a subscript V2 after a comma to indicate
that only source V2 is supplying the circuit. For example, I1,V 2 is current I1 due only to source V2.

(b) Reduce the circuit to a single source and a single resistance (Fig. 9-6e). Solve for currents produced by V2.

R5 = R2 + R1R3

R2 + R3
= 1 + 1(1)

1 + 1
= 1 + 0.5 = 1.5 �

I2,V 2 = V2

R5
= 4.5

1.5
= 3 A

I2,V 2 will divide symmetrically at point a (Fig. 9-6d) so that

I3,V 2 = 1

2
I2,V 2 = 1

2
3 = 1.5 A

I1,V 2 = −1

2
I2,V 2 = −1

2
3 = −1.5 A

The negative sign shows that I1,V 2 actually leaves point a and does not enter point a as assumed.

Step 3. Add algebraically the individual currents to find the currents produced by both V1 and V2 (Fig. 9-6f and g).

I1 = I1,V 1 + I1,V 2 = 2 − 1.5 = 0.5 A Ans.

I2 = I2,V 1 + I2,V 2 = −1 + 3 = 2 A Ans.

I3 = I3,V 1 + I3,V 2 = 1 + 1.5 = 2.5 A Ans.

THEVENIN’S THEOREM

Thevenin’s theorem is a method used to change a complex circuit into a simple equivalent circuit.
Thevenin’s theorem states that any linear network of voltage sources and resistances, if viewed from any two
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points in the network, can be replaced by an equivalent resistance RTh in series with an equivalent source VTh.
Figure 9-7a shows the original linear network with terminals a and b; Fig. 9-7b shows its connection to an
external network or load; and Fig. 9-7c shows the Thevenin equivalent VTh and RTh that can be substituted
for the linear network at the terminals a and b. The polarity of VTh is such that it will produce current from
a and b in the same direction as in the original network. RTh is the Thevenin resistance across the network
terminals a and b with each internal voltage source short-circuited. VTh is the Thevenin voltage that would
appear across the terminals a and b with the voltage sources in place and no load connected across a and b.
For this reason, VTh is also called the open-circuit voltage.

Fig. 9-7 Thevenin equivalent, VTh, and series RTh

Example 9.5 Find the Thevenin equivalent to the circuit at terminals a and b (Fig. 9-8a).

Fig. 9-8 Thevenin equivalent without load

Step 1. Find RTh. Short-circuit the voltage source V = 10 V (Fig. 9-8b). R1 and R2 are in parallel.

RTh = R1R2

R1 + R2
= 4(6)

4 + 6
= 24

10
= 2.4 � Ans.
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Step 2. Find VTh. VTh is the voltage across terminals a and b, which is the same as the voltage drop across resistance R2.

I = V

R1 + R2
= 10

4 + 6
= 10

10
= 1 A

VTh = V2 = IR2

Then VTh = 1(6) = 6 V Ans.

The Thevenin equivalent is then as in Fig. 9-8c.

Example 9.6 To the circuit in Fig. 9-8a add a resistor load RL of 3.6 � and find the current IL through the load
voltage VL across the load.

The new circuit is as shown in Fig. 9-9a and with the Thevenin equivalent is as shown in Fig. 9-9b.

Fig. 9-9 Thevenin equivalent with load

IL = VTh

RTh + RL
= 6

2.4 + 3.6
= 6

6
= 1 A Ans.

VL = ILRL = 1(3.6) = 3.6 V Ans.

Note how the Thevenin equivalent has simplified the solution of the given two-mesh network. Further, if the load RL were
changed, we would not have to recalculate the entire network.

NORTON’S THEOREM

Norton’s theorem is used to simplify a network in terms of currents instead of voltages. For current analysis,
this theorem can be used to reduce a network to a simple parallel circuit with a current source, which supplies
a total line current that can be divided among parallel branches.

If the current I (Fig. 9-10) is a 4-A source, it supplies 4 A no matter what is connected across the output
terminals a and b. With nothing connected across a and b, all the 4 A flows through shunt R. When a load
resistance RL is connected across a and b, then the 4-A current divides according to the current-division rule
for parallel branches.

The symbol for a current source is a circle with an arrow inside (Fig. 9-10) to show the direction of current.
This direction must be the same as the current produced by the polarity of the corresponding voltage source.
Remember that a source produces current flow out from the positive terminal.

Norton’s theorem states that any network connected to terminals a and b [Fig. 9-11a(1)] can be replaced by
a single current source IN in parallel with a single resistance RN [Fig. 9-11a(2)]. IN is equal to the short-circuit
current through the ab terminals (the current that the network would produce through a and b with a short
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Fig. 9-10 I source with parallel R

Fig. 9-11a, b

circuit across these two terminsals). RN is the resistance at terminals a and b, looking back from the open ab
terminals. The value of the single resistor is the same for both the Norton and Thevenin equivalent circuits.

Example 9.7 Calculate the current IL (see Fig. 9-9a) by Norton’s theorem. (This was solved in Example 9.6 by
Thevenin’s theorem.)

Step 1. Find IN . Short-circuit across ab terminals (Fig. 9-11b). A short circuit across ab short-circuits RL and the parallel
R2. Then the only resistance in the circuit is R1 in series with source V .

IN = V

R1
= 10

4
= 2.5 A

Step 2. Find RN . Open terminals ab and short-circuit V (Fig. 9-11c). R1 and R2 are in parallel, so

RN = 4(6)

4 + 6
= 24

10
= 2.4 �

Note that RN is the same as RTh.
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Fig. 9-11c, d, e

The Norton equivalent is then as in Fig. 9-11d. The arrow on the current source shows the direction of conventional
current from terminal a to terminal b, as in the original circuit.

Step 3. Find IL. Reconnect RL to ab terminals (Fig. 9-11e). The current source still delivers 2.5 A, but now the current
divides between the two branches RN and RL.

IL = RN

RN + RL
IN = 2.4

2.4 + 3.6
2.5 = 2.4

6
2.5 = 1 A Ans.

This value is the same load current calculated in Example 9.6. Also, VL can be calculated as ILRL, or
(1 A)(3.6 �) = 3.6 V.

We therefore see that the Thevenin equivalent circuit (Fig. 9-12a) corresponds to the Norton equivalent
circuit (Fig. 9-12b). So a general voltage source with a series resistance (Fig. 9-12a) can be converted to an
equivalent current source with the same resistance in parallel (Fig. 9-12b). Divide the general source V by its
series resistance R to find the value of I for the equivalent current source shunted by the same resistance R;
that is, IN = VTh/RTh.

Fig. 9-12 Equivalent circuits
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SERIES–PARALLEL CIRCUITS

Many circuits consist of a combination of series and parallel circuits. These combination circuits are
called series–parallel circuits. An example of a series–parallel circuit is shown in Fig. 9-13, where two parallel
resistors R2 and R3 are connected in series with the resistor R1 and the voltage source V . In a circuit of this
type, the current IT divides after it flows through R1, and part flows through R2 and part flows through R3.
Then the current joins at the junction of the two resistors and flows back to the negative terminal of the voltage
source and through the voltage source to the positive terminal.

Fig. 9-13 A series–parallel circuit

In solving for values of current, voltage, and resistance in a series–parallel circuit, follow the rules that
apply to a series circuit for the series part of the circuit, and follow the rules that apply to a parallel circuit for
the parallel part of the circuit. Solving series–parallel circuits is simplified if all parallel and series groups are
first reduced to single equivalent resistances and the circuits redrawn in simplified form. The redrawn circuit
is called an equivalent circuit.

There are no general formulas for the solution of series–parallel circuits because there are so many different
forms of these circuits.

Example 9.8 Find the total resistance, total circuit current, and branch currents of the circuit shown in Fig. 9-14a.

Fig. 9-14a

It is best to solve combination circuits in steps:

Step 1. Find the equivalent resistance of the parallel branch.

Rp = R2R3

R2 + R3
= 12(24)

12 + 24
= 288

36
= 8 �

The equivalent circuit reduces to a series circuit (Fig. 9-14b).
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Fig. 9-14b, c, d

Step 2. Find the resistance of the equivalent series circuit.

RT = R1 + Rp = 10 + 8 = 18 � Ans.

The equivalent circuit reduces to a single voltage source and a single resistance (Fig. 9-14c).

Step 3. Find IT . (IT is the actual current being supplied in the original series–parallel circuit.)

IT = V

RT
= 54

18
= 8 A Ans.

Step 4. Find I2 and I3. The voltage across R2 and R3 is equal to the applied voltage V less the voltage drop across R1.
See Fig. 9-14d .

V2 = V3 = V − IT R1 = 54 − (3 × 10) = 24 V

Then I2 = V2

R2
= 24

12
= 2 A Ans.

I3 = V3

R3
= 24

24
= 1 A Ans.

or, by KCL,

IT = I1 = I2 + I3

I3 = IT − I2 = 3 − 2 = 1 A

Example 9.9 Find the total resistance RT (Fig. 9-15a).

Step 1. Add series resistances in each branch (Fig. 9-15b).

Branch ab: R1 + R2 = 5 + 10 = 15 �

Branch cd: R3 + R4 = 6 + 9 = 15 �

Branch ef: R5 + R6 + R7 = 8 + 5 + 2 = 15 �
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Fig. 9-15

Step 2. Find RT . Each of three parallel resistors is 15 �. See Fig. 9-15c.

RT = R

N
= 15

3
= 5 � Ans.

WHEATSTONE BRIDGE CIRCUIT

The wheatstone bridge (Fig. 9-16) can be used to measure an unknown resistance Rx . Switch S2 applies
battery voltage to the four resistors in the bridge. To balance the bridge, the value of R3 is varied. Balance is
indicated by zero current in galvanometer G when switch S1 is closed.

Fig. 9-16 Wheatstone bridge
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When the bridge is balanced, points b and c must be at the same potential. Therefore

IxRx = I1R1 (1)

IxR3 = I1R2 (2)

Divide Eqs. (1) and (2). Note that Ix and I1 cancel.

�I xRx

�I xR3
= �I 1R1

�I 1R2

Rx

R3
= R1

R2

Solve for Rx .

Rx = R1

R2
R3 (9-7)

The ratio arm of the bridge is R1/R2. A rotary switching arrangement is used often in commercial bridges
to adjust the ratio arm over a wide range of ratios. The bridge is balanced by varying R3 for zero current in the
meter. A decade box, where resistance can be varied in small ohmic steps up to as high as 10 K�, is commonly
used as R3. The value of Rx can be read directly from the calibrated scale of the rheostat when R3 is adjusted
for balance.

When current flows through the meter path bc, the bridge circuit is unbalanced and must be analyzed by
Kirchhoff’s laws or network theorems.

Example 9.10 An unknown resistance is to be measured by the Wheatstone bridge. If the ratio of R1/R2 is 1/100 and
R2 is 352 � when the bridge is balanced, find the value of the unknown resistance.

Substitute known values into Eq. (9-7).

Rx = R1

R2
R3 = 1

100
352 = 3.52 � Ans.

MAXIMUM POWER TRANSFER

The maximum power is supplied by the voltage source and received by the load resistor if the value of
the resistor equals the value of the internal resistance of the voltage source (Fig. 9-17). For maximum power
transfer, then

RL = Ri

and power received at the load is

PL = I 2RL where I = V

Ri + RL

Example 9.11 If a 10-V battery has an internal resistance of Ri = 5 �, what is the maximum power that can be
delivered to the load resistor (Fig. 9-18)?

For maximum power transfer,

RL = Ri = 5 �

I = V

Ri + RL
= 10

5 + 5
= 10

10
= 1 A

PL = I2RL = 12(5) = 5 W Ans.
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Fig. 9-17 Fig. 9-18

Example 9.12 For Example 9.11, prepare a table of values of power delivered to the load when the load resistance RL

is 1 �, 3 �, 4 �, 5 �, 6 �, 7 �, and 10 �.

Power Delivered to RL

RL, � Ri , � I = V

Ri + RL
, A PL = I2RL, W

1 5 1.67 2.79
3 5 1.25 4.69
4 5 1.11 4.93
5 5 1.00 5.00

(max. power)
6 5 0.91 4.97
7 5 0.83 4.82

10 5 0.67 4.49

Notice that when RL = Ri = 5 �, the maximum power of 5 W is transferred to the load.

LINE-DROP CALCULATIONS

The connecting wires are generally very short in electric circuits. Because the resistance of these short
lengths is low, it was neglected in previous calculations. However, in home and factory electrical installations,
where long lines of wires or feeders are used, the resistance of these long lengths must be included in all
calculations.

The voltage drop across the resistance of the line wires is called the line drop. For example, if a generator
delivers 120 V but the voltage available at a motor some distance away is only 117 V, then there has been a
line drop in voltage of 3 V.

We must be careful about specifying the kind and size of wires used in any installation. If the wires are
incorrectly chosen, then the line drop may be too large so that the voltage available to an electrical apparatus
will be too low for proper operation (refer to the section on wire measurement in Chapter 4).

Example 9.13 A lamp bank consisting of three lamps, each drawing 1.5 A, is connected to a 120-V source (Fig. 9-19).
Each line wire has a resistance of 0.25 �. Find the line drop, line power loss, and voltage available at the load.

Step 1. Find the line current Il .

Il = I1 + I2 + I3 = 1.5 + 1.5 + 1.5 = 4.5 A

Step 2. Find the resistance of the line wires Rl . Since the line wires are in series,

Rl = R1 + R2 = 0.25 + 0.25 = 0.5 �
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Fig. 9-19

Step 3. Find the line drop by ohm’s law.

Vl = IlRl = 4.5(0.5) = 2.25 V Ans.

Step 4. Find the line power loss.

Pl = I2
l Rl = (4.5)2(0.5) = 10.1 W Ans.

Step 5. Find voltage available at load.

VL = VG − Vl = 120 − 2.25 = 117.75 = 117.8 V Ans.

Example 9.14 A bank of lathes is operated by individual motors in a machine shop (Fig. 9-20). The motors draw a
total of 60 A at 110 V from the distributing panel box. What is the smallest size copper wire required for the two-wire line
between the panel box and the switchboard, located 100 ft away, if the switchboard voltage is 115 V?

Step 1. Find the line drop between the switchboard and the panel box.

Vl = VG − VL = 115 − 110 = 5 V

Step 2. Find the line resistance Rl for this drop.

Vl = IlRl

Rl = Vl

Il
= 5

60
= 0.0833 �

Step 3. Find the circular-mil area of the wire that has this resistance. Since there are two wires, l = 2L = 2(100) = 200 ft.
Use resistivity formula to solve for area A of wire.

Rl = ρ
l

A
(4-5)

A = ρl

Rl

ρ = 10.4 (from Table 4-2) l = 200 ft Rl = 0.0833 �

A = 10.4(200)

0.0833
= 25 000 CM
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Fig. 9-20

Step 4. Find the gauge number of the wire whose circular-mil area is larger than 25 000 CM. Refer to Table 4-1.
Read down column 3, circular-mil area, until you get to a number just larger than 25 000 CM. The number is
26 250 CM. Read left to column 1 to find gauge No. 6. Ans.

THREE-WIRE DISTRIBUTION SYSTEMS

The basic circuit described so far has been a two-wire circuit to a lamp, motor, or other load device. The
basic two-wire circuit uses 120 V to supply the many household and factory load devices designed for that
voltage. The three-wire circuit was developed to reduce the problems of voltage drop and power loss in the
lines while still providing 120-V supply. The three wires of Fig. 9-21, including the grounded neutral, can
be used for either 240 or 120 V. From either red or black high side to neutral, 120 V is available for separate
branch circuits to the lights and outlets. Across the red and black wires, 240 V is available for high-power
appliances such as a freezer or automatic clothes dryer. This 120/240-V three-wire distribution with a grounded
neutral is called the Edison system.

Fig. 9-21 Three-wire distribution system Fig. 9-22 Three-wire system with two voltage sources

The Edison System with Two Voltage Sources

This system (Fig. 9-22) has two direct-current generators, GA and GB , with load voltages VL1 and VL2.
R1, R2, and R3 are the resistances of the line wires between the generators and the load. RL1 and RL2 are the
load resistances. I1, I2, and I3 are the currents in the line wires.

I1 and I3 will always flow in the direction indicated. I2 may flow in either direction. The actual direction
of flow will be determined by the sign of I2. A + sign for I2 means that it actually flows in the direction
indicated, while a − sign means I2 flows in the reverse direction.

By KCL and KVL, we can write

I3 = I1 − I2 (1)
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VA − I1R1 − I1RL1 − I2R2 = 0 (2)

VB + I2R2 − I3RL2 − I3R3 = 0 (3)

If the three wires are equal in size, as they usually are, their resistances are equal. So R = R1 = R2 = R3.
Equations (1), (2), and (3) can be solved to find the line currents.

I1 = RVB + VA(2R + RL2)

(R + RL1)(2R + RL2) + R(RL2 + R)
(9-8)

I2 = I1(RL2 + R) − VB

2R + RL2
(9-9)

I3 = I1 − I2 (9-10)

Example 9.15 A three-wire 240/120-V circuit has line resistances of 0.5 � per line and load resistors RL1 = 10 � and
RL2 = 5 � (Fig. 9-23). VA and VB are 120 V each. Find the currents and voltages at the loads.

Fig. 9-23

Step 1. Solve for I1, I2, and I3. Substitute known values into the line current equations.

I1 = RVB + VA(2R + RL2)

(R + RL1)(2R + RL2) + R(RL2 + R)
(9-8)

= 0.5(120) + 120(1.0 + 5)

(0.5 + 10)(1.0 + 5) + 0.5(5 + 0.5)
= 60 + 720

63 + 2.75
= 780

65.75
= 11.9 A Ans.

I2 = I1(RL2 + R) − VB

2R + RL2
(9-9)

= 11.9(5 + 0.5) − 120

1.0 + 5
= −54.55

6
= −9.1 A Ans.

I2 is thus flowing in opposite direction to that shown (Fig. 9-23).

I3 = I1 − I2 (9.10)

I3 = 11.9 − (−9.1) = 11.9 + 9.1 = 21 A Ans.
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Note that because I3 has the higher current, the heavier load is connected between the negative (lower) line and
the neutral, and the neutral carries current away from the generator. If the 120-V loads were balanced on each
side of the neutral (RL1 = RL2), the neutral would carry no current (I2 = 0).

Step 2. Find voltage across the loads by Ohm’s law.

VL1 = I1RL1 = 11.9(10) = 119 V Ans.

VL2 = I3RL2 = 21(5) = 105 V Ans.

Example 9.16 Assume that the fuse in the neutral line is blown, opening the neutral line in Fig. 9-23. What now are
the voltages across the two loads?

The connection is now reduced to a two-wire circuit (Fig. 9-24). By Ohm’s law,

I = 240

0.5 + 10 + 5 + 0.5
= 240

16
= 15 A

VL1 = IRL1 = 15(10) = 150 V Ans.

VL2 = IRL2 = 15(5) = 75 V Ans.

The high voltage of 150 V across the 10-� load resistor could destroy the equipment connected at that point in the
circuit. If the load were lights, the light bulbs would burn out fairly quickly with a 31-V overage (150 − 119 = 31). For
this reason, the neutral wire must not contain a fuse for protection of the circuit. Generally, electrical codes forbid fuses in
the neutral line.

Fig. 9-24

Solved Problems

9.1 Reduce the bridge circuit (Fig. 9-25a) to a single equivalent input resistance at terminals a and d.

Step 1. Convert Y network bcd to its equivalent ∆ network. Use Rule 2 and visual aid. (See
Fig. 9-25b.)

R1 = 10(10) + 10(10) + 10(10)

10
= 300

10
= 30 �

R2 = 300

10
= 30 �

R3 = 300

10
= 30 �
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Fig. 9-25
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Step 2. Redraw Y as its ∆ equivalent and connect it to the rest of the original circuit. (See Fig. 9-25c.)

Step 3. Reduce the circuit. The two 10- and 30-� branches are in parallel. (See Fig. 9-25d.)

Rp = 10(30)

10 + 30
= 300

40
= 7.5 �

Rq = 10(30)

10 + 30
= 300

40
= 7.5 �

Rr = 30(15)

30 + 15
= 450

45
= 10 �

RT = 10 + 10 = 20 � Ans.

9.2 Find the equivalent resistance RT and output voltage Vo of a network with a bridged T form
(Fig. 9-26a).

Step 1. Transform the T (or Y) network into its equivalent ∆. Use the rule for Y to ∆ conversion
(Fig. 9-26b).

R1 = 2(2) + 2(2) + 2(2)

2
= 12

2
= 6 �

R2 = 12

2
= 6 �

R3 = 12

2
= 6 �

Step 2. Redraw T as its ∆ equivalent and connect it to the remainder of the original circuit
(Fig. 9-26c).

Step 3. Redraw the circuit to show more clearly the two parallel branches, each containing two 6-�
resistances. Then reduce the circuit until you get a single equivalent resistance RT (Fig. 9-26c

and e). Two 6-� resistances in parallel are equal to 6/2 = 3 �.

RT = 6

2
= 3 � Ans.

Step 4. Solve for Vo by voltage distribution of 10 V. Look at circuit (3) in Fig. 9-26d.
By the voltage-division rule,

Vo = (resistance ratio)(Vad ) =
(

3 �

3 � + 3 �

)
(10 V) = 3

6
10 = 5 V Ans.

9.3 For a two-delta bridge circuit (Fig. 9-27a), find the values of current through all the resistors.

Step 1. Find the equivalent resistance between terminals a and d.

(a) Transform ∆ abc to its equivalent Y (Fig. 9-27b).

Ra = 3(9)

3 + 6 + 9
= 27

18
= 1.5 � Rb = 9(6)

18
= 54

18
= 3 � Rc = 3(6)

18
= 18

18
= 1 �

(b) Connect the Y equivalent circuit to the original circuit (Fig. 9-27c).

(c) Reduce the series–parallel circuit to its equivalent (Fig. 9-27d).
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Fig. 9-26
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Fig. 9-27
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Step 2. Find I1 and I3.

I1 = VT

RT

= 30

5
= 6 A

I1 divides equally into the two 7-� parallel branches so that

I3 = 7

14
6 = 6

2
= 3 A

Step 3. Solve for I2 by KVL,
∑

V = 0. Trace circuit abca in the clockwise direction (Fig. 9-27a).

−I2R1 − (I2 − I3)R3 + (I1 − I2)R2 = 0

Substitute R1 = 9 �, R2 = 3 �, R3 = 6 �, I1 = 6 A, and I3 = 3 A.

−9I2 − (I2 − 3)(6) + (6 − I2)(3) = 0

−9I2 − 6I2 + 18 + 18 − 3I2 = 0

−18I2 + 36 = 0

−18I2 = −36

I2 = 2 A

Step 4. Show currents through individual resistors (Fig. 9-27a).

I1 − I2 = 6 − 2 = 4 A Ans.

I2 = 2 A Ans.

I1 − I3 = 6 − 3 = 3 A Ans.

I2 − I3 = 2 − 3 = −1 A Ans.

I3 = 3 A Ans.

The negative sign for I2 − I3 indicates that the current actually flows in the direction of
c to b.

9.4 The superposition principle can be applied to a voltage-divider circuit with two sources (Fig. 9-28a).
Find Vp.

The method is to calculate Vp contributed by each source separately and then add (superimpose)
these voltage algebraically.

Step 1. Short-circuit G2 and find Vp,G1 due only to source G1 (Fig. 9-28b).
R1 and R2 form a series voltage divider for the V1 source. Vp,G1 is the same as the

voltage across R2. To find Vp,G1 use the voltage-divider formula:

Vp,G1 = R2

R1 + R2
V1 = 40

20 + 40
240 = 40

60
240 = 160 V

Vp,G1 is positive because V1 is positive.
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Fig. 9-28

Step 2. Short-circuit G1 and find Vp,G2 due only to source G2 (Fig. 9-28c).
R1 and R2 form a series voltage divider again, but here Vp,G2 is the same as the voltage

across R1. To find Vp,G2 we use the voltage-divider formula, but this time we have a negative
voltage source G2.

Vp,G2 = R1

R1 + R2
V2 = 20

20 + 40
(−60 V) = 20

60
(−60 V) = −20 V

Step 3. To find Vp add the voltages calculated.

Vp = Vp,G1 + Vp,G2 = 160 − 20 = 140 V Ans.

9.5 Find the current through the load resistor RL in the two-generator source circuit (Fig. 9-29a) by
superposition. R1 and R2 are the internal resistances of the generators.

Step 1. Find the current in RL due to G1 alone, designated IL,G1.

(a) Short-circuit G2 and reduce the circuit (Fig. 9-29b).

R3 = R1 + R2RL

R2 + RL

= 1 + 1(10)

1 + 10
= 1 + 10

11
= 1.91 �

I1,G1 = V1

R3
= 120

1.91
= 62.8 A



 

CHAP. 9] NETWORK CALCULATIONS 179

Fig. 9-29a, b

(b) Use current-divider formula to find IL,G1 at point a.

IL,G1 = R2

R2 + RL

I1,G1 = 1

11
62.8 = 5.71 A

Step 2. Find the current in RL due to G2 alone, namely IL,G2. Short-circuit G1 and reduce the circuit
(Fig. 9-29c).

R4 = R2 + R1RL

R2 + RL

= 1 + 1(10)

1 + 10
= 1.91 �

I2,G2 = V2

R4
= 100

1.91
= 52.4 A

IL,G2 = R1

R1 + RL

I2,G2 = 1

11
52.4 = 4.76 A

Step 3. Add the individual currents algebraically.

IL = IL,G1 + IL,G2 = 5.71 + 4.76 = 10.5 A Ans.

Fig. 9-29c
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9.6 Find the load current IL and the load voltage VL in the circuit (Fig. 9-30a) by the use of Thevenin’s
theorem.

Fig. 9-30a

Step 1. Find RTh. Remove the load RL. Short-circuit the voltage source of 120 V (Fig. 9-30b).
Short-circuiting the battery also short-circuits the 10-� resistor, leaving two 20-� resistors
in parallel.

RTh = 20

2
= 10 �

Step 2. Find VTh. The two 20-� resistors are in series across the 120-V line (Fig. 9-30a). Since the
voltage is the same across equal resistances and VTh is the open-circuit voltage at a and b

across the 20-� resistor,

VTh = 120

2
= 60 V

Step 3. Draw the equivalent circuit with RL and find IL and VL (Fig. 9-30c).

IL = VTh

RL + RTh
= 60

30 + 10
= 60

40
= 1.5 A Ans.

VL = ILRL = 1.5(30) = 45 V Ans.

Fig. 9-30b, c

9.7 Find the Thevenin equivalent across RL of the Wheatstone bridge network (Fig. 9-31a).

Step 1. For greater clarity, move the voltage source inside the bridge and show the load outside the
bridge (Fig. 9-31b).
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Fig. 9-31a, b, c, d

Step 2. Find RTh. Short-circuit the 90-V source (Fig. 9-31c).

Redraw the circuit for simplicity (Fig. 9-31d). Find Req1 for circuit 1, Req2 for circuit 2, and
then combine Req1 and Req2 in series to find RTh.

Req1 = 24(12)

24 + 12
= 8 �

Req2 = 30(60)

30 + 60
= 20 �

RTh = Req1 + Req2 = 8 + 20 = 28 � Ans.

Step 3. Find VTh. VTh is the open-circuit voltage across terminals b and c and is equal to the algebraic
sum of voltages across R2 and R4 (see Fig. 9-31e). By the voltage-division rule,

V2 = 12

12 + 14
90 = 1

3
90 = 30 V

V4 = 60

60 + 30
90 = 2

3
90 = 60 V

VTh = V4 − V2 = 60 − 30 = 30 V Ans.
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To show the polarity of VTh, ground d and note that the voltage at b is +30 V and the voltage
at c is +60 V with respect to ground. So the voltage at b is −30 V with respect to c. This
can be seen if we ground point c. (See Fig. 9-31f .)

Step 4. Draw the equivalent circuit with RL. Note the polarity of the source. (See Fig. 9-31g.)

Fig. 9-31e, f, g

9.8 Convert the voltage source circuit (Fig. 9-32a) to its equivalent current source circuit. Prove that
the two circuits are equivalent by calculating the voltage drop and current through a 10-� load
resistor.

Step 1. Find the current source equivalent.

I = V

R
= 15

5
= 3 A

Shunt R is equal to the series R of 5 �. Therefore, the equivalent current source circuit is as
shown in Fig. 9-32b.

Step 2. Add RL at terminals a and b. Find IL and VL in each equivalent circuit and compare their
values. From Fig. 9-32c:

IL = V

R + RL

= 15

5 + 10
= 1 A

VL = ILRL = 1(10) = 10 V



 

CHAP. 9] NETWORK CALCULATIONS 183

Fig. 9-32

From Fig. 9-32d:

IL = R

R + RL

I = 5

5 + 10
3 = 1

3
3 = 1 A

VL = ILRL = 1(10) = 10 V

The values of load current and load voltage are the same for each circuit.

9.9 Conversion of voltage and current sources can often simplify circuits when there are two or more
sources. Voltage sources are easier for series connections because we can add voltages, whereas
current sources are easier for parallel connections because we can add currents. Find the current IL

through the middle load resistor RL (Fig. 9-33a).

Step 1. Convert voltage sources V1 and V2 into current sources.

I1 = V1

R1
= 72

9
= 8 A Shunt R1 = series R1 = 9 �

I2 = V2

R2
= 24

3
= 8 A Shunt R2 = series R2 = 3 �

Step 2. Draw the equivalent current source circuit (see Fig. 9-33b). I1 and I2 can be combined for one
equivalent current source IT . Since they produce current in the same direction through RL,
they are added.

IT = I1 + I2 = 8 + 8 = 16 A
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Fig. 9-33

The shunt R for the 16-A combined current source is the combined resistance of the 9-� R1
and the 3-� R2 in parallel. So

Shunt R = R1R2

R1 + R2
= 9(3)

9 + 3
= 27

12
= 2.25 �

The circuit of Fig. 9-33b can be redrawn as shown in Fig. 9-33c.

Step 3. Find IL. Use the current-divider formula for the 6- and 2.25-� branches.

IL = 2.25

2.25 + 6
16 = 2.25

8.25
16 = 4.36 A Ans.

9.10 Find the current IL by converting the series current sources I1 and I2 into series voltage sources
(Fig. 9-34a).

Step 1. Convert I1 and I2 into voltage sources.

V1 = I1R1 = 3(4) = 12 V Shunt R1 = series R1 = 4 �

V2 = I2R2 = 4(2) = 8 V Shunt R2 = series R2 = 2 �

Step 2. Draw the equivalent voltage source circuit (see Fig. 9-34b). The series voltages are added
because they are series-aiding.

VT = V1 + V2 = 12 + 8 = 20 V
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Fig. 9-34

The series resistances are added.

R = R1 + R2 = 4 + 2 = 6 �

Then by Ohm’s law,

IL = VT

R + RL

= 20

6 + 6
= 20

12
= 1.67 A Ans.

9.11 Find the total resistance RT of the circuit shown in Fig. 9-35a.

Step 1. Reduce the parallel resistances, R2, R3 and R4, R5 to a single resistance. Use formula for
R/N . (See Fig. 9-35b.)

R2

2
= 6

2
= 3 �

R4

2
= 10

2
= 5 �
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Fig. 9-35a, b, c, d

Step 2. Add series resistances. (See Fig. 9-35c.)

Rp = 10 + 5 + 3 = 18 �

Step 3. Find RT . (See Fig. 9-35d.)

RT = R1Rp

R1 + Rp

= 9(18)

9 + 18
= 6 � Ans.

9.12 For the circuit in Fig. 9-35a, determine the current values through all the resistors when the applied
voltage is 54 V. Having found the equivalent resistances by steps in Problem 9.11, we shall work
backward, starting with RT and proceeding toward the original circuit.

Step 1. Find IT (Fig. 9-35e).

IT = 54

6
= 9 A

Step 2. Find I1 and I2 (Fig. 9-35f ). By Ohm’s law,

I1 = V

R1
= 54

9
= 6 A

I2 = V

Rp

= 54

18
= 3 A
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Fig. 9-35e, f, g

Step 3. Show the circuit equivalent. (See Fig. 9-35g.)

Step 4. Show the original circuit. (See Fig. 9-35h.)

Because the parallel resistances are equal, the current of 3 A divides equally into 1.5 A
and 1.5 A.

I1 = 6 A I4 = 1.5 A

I2 = 1.5 A I5 = 1.5 A Ans.

I3 = 1.5 A I6 = 3 A

9.13 Find the total resistance of the circuit (Fig. 9-36a).

Step 1. Reduce the circuit progressively from right to left. Add series resistances. (See Fig. 9-36b.)

RA = R6 + R3 + R7 = 30 + 40 + 50 = 120 �

Step 2. Combine parallel branches (Fig. 9-36c).

RB = 60 (120)

60 + 120
= 40 �

Step 3. Add series resistances (Fig. 9-36d).

RC = 35 + 40 + 25 = 100 �

Step 4. Combine parallel branches (Fig. 9-36e).

RD = 300 (100)

300 + 100
= 75 �
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Fig. 9-35h

Step 5. Find RT by combining series resistances (Fig. 9-36f ).

RT = 10 + 75 + 15 = 100 � Ans.

9.14 In the Wheatstone bridge circuit (Fig. 9-37), the bridge is balanced. Calculate Rx, Ix, I1, and each
voltage.

Step 1. Calculate Rx by Eq. (9-7).

Rx = R1

R2
R3 = 1000

10 000
42 = 4.2 � Ans.
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Fig. 9-36

Fig. 9-37
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Step 2. Calculate currents Ix and I1. Express the voltage drop across terminals a and b.

IxRx + IxR3 = VT

Ix(Rx + R3) = VT

Ix = VT

Rx + R3
= 11

4.2 + 42
= 11

46.2
= 0.238 A Ans.

Similarly, I1R1 + I1R2 = VT

I1(R1 + R2) = VT

I1 = VT

R1 + R2
= 11

1000 + 10 000
= 11

11 000
= 0.001 A Ans.

Step 3. Find each voltage. By Ohm’s law,

Vx = IxRx = 0.238(4.2) = 1 V Ans.

V1 = I1R1 = 0.001(1000) = 1 V Ans.

V2 = I1R2 = 0.001(10 000) = 10 V Ans.

V3 = IxR3 = 0.238(42) = 10 V Ans.

When the bridge is balanced, no current flows through the galvanometer, so that

Vx = V1

1 V = 1 V Check

and V3 = V2

10 V = 10 V Check

An alternative method to find each voltage is by the voltage-divider rule. With this method we need
not solve for the currents.

V1 = R1

R1 + R2
VT = 1

1 + 10
11 = 1

11
11 = 1 V

Then V2 = VT − V1 = 11 − 1 = 10 V

Similarly, Vx = Rx

Rx + R3
VT = 4.2

4.2 + 42
11 = 4.2

46.2
11 = 1 V

and V3 = VT − Vx = 11 − 1 = 10 V

9.15 Find the value of load resistance RL that will provide the maximum power delivered to load
(Fig. 9-38a). Also calculate maximum power PL.

Step 1. Show the Thevenin equivalent circuit (Fig. 9-36b). R1 and R2 are in parallel.

RTh = R1R2

R1 + R2
= 5(20)

5 + 20
= 4 �
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Fig. 9-38

By Ohm’s law (see Fig. 9-38c),

I1 = V1 − V2

R1 + R2
= 140 − 90

20 + 5
= 50

25
= 2 A

VTh = Vab = V1 − I1R1 = 140 − 2(20) = 140 − 40 = 100 V

The Thevenin equivalent circuit is shown in Fig. 9-38d.
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Step 2. Find RL and PL. For maximum power to be delivered to the load, RL = RTh. Therefore,

RL = 4 � Ans.

PL = I 2
LRL =

(
VTh

RTh + RL

)2

(RL) =
(

100

4 + 4

)2

(4) = 625 W Ans.

Or, more simply, since source voltage divides in half between RTh and RL,

VL = 50 V and PL = V 2
L

RL

= 502

4
= 625 W

Note that maximum power is received by the load if the resistance RL is equal to a fixed value of
series resistance, which may include the internal resistance of the voltage source. In this problem, the
series resistance is equivalent to the Thevenin resistance RTh.

9.16 A motor drawing 8333 W is operating from a 232-V source 100 ft away (Fig. 9-39). For power instal-
lations, the National Electrical Code permits a 5 percent drop. What is the line power loss? What is
the minimum size copper wire that may be used for the line supplying the motor to avoid exceeding
the 5 percent voltage drop?

Step 1. Find the minimum voltage at the motor load, VL.

Vsource = 232 V

Vline drop = 0.05(232) = 11.6 V

VL = Vsource − Vline drop = 232 − 11.6 = 220.4 V

Step 2. Find the current drawn by the motor, IL.

PL = ILVL

IL = PL

VL

= 8333

220.4
= 37.8 A

Step 3. Find the power loss Pl .

Line drop Vl = 0.05(232) = 11.6 V

IL = 37.8 A

Pl = VlIL

= 11.6(37.8) = 438 W Ans.
Fig. 9-39

Step 4. Find the resistance of the line wires, Rl .

Vl = ILRl

Rl = Vl

IL

= 11.6

37.8
= 0.307 �
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Step 5. Find the circular-mil area of the wire that has this resistance.

Rl = ρ
l

A
(4-5)

A = ρ
l

Rl

ρ = 10.4 (Table 4-2) l = 2L = 200 ft Rl = 0.307 �

A = 10.4(200)

0.307
= 6780 CM

Step 6. Find the gauge number of the wire whose circular-mil area is larger than 6780 CM. Refer to
Table 4-1; No. 11 wire is the minimum wire size that can be used to limit voltage drop to
5 percent. Ans.

9.17 Find the voltage across the motor and across the lamp bank of the circuit (Fig. 9-40). The motor draws
4 A and the lamp banks 5 A. Resistances of the feeder line are indicated.

Fig. 9-40

Step 1. Find the current distribution.

IG = IM + IL = 4 + 5 = 9 A

In section 1 the current is 9 A, and in section 2 the current is 5 A.

Step 2. Find the line drop in each section.

Section 1: R11 = 0.3 + 0.3 = 0.6 �

V11 = IGR11 = 9(0.6) = 5.4 V

Section 2: R12 = 0.1 + 0.1 = 0.2 �

V12 = ILR12 = 5(0.2) = 1 V

Step 3. Find the load voltages.

VM = VG − V11 = 116 − 5.4 = 110.6 V Ans.

VL = VM − V12 = 110.6 − 1 = 109.6 V Ans.

9.18 Compare the line drop and load voltage of a three-wire system and a two-wire system. Use the circuit
of Fig. 9-23 with the 10-� load for your calculations (see Fig. 9-41).
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Fig. 9-41

For three-wire system with respect to 10-�
load (Fig. 9-41a):

For two-wire system (Fig. 9-41b):

Vl1 = 11.9(0.5) = 5.95 V
I = 120

0.5 + 10 + 0.5
= 120

11
= 10.9 A

Vl2 = 9.1(0.5) = 4.55 V

Total line drop = Vl1 + Vl2 = 5.95 + 4.55

= 10.5 V

Total line drop = 10.9(1) = 10.9 V

VL1 = 11.9(10) = 119 V VL1 = 10.9(10) = 109 V

Then, Difference in line drop = 10.9 − 10.5 = 0.4 V Ans.

Difference in load voltage = 119 − 109 = 10 V Ans.

So we see that in this case a three-wire system has a line drop of 0.4 V less than that of a two-wire
system and a higher load voltage by 10 V.

Supplementary Problems

9.19 Transform the ∆ networks of Fig. 9-42a into Y networks. (Hint: Draw visual aid.)
Ans. See Fig. 9-42b.

9.20 Transform the Y networks of Fig. 9-43a into ∆ networks. (Hint: Draw visual aid.)
Ans. See Fig. 9-43b.

9.21 Find the equivalent input resistance between terminals a and d for the bridge networks (Fig. 9-44).
Ans. (a) RT = 10 �; (b) RT = 11 �; (c) RT = 5 �

9.22 If 50 V were applied between terminals a and d to the circuit shown in Fig. 9-44c, find the current in
each resistor. Ans. I10 � = 4.5 A; I8 � = 5.5 A; I2 � = 0.5 A; I1 � = 5 A; I1.2 � = 5 A

9.23 Find the equivalent resistance and output voltage Vo of a bridged T network (Fig. 9-45).
Ans. RT = 25 �; Vo = 7.5 V

9.24 Find the equivalent input resistance between terminals a and d (Fig. 9-46). Ans. RT = 37 �
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Fig. 9-42

Fig. 9-43
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Fig. 9-44

Fig. 9-45 Fig. 9-46

9.25 Determine the voltage Vp by superposition (Fig. 9-47). Ans. Vp = 30 V

Fig. 9-47 Fig. 9-48

9.26 Solve for the indicated currents by using superposition (Fig. 9-48).
Ans. I1 = 0.6 A; I2 = 0.4 A; I3 = 0.2 A

9.27 Find the current in the load RL by superposition (Fig. 9-49).
Ans. IL = 14.8 A (rounded from 14.84 A)
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Fig. 9-49 Fig. 9-50

9.28 Find currents I1, I2, and I3 in a two-mesh circuit by superposition (Fig. 9-50).
Ans. I1 = −6 A (actual direction of current is opposite to the assumed direction); I2 = 4 A;
I3 = −10 A (actual direction is opposite to the assumed direction)

9.29 Find the Thevenin equivalents to the circuits of Fig. 9-51.
Ans. (a) RTh = 1.2 �; VTh = 4.8 V; (b) RTh = 1.6 �; VTh = 2.4 V; (c) RTh = 0.89 �;
VTh = 1.33 V

Fig. 9-51

9.30 Add a resistor load RL of 5 � between terminals a and b to each circuit of Problem 9.29, and find the
load current IL and load voltage VL.
Ans. (a) IL = 0.77 A; VL = 3.87 V; (b) IL = 0.36 A; VL = 1.82 V; (c) IL = 0.23 A;
VL = 1.13 V

9.31 Find IL and VL by the Thevenin equivalent for the circuit of Fig. 9-52.
Ans. IL = 2 A; VL = 20 V

9.32 In the Wheatstone bridge network (Fig. 9-53), find the Thevenin equivalents RTh and VTh, and then
find IL and VL. Ans. RTh = 21; VTh = 30 V; IL = 1 A; VL = 9 V

9.33 Find IL and VL (Fig. 9-54) by the Thevenin theorem.
Ans. IL = 3 A; VL = 18 V; (RTh = 1.71 �; VTh = 23.1 V)

9.34 Find IL and VL (Fig. 9-55). Ans. IL = 1 A; VL = 40 V; (RTh = 6.67 �; VTh = 46.7 V)

9.35 A voltage source has 24 V in series with 6 � (Fig. 9-56a). Draw the equivalent current source circuit.
Ans. See Fig. 9-56b.
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Fig. 9-52 Fig. 9-53

Fig. 9-54 Fig. 9-55

Fig. 9-56

9.36 Show the Norton equivalent circuit (Fig. 9-57a) and find IL. Ans. See Fig. 9-57b. IL = 2.14 A.

9.37 Find the Norton equivalent to the circuits of Fig. 9.58a, b, and c. (These are the same circuits for
which you found the Thevenin equivalents in Problem 9.29.)
Ans. (a) IN = 4 A; RN = 1.2 �; (b) IN = 1.5 A; RN = 1.6 �; (c) IN = 1.5 A; RN = 0.89 �

9.38 Add a resistor load R1 of 5 � between terminals a and b to each circuit of Problem 9.37. Calculate
the load current IL and load voltage VL. Check your answers with those for Problem 9.30.
Ans. (a) IL = 0.77 A; VL = 3.87 V; (b) IL = 0.36 A; VL = 1.82 V; (c) IL = 0.23 A;
VL = 1.13 V
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Fig. 9-57

Fig. 9-58

9.39 Show the Thevenin equivalent (Fig. 9-59) and calculate VL.
Ans. RTh = 3 �; VTh = 22.5 V; VL = 18 V

9.40 In Fig. 9-59, solve for VL by superposition.
Ans. VL = 18 V (IL,V 1 = 1 A, IL,V 2 = 0.5 A, IL = 1.5 A)

9.41 In Fig. 9-59, solve for VL by the Norton equivalent theorem.
Ans. VL = 18 V (IN = 7.5 A, RN = 3 �)

9.42 Find the current through the load resistor RL (Fig. 9-60). Ans. IL = 0.2 A

Fig. 9-59 Fig. 9-60
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9.43 Find the total resistance of each circuit in Fig. 9-61a, b, c, and d.
Ans. (a) RT = 18 �; (b) RT = 10.6 �; (c) RT = 3.21 �; (d) RT = 2.86 �

Fig. 9-61

9.44 Find the total resistance RT (Fig. 9-62). Ans. RT = 1.43 �

Fig. 9-62

9.45 Find the equivalent resistance of each resistance configuration (Fig. 9-63a, b, and c).
Ans. (a) RT = 2.86 �; (b) RT = 13.5 �; (c) RT = 15 �

9.46 For the circuit (Fig. 9-64), find RT , I1, I2, and I3.
Ans. RT = 10 �; I1 = 15 A; I2 = 10 A; I3 = 5 A
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Fig. 9-63

Fig. 9-64 Fig. 9-65

9.47 Find the total resistance of the circuit (Fig. 9-65). Ans. RT = 30 �

9.48 Find the total resistance of the circuit in Fig. 9-65 if the 60-� resistor were to burn out and open.
Ans. RT = 60 �

9.49 An unknown resistance is to be checked by the Wheatstone bridge circuit (Fig. 9-66). When R3 is
adjusted for 54 �, there is zero deflection on the galvanometer. Find Rx and each voltage.
Ans. Rx = 1080 �; Vx = V1 = 20 V; V2 = V3 = 1 V

9.50 What load resistance RL will produce maximum power at the load (Fig. 9-67) and what is the value
of that power? Ans. RL = 0.075 �; PL = 145 W

Fig. 9-66 Fig. 9-67
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9.51 Determine the size of the load resistor needed for maximum transfer of power (Fig. 9-68). How much
power then will be dissipated by the load? Ans. RL = 2.4 �; PL = 3.75 W

Fig. 9-68 Fig. 9-69

9.52 The unbalanced Wheatstone bridge circuit has a resistance Rg in series with an ammeter (Fig. 9-69).
Find the value of Rg so that it dissipates maximum power. (Hint: Reduce the given bridge circuit to
its Thevenin equivalent.) Ans. Rg = 99.5 � (Rg = RTh)

9.53 Calculate the value of maximum power for the circuit in Fig. 9-69. What is the reading of the ammeter?
Ans. PL = 0.628 mW; IL = 2.51 mA (VTh = 0.5 V, RTh = 99.5 �)

9.54 A motor is connected to a generator by two wires, each having a resistance of 0.15 �. The motor takes
30 A at 211 V. What is the line drop, line power loss, and generator voltage?
Ans. Vl = 9 V; Pl = 270 W; VG = 220 V

9.55 Fixture wiring is often done with No. 16 wire, which has a resistance of 0.409 � for a 100-ft length.
What is the loss in voltage from the house meter to an electric broiler using 10 A and located 100 ft
from the meter? What is the power loss? Ans. Vl = 8.18 V; Pl = 81.8 W

9.56 A generator is feeding current to a motor and lamp bank connected in parallel (Fig. 9-70). The feeder
lines have the resistance shown. Find the voltage across the motor and lamp bank.
Ans. VM = 113.8 V; VL = 112 V

Fig. 9-70

9.57 Each lamp takes 0.5 A (Fig. 9-71). Find VA and VB . Ans. VA = 112 V; VB = 109.6 V

9.58 A 20-kW motor load is 100 ft from a 230-V source. If the allowable drop is 5 percent, what is the
smallest size copper wire that can be used? Ans. No. 8 wire (circular-mil area = 16 500)
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Fig. 9-71

9.59 A load 400 ft from a generator requires 80 A. The generator voltage is 115.6 V, and the load requires
110 V. What is the smallest size wire that may be used so that no less than 110 V will be across the
load? (Note: Not only must voltage drop be considered, but the amperage capacity of the wire must
not be exceeded.) Ans. No. 2 wire (circular-mil area = 59 400)

9.60 Find the currents in the three lines of the Edison system with two voltage sources (Fig. 9-72).
Ans. I1 = 6.64 A; I2 = 1.65 A; I3 = 4.99 A

Fig. 9-72

9.61 If the neutral leg (Fig. 9-72) is broken at point X, possibly by a blown fuse, what is the current through
the loads and the voltages across the loads? Ans. I = 5.70 A; VL1 = 85.5 V; VL2 = 114 V

9.62 If the 15-� resistor (Fig. 9-72) is now replaced by a 20-� resistor, find the new values for the current in
the three feeder lines (with equal source voltages, line resistances, and load resistances, the three-wire
system is balanced).
Ans. I1 = 4.99 A; I2 = 0 A (current in neutral wire is zero for a balanced three-wire system);
I3 = 4.99 A

9.63 If each lamp (Fig. 9-73) requires a current of 1 A, find (a) the current in each of the three lines, (b) the
IR drop in each line, and (c) the voltages V1 and V2. (d) Which line carries the heavier load?
Ans. (a) I1 = 4 A; I2 = 2 A; I3 = 2 A; (b) Positive line, 3.2 V; neutral, 1.6 V; negative, 1.6 V;
(c) V1 = 115.28 V; V2 = 120 V; (d) Positive line
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Fig. 9-73

9.64 In the three-wire dc distribution system (Fig. 9-74), each lamp bank consists of 50 lamps. Each lamp
takes a power of 60 W when the voltage is 115 V. All three conductors are of the same size. Specify
the size of copper wire to be used in order that the voltage at each bank be 115 V with all lamps
turned on. Ans. No. 5 AWG

Fig. 9-74



 

Chapter 10

Magnetism and Electromagnetism

THE NATURE OF MAGNETISM

Most electrical equipment depends directly or indirectly upon magnetism. Without magnetism the electrical
world we perceive today would not exist. There are few electrical devices used today that do not make use of
magnetism.

Natural Magnets

The phenomenon of magnetism was discovered by the Chinese about 2637 b.c. The magnets used in their
primitive compasses were called lodestones or leading stones. It is now known that lodestones were crude
pieces of iron ore known as magnetite. Since magnetite has magnetic properties in its natural state, lodestones
are classified as natural magnets. The only other natural magnet is the earth itself. All other magnets are
human-made and are known as artificial magnets.

Magnetic Fields

Every magnet has two points opposite to each other which most readily attract pieces of iron. These points
are called poles of the magnet: the north pole and the south pole. Just as like electric charges repel each other
and opposite charges attract each other, like magnetic poles repel each other and unlike poles attract each other.

A magnet clearly attracts a bit of iron because of some force that exists around the magnet. This force is
called the magnetic field. Although it is invisible to the naked eye, its force can be shown to exist by sprinkling
small iron filings on a sheet of glass or paper over a bar magnet (Fig. 10-1a). If the sheet is tapped gently, the
filings will move into a definite pattern which describes the field of force around the magnet. The field seems
to be made up of lines of force that appear to leave the magnet at the north pole, travel through the air around
the magnet, and continue through the magnet to the south pole to form a closed loop of force. The stronger
the magnet, the greater the number of lines of force and the larger the area covered by the field.

In order to visualize the magnetic field without iron filings, the field is shown as lines of force in Fig. 10-1b.
The direction of the lines outside the magnet shows the path a north pole would follow in the field, repelled
away from the north pole of the magnet and attracted to its south pole.

Fig. 10-1 Magnetic field of force around a bar magnet

Magnetic Flux φ

The entire group of magnetic field lines, which flow outward from the north pole of the magnet, is called
the magnetic flux. The symbol for magnetic flux is the Greek lowercase letter φ (phi).

205
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The SI unit of magnetic flux is the weber (Wb). One weber equals 1 × 108 magnetic field lines. Since the
weber is a large unit for typical fields, the microweber (µWb) is used (1 µWb = 10−6 Wb).

Example 10.1 If a magnetic flux φ has 3000 lines, find the number of microwebers.
Convert number of lines to microwebers.

φ = 3000 lines

1 × 108 lines/Wb
= 3 × 103

108
= 30 × 10−6 Wb = 30 µWb Ans.

Magnetic Flux Density B

The magnetic flux density is the magnetic flux per unit area of a section perpendicular to the direction of
flux. The equation for magnetic flux density is

B = φ

A
(10-1)

where B = magnetic flux density in teslas (T)
φ = magnetic flux, Wb
A = area in square meters (m2)

We see that the SI unit for B is webers per square meter (Wb/m2). One weber per square meter is called a tesla.

Example 10.2 What is the flux density in teslas when there exists a flux of 600 µWb through an area of 0.0003 m2?

Given φ = 600 µWb = 6 × 10−4 Wb

A = 0.0003 m2 = 3 × 10−4 m2

Substitute the values of φ and A in Eq. (10-1).

B = φ

A
= 6 × 10−4 Wb

3 × 10−4 m2
= 2 T Ans.

MAGNETIC MATERIALS

Magnetic materials are those materials which are attracted or repelled by a magnet and which can be
magnetized themselves. Iron and steel are the most common magnetic materials. Permanent magnets are those
of hard magnetic materials, such as cobalt steel, that retain their magnetism when the magnetizing field is
removed. A temporary magnet is one that has no ability to retain a magnetized state when the magnetizing
field is removed.

Permeability refers to the ability of a magnetic material to concentrate magnetic flux. Any material that
is easily magnetized has high permeability. A measure of permeability for different materials in comparison
with air or vacuum is called relative permeability. The symbol for relative permeability is µr(mu), where the
subscript r stands for relative. µr is not expressed in units because it is a ratio of two flux densities, so the
units cancel.

Classifying magnetic materials as either magnetic or nonmagnetic is based on the strong magnetic prop-
erties of iron. However, since weak magnetic materials can be important in some applications, classification
includes three groups:

1. Ferromagnetic materials. These include iron, steel, nickel, cobalt, and commercial alloys such as
alnico and Permalloy. The ferrites are nonmagnetic materials that have ferromagnetic properties
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of iron. A ferrite is a ceramic material. The permeability of ferrites is in the range of 50–3000.
A common application is a ferrite core in the coils for RF (radio-frequency) transformers.

2. Paramagnetic materials. These include aluminum, platinum, manganese, and chromium. Relative
permeability is slightly more than 1.

3. Diamagnetic materials. These include bismuth, antimony, copper, zinc, mercury, gold, and silver.
Relative permeability is less than 1.

ELECTROMAGNETISM

In 1819, a Danish scientist named Oersted discovered a relation between magnetism and electric current.
He found that an electric current flowing through a conductor produced a magnetic field around that conductor.
In Fig. 10-2a, filings in a definite pattern of concentric rings around the conductor show the magnetic field of
the current in the wire. Every section of the wire has this field of force around it in a plane perpendicular to
the wire (Fig. 10-2b). The strength of the magnetic field around a conductor carrying current depends on the
current. A high current will produce many lines of force extending far from the wire, while a low current will
produce only a few lines close to the wire (Fig. 10-3).

Fig. 10-2 Circular pattern of magnetic lines around current in a conductor

Fig. 10-3 Strength of the magnetic field depends on the amount of current

Polarity of a Single Conductor

The right-hand rule is a convenient way to determine the relationship between the flow of current in a
conductor (wire) and the direction of the magnetic lines of force around the conductor. Grasp the current-
carrying wire in the right hand, wrapping the four fingers around the wire and extending the thumb along
the wire. If the thumb points along the wire in the direction of current flow, the fingers will be pointing in the
direction of the lines of force around the conductor (Fig. 10-4).



 

208 MAGNETISM AND ELECTROMAGNETISM [CHAP. 10

Fig. 10-4 Right-hand rule

Magnetic Fields Aiding or Canceling

In Fig. 10-5, the magnetic fields are shown for two parallel conductors with opposite directions of current.
The cross in the middle of the field of the conductor in Fig. 10-5a symbolizes the back of an arrow to
indicate current into the paper. (Think of it as the feathers at the end of an arrow moving away from you.)
The dot (Fig. 10-5b) symbolizes current moving out of the paper. (In this case, it is a point of the arrow
facing toward you.) By applying the right-hand rule, you determine the clockwise direction of the field of
the conductor in Fig. 10-5a and the counterclockwise field direction of the conductor in Fig. 10-5b. Because
the magnetic lines between the conductors are in the same direction, the fields aid to make a stronger total
field. On either side of the conductors, the two fields are opposite in direction and tend to cancel each
other.

Fig. 10-5 Fields aiding with opposite directions of current

Magnetic Field and Polarity of a Coil

Bending a straight conductor into the form of a single loop has two results. First the magnetic field lines
are more dense inside the loop, although the total number of lines is the same as for the straight conductor.
Second, all the lines inside the loop are aiding in the same direction.
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A coil of wire conductor is formed when there is more than one loop or turn. To determine the mag-
netic polarity of a coil, use the right-hand rule (Fig. 10-6). If the coil is grasped with the fingers of the
right hand curled in the direction of current flow through the coil, the thumb points to the north pole of
the coil.

Adding an iron core inside the coil increases the flux density. The polarity of the core is the same as that
of the coil. The polarity depends on the direction of current flow and the direction of winding. Current flow is
from the positive side of the voltage source, through the coil, and back to the negative terminal (Fig. 10-7).
The north pole is found by using the right-hand rule.

Fig. 10-6 Right-hand rule for coil of wire with several
turns (solenoid)

Fig. 10-7 Right-hand rule to find the north pole of an
electromagnet

Example 10.3 Determine the magnetic polarity of the pictured electromagnets (Fig. 10-8) by the right-hand rule.
The correct polarities are circled. Notice that A has the same direction of winding and current as in Fig. 10-7. In B,

the battery polarity is opposite from A to reverse the direction of current. In C, the direction of winding is reversed from
A; and in D, it is reversed from B.

Fig. 10-8 Finding the polarity of a coil

Electromagnet Applications

If a bar of iron or soft steel is placed in the magnetic field of a coil (Fig. 10-9), the bar will become
magnetized. If the magnetic field is strong enough, the bar will be drawn into the coil until it is approximately
centered within the magnetic field.

Electromagnets are widely used in electrical devices. One of the simplest and most common applications
is in a relay. When the switch S is closed in a relay circuit (Fig. 10-10), current flows in the coil, causing a
strong magnetic field around the coil. The soft iron bar in the lamp circuit is attracted toward the right end
of the electromagnet and makes contact with the conductor at A. A path is thus completed for current in the
lamp circuit. When the switch is opened, the current flow through the electromagnet ceases and the magnetic
field collapses and disappears. Since the attraction for the soft iron bar by the electromagnet no longer exists,
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Fig. 10-9 A current-carrying coil magnetizes and
attracts an iron bar placed in its field

Fig. 10-10 A simple relay circuit

the iron bar is pulled away from the contact by the piece of spring steel to which it is attached. This opens the
contacts at A and breaks the circuit for the lamp.

MAGNETIC UNITS

Ampere-Turns NI

The strength of a magnetic field in a coil of wire depends on how much current flows in the turns of the
coil. The more the current, the stronger the magnetic field. Also, the more turns, the more concentrated are
the lines of force. The product of the current times the number of turns of the coil, which is expressed in units
called ampere-turns (At), is known as the magnetomotive force (mmf). As a formula,

F = ampere-turns = NI (10-2)

where F = magnetomotive force, At
N = number of turns
I = current, A

Example 10.4 Calculate the ampere-turns for a coil with 1500 turns and a 4-mA current.
Use Eq. (10-2) and substitute N = 150 turns and I = 4 × 10−3 A.

NI = 1500(4 × 10−3) = 6 At Ans.
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Field Intensity H

If a coil with a certain number of ampere-turns is stretched out to twice its original length, the intensity
of the magnetic field, that is, the concentration of lines of force, will be half as great. The field intensity thus
depends on how long the coil is. Expressed as an equation,

H = NI

l
(10-3)

where H = magnetic field intensity, ampere-turns per meter (At/m)
NI = ampere-turns, At

l = length between poles of the coil, m

Equation (10-3) is for a solenoid. H is the intensity at the center of an air core. With an iron core, H is the
intensity through the entire core and l is length or distance between poles of the iron core.

Example 10.5 (a) Find the field intensity of a 40-turn, 10-cm-long coil, with 3 A flowing in it (Fig. 10-11a). (b) If
the same coil is stretched to 20 cm, with the wire length and current remaining the same, what is the new value of field
intensity (Fig. 10-11b)? (c) The 10 cm coil in part (a) with the same 3 A flowing is now wound around an iron core that
is 20 cm long (Fig. 10-11c). What is the field intensity?

Fig. 10-11 Relation between mmf and field intensity with same value of mmf

(a) Apply Eq. (10-3), where N = 40 turns, l = 10 cm = 0.1 m, and I = 3 A.

H = NI

l
= 40(3)

0.1
= 1200 At/m Ans.

(b) The length l in Eq. (10-3) is between poles. The coil is stretched from 10 to 20 cm. Though the wire length is
the same, the length between poles is 20 cm = 0.2 m. So

H = 40(3)

0.2
= 600 At/m Ans.

Stretching out the coil to twice its original distance reduces the mmf by one-half.

(c) The length l in Eq. (10-3) is 20 cm between the poles at the ends of the iron core although the winding is 10 cm
long.

H = 40(3)

0.2
= 600 At/m Ans.

Note that cases (b) and (c) have the same H value.
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BH MAGNETIZATION CURVE

The BH curve (Fig. 10-12) is used to show how much flux density B results from increasing the amount
of field intensity H . This curve is for two types of soft iron plotted for typical values. It shows that soft iron
number 1 increases rapidly in B with an increase in H before it develops a “knee” and becomes saturated at
H = 2000 At/m, B = 0.2 T. Past the knee an increase in H has little effect on the B value. Soft iron number
2 needs much more H to reach its saturation level at H = 5000 At/m, B = 0.3 T. Similar curves are obtained
for all magnetic materials. Air, being nonmagnetic, has a very low BH profile (Fig. 10-12).

The permeability µ of a magnetic material is the ratio of B to H .

µ = B

H
(10-4)

Its average value is measured at the point where the knee is first established. Figure 10-12 illustrates that the
normal or average permeability is as follows:

µ for soft iron number 1 = B

H
= 0.2

2000
= 1 × 10−4 (T · m)/At

µ for soft iron number 2 = B

H
= 0.3

5000
= 6 × 10−5 (T · m)/At

Fig. 10-12 Typical BH curve for two types of soft iron

In SI units, the permeability of air is µ0 = 4π × 10−7 or 1.26 × 10−6. To calculate µ, the value of relative
permeability µr must be multiplied by µ0.

µ = µr × µ0 (10-5)

Example 10.6 If a magnetic material has a relative permeability µr of 100, find its permeability µ.
Use Eq. (10-5) and substitute known values.

µ = µrµ0 = 100(1.26 × 10−6)

= 126 × 10−6 (T · m)/At Ans.
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Hysteresis

When the current in a coil of wire reverses thousands of times per second, the hysteresis can cause a
considerable loss of energy. Hysteresis means “a lagging behind”; that is, the magnetic flux in an iron core
lags behind the increases or decreases of the magnetizing force.

The hysteresis loop is a series of curves that show the characteristics of a magnetic material (Fig. 10-13).
Opposite directions of current result in the opposite directions of +H and −H for field intensity. Similarly,
opposite polarities are shown for flux density as +B or −B. The current starts at the center 0 (zero) when the
material is unmagnetized. The dotted line is recognized as the magnetization curve illustrated in Fig. 10-12.
Positive H values increase B to saturation at +Bmax. Next H decreases to zero, but B drops to the value
of Br because of hysteresis. The current that produced the original magnetization now is reversed so that
H becomes negative. B drops to zero and continues to −Bmax. Then as the −H values decrease, B is reduced
to −Br , when H is zero. Now with a positive swing of current, H becomes positive, producing saturation at
+Bmax again. The hysteresis loop is now completed. The curve does not return to zero at the center because
of hysteresis.

The value of +Br or −Br , which is the flux density remaining after the magnetizing force is zero (H = 0),
is called the retentivity of a magnetic material. The value of −Hc, which is the magnetizing force that must
be applied in the reverse direction to reduce the flux density to zero (B = 0), is called the coercive force of
the material.

The larger the area enclosed by the hysteresis loop, the greater the hysteresis loss.

Fig. 10-13 Hysteresis loop for magnetic
materials

Fig. 10-14 Magnetic circuit with closed iron
path

MAGNETIC CIRCUITS

A magnetic circuit can be compared with an electric current in which an emf produces a current flow.
Consider a simple magnetic circuit (Fig. 10-14). The ampere-turns NI of the magnetomotive force produce
the magnetic flux φ. Therefore, the mmf compares to emf or voltage and the flux φ compares to current.
Opposition to the production of flux in a material is called its reluctance, which corresponds to resistance.

Reluctance �

The symbol for reluctance is �. Reluctance is inversely proportional to permeability. Iron has high
permeability and therefore low reluctance. Air has low permeability and hence high reluctance.
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Fig. 10-15 Different physical forms of electromagnets

Different forms of electromagnets generally have different values of reluctance (Fig. 10-15). The air gap
is the air space between the poles of a magnet. Since air has high reluctance, the size of the air gap affects
the value of reluctance. The magnetic circuit in Fig. 10-15a has widely spaced poles in air so it has a high
reluctance. In Fig. 10-15b, the reluctance has been decreased by bringing the two poles closer together. The field
between N and S is more intense, assuming the same number of ampere-turns in the coils. In Fig. 10-15c, the
air gap is smaller than that in Fig. 10-15b so the reluctance is lower. In Fig. 10-15d , there is no air gap in the
toroid-shaped core so its reluctance is very low.

The shorter the air gap, the stronger the field in the gap. Since air is not magnetic and thus is unable to
concentrate magnetic lines, a larger air gap only provides more space for the magnetic lines to spread out.

Ohm’s Law for Magnetic Circuits

Ohm’s law for magnetic circuits, corresponding to I = V/R, is

φ = mmf

�
(10-6)

where φ = magnetic flux, Wb
mmf = magnetomotive force, At

� = reluctance, At/Wb

Reluctance can be expressed as an equation as follows:

� = l

µA
(10-7)
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where � = reluctance, At/Wb
l = length of coil, m

µ = permeability of magnetic material, (T · m)/At
A = cross-sectional area of coil, m2

Example 10.7 A coil has an mmf of 500 At and a reluctance of 2 × 106 At/Wb. Compute the total flux φ.
Write Ohm’s law for magnetic circuits and substitute given values.

φ = mmf

�
(10-6)

= 500 At

2 × 106 At/Wb
= 250 × 10−6 Wb = 250 µWb Ans.

Example 10.8 Starting with Eq. (10-6), show that � = l/µA, which is Eq. (10-7 ).

φ = mmf

�
(10-6)

Also φ = BA (10-1)

Substitute B = µH [Eq. (10-4)] and H = NI/l [Eq. (10-3)] to obtain

φ = BA = µHA = µNIA

l
= NI

µA

l
= NI

l/µA

But Eq. (10-6) tells us that

φ = mmf

�
= NI

�

By comparing denominators of the two expressions for φ with the same numerator, we see that

� = l

µA

which is Eq. (10-7).

ELECTROMAGNETIC INDUCTION

In 1831, Michael Faraday discovered the principle of electromagnetic induction. It states that if a conductor
“cuts across” lines of magnetic force, or if lines of force cut across a conductor, an emf, or voltage, is induced
across the ends of the conductor. Consider a magnet with its lines of force extending from the north to the south
pole (Fig. 10-16). A conductor C, which can be moved between the poles, is connected to a galvanometer G used
to indicate the presence of an emf. When the conductor is not moving, the galvanometer shows zero emf. If the
wire conductor is moving outside the magnetic field at position 1, the galvanometer will still show zero. When
the conductor is moved to the left to position 2, it cuts across the lines of magnetic force and the galvanometer
pointer will deflect to A. This indicates that an emf was induced in the conductor because lines of force were
cut. In position 3, the galvanometer pointer swings back to zero because no lines of force are being cut. Now
reverse the direction of the conductor by moving it right through the lines of force back to position 1. During
this movement, the pointer will deflect to B, showing that an emf has again been induced in the wire, but in the
opposite direction. If the wire is held stationary in the middle of the field of force at position 2, the galvanometer
reads zero. If the conductor is moved up or down parallel to the lines of force so that none is cut, no emf will be
induced.
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Fig. 10-16 When a conductor cuts lines of force, an emf is induced in the conductor

In summary,

1. When lines of force are cut by a conductor or lines of force cut a conductor, an emf or voltage,
is induced in the conductor.

2. There must be relative motion between the conductor and the lines of force in order to induce an emf.

3. Changing the direction of cutting will change the direction of the induced emf.

The most important application of relative motion between conductor and magnetic field is made in electric
generators. In a dc generator, fixed electromagnets are arranged in a cylindrical housing. Many conductors
in the form of a coil are rotated on a core within the magnetic field so that these conductors are continually
cutting the lines of force. As a result, voltage is induced in each of the conductors. Since the conductors are in
series in the coil, the induced voltages add together to produce the output voltage of the generator.

Faraday’s Law of Induced Voltage

The value of the induced voltage depends upon the number of turns of a coil and how fast the conductor
cuts across the lines of force or flux. Either the conductor or the flux can move. The equation to calculate the
value of the induced voltage is

vind = N
�φ

�t
(10-8)

where vind = induced voltage, V
N = number of turns in a coil

�φ/�t = rate at which the flux cuts across the conductor, Wb/s

From Eq. (10-8) we see that υind is determined by three factors:

1. Amount of flux. The more the lines of force that cut across the conductor, the higher the value of
induced voltage.

2. Number of turns. The more the turns in a coil, the higher the induced voltage.

3. Time rate of cutting. The faster the flux cuts a conductor or the conductor cuts the flux, the higher the
induced voltage because more lines of force cut the conductor within a given period of time.

Example 10.9 The flux of an electromagnet is 6 Wb. The flux increases uniformly to 12 Wb in a period of 2 s. Calculate
the voltage induced in a coil that has 10 turns if the coil is stationary in the magnetic field.
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Write down known values.

�φ = change in flux = 12 Wb − 6 Wb = 6 Wb

�t = change in time corresponding to the increase in flux = 2 s

Then
�φ

�t
= 6

2
= 3 Wb/s

We are given that N = 10 turns. Substitute values into Eq. (10-8) and solve for υind.

vind = N
�φ

�t
= 10(3) = 30 V Ans.

Example 10.10 In Example 10-9, what is the value of induced voltage if the flux remains at 6 Wb after 2 s?
Since there is no change in flux, �φ = 0. Using Eq. (10-8),

vind = N
�φ

�t
= N

0

�t
= N0 = 0 V Ans.

That no voltage is induced in Example 10.10 confirms the principle that there must be relative motion
between the conductor and the flux in order to induce a voltage. A magnetic field whose flux is increasing or
decreasing in strength is, in effect, moving relative to any conductors in the field.

Lenz’s Law

The polarity of the induced voltage is determined by Lenz’s law. The induced voltage has the polarity that
opposes the change causing the induction. When a current flows as a result of an induced voltage, this current
sets up a magnetic field about the conductor such that this conductor magnetic field reacts with the external
magnetic field, producing the induced voltage to oppose the change in the external magnetic field. If the
external field increases, the conductor magnetic field of the induced current will be in the opposite direction.
If the external field decreases, the conductor magnetic field will be in the same direction, thus sustaining the
external field.

Example 10.11 A permanent magnet is moved into a coil and causes an induced current to flow in the coil circuit
(Fig. 10-17a). Determine the polarity of the coil and the direction of the induced current.

By use of Lenz’s law, the left end of the coil must be the N pole to oppose the motion of the magnet. Then the
direction of the induced current can be determined by the right-hand rule. If the right thumb points to the left for the N
pole, the fingers coil around the direction of current (Fig. 10-17b).

Fig. 10-17 Illustration of Lenz’s law
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INTERNATIONAL SYSTEM OF UNITS

Table 10-1 lists the SI units for magnetism.

Table 10-1 International System of Units for Magnetism

Term Symbol Unit (Abbreviation)

Flux φ Weber (Wb)

Flux density B Weber per square meter (Wb/m2) = tesla (T)

Potential mmf Ampere-turn (At)

Field intensity H Ampere-turn per meter (At/m)

Reluctance � Ampere-turn per weber (At/Wb)

Relative permeability µr None, pure number

Permeability µ = µr × 1.26 × 10−6 B/H = tesla per ampere-turn per meter [(T · m)/At]

Solved Problems

10.1 Match the term in column 1 with its closest meaning in column 2.

Column 1 Column 2

1. One weber (a) B/Ḣ

2. Lenz’s law (b) Ceramic material

3. Two north poles (c) Force of repulsion

4. υind (d) Inversely proportional to permeability

5. Field intensity (e) H/B

6. Electric generator (f ) 1 × 108 lines of force

7. Relative permeability (g) Application of electromagnetic induction

8. High permeability (h) N
�φ

�t
9. Ferrite (i) Respect to air

10. Reluctance (j ) Polarity of induced voltage

(k) NI

(l) Force of attraction

(m) At/m

(n) Easily magnetized

Ans. 1. (f ) 2. (j ) 3. (c) 4. (h) 5. (m) 6. (g) 7. (i) 8. (n) 9. (b) 10. (d)

10.2 Describe the action that takes place when two like poles and when two unlike poles are placed near
each other.

See Fig. 10-18. If the N poles of two magnets are placed near each other (Fig. 10-18a), the lines
of force emanating from the N poles have the same direction and thus repel each other. This force
of repulsion tends to move the two magnets apart. On the other hand, if the N and the S poles of
two magnets are placed near each other (Fig. 10-18b), the adjacent lines of force are opposite in
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Fig. 10-18 Interaction of magnetic poles

direction and they link together to form long loops. These long, continuous lines tend to contract and
this force of attraction pulls the two magnets together. So fields from like poles repel, tending to push
the magnets apart, while fields from unlike poles attract, tending to pull the magnets together.

10.3 An example of magnetic attraction is the navigator’s compass and the earth’s magnetic field. The earth
itself is a huge natural magnet. The earth has its magnetic south (S) pole near the geographic north
(N) pole, and its magnetic north (N) pole near the geographic south (S) pole. The compass needle is
a long, thin permanent magnet that is free to move on its central bearing point. The compass needle
always lines up its magnetic field with the magnetic field of the earth, with its north end pointing
toward the earth’s magnetic south pole. The geographic N pole is located near the magnetic S pole.
Show how a magnetic compass is used to indicate direction.

See Fig. 10-19.

Fig. 10-19 The earth as a magnet

10.4 Would 1 A flowing through a 2-m length of wire made into a single loop produce more, the same, or
less mmf if it were wound into a coil 2 cm in diameter and 4 cm long?



 

220 MAGNETISM AND ELECTROMAGNETISM [CHAP. 10

Basically flux is produced by current flowing in a wire. The mmf produced is the product of the
current times the number of turns of the coil. Since 1 A is flowing through a coil of 1 turn in both
cases, though the physical configuration of the coils is different, the mmf is the same at 1 At.

10.5 (a) Consider a coil with an air core (Fig. 10-20a). The coil is 5 cm long and has 8 turns. When the
switch is closed, a current of 5 A flows in it. Find the mmf and H .

(b) If an iron core were slipped into the coil (Fig. 10-20b), what is now the mmf and H? What
qualitative changes take place?

(c) The coil length remains the same, but the iron core is lengthened to 10 cm (Fig. 10-20c). What
are the values of the mmf and H?

Fig. 10-20 Relation between mmf and H

(a) F = mmf = NI (10-2)

= (8 turns)(5 A) = 400 At Ans.

H = NI

l
(10-3)

= 400 At

5 × 10−2 m
= 8000 At/m Ans.

(b) Since the quantities N, I, and l have not changed, the values of mmf and H remain the same
as in part (a). So

mmf = 400 At Ans.

H = 8000 At/m Ans.
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What changes is a large increase in flux density B. Suppose the iron core in air produced 50 lines
of force. With the core placed into an energized coil, the number of lines in the core area might
be 250 000. In this case, iron would have a permeability 5000 times that of air. Therefore, the use
of an iron core instead of an air core increases the effectiveness of the magnet several thousand
times. For this reason most electromagnets are made with iron cores.

(c) The lengthening of the iron core does not change the ampere-turns of the coil, so

mmf = 400 At Ans.

However, with a longer iron that is twice the initial length (10 cm = 2×5 cm), the field intensity
is reduced by half.

H = 1

2
× 8000 At/m = 4000 At/m or H = NI

l
= 400

0.1
= 4000 At/m Ans.

10.6 An iron ring has a mean circumferential length of 40 cm and a cross-sectional area of 1 cm2. It is
wound uniformly with 500 turns of wire. Measurements made with a search coil around the ring
show that the current in the windings is 0.06 A and the flux in the ring is 6 × 10−6 Wb. Find the flux
density B, field intensity H , permeability µ, and relative permeability µr .

B is found by using Eq. (10-1).

B = φ

A
= 6 × 10−6 Wb

10−4 m2
= 6 × 10−2 T Ans.

H is found by using Eq. (10-3).

H = NI

l
= 500 × 0.06

0.4
= 75 At/m Ans.

µ is found from Eq. (10-4).

µ = B

H
= 6 × 10−2

75
= 8 × 10−4 (T · m)/At Ans.

µr is found by Eq. (10-5).

µ = µrµ0

µr = µ/µ0 = 8 × 10−4

1.26 × 10−6
= 635 Ans.

The relative permeability is a pure number that has no unit of measurement.

10.7 Hysteresis loops of three different magnetic materials are shown in Fig. 10-21. Rank them in order
from least to most hysteresis loss.

The smaller the area enclosed by the hysteresis loop, the lower the hysteresis loss. Hysteresis loss
is likened to magnetic friction that must be overcome in magnetizing a material. Curve B, having the
smallest area, has the least hysteresis loss. Loop B is characteristic of a temporary-magnet material.
The coercive force is very small and hysteresis loss would be negligible. Next in area size is loop A,
which is typical of a relatively permanent magnet material. And loop C with the largest area has the
highest loss. This rectangular-shaped curve typifies permanent magnet material, such as alnico.
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Fig. 10-21 Hysteresis loops

10.8 A core of annealed steel with a B of 0.72 T has a permeability µ of 8×10−3 (T ·M)/At. If the length
of the coil is 20 cm and the area of the core is 3 cm2, find the reluctance of the path.

Given are l = 20 cm = 0.2 m, A = 3 cm2 = 3 × 10−4 m2, µ = 8 × 10−3 (T · M)/At. Substitute
these values in the formula for reluctance.

� = I

µA
(10-7)

= 0.2

(8 × 10−3)(3 × 10−4)
= 83 300 At/Wb Ans.

10.9 If the magnetic circuit of Problem 10.8 has an air gap of 0.2 cm in addition to the 20 cm of annealed
steel path, what is the reluctance of the air and how many ampere-turns would be needed to maintain
a B of 0.72 T? Assume that the area of the air gap is the same as the area of the steel core.

The total reluctance of the magnetic circuit, �T , is the reluctance of the steel path plus the
reluctance of the air gap. The µ0 of air is 1.26 × 10−6 (T · m)/At. The reluctance � of the steel,
as determined in Problem 10.8, is 83 300 At/Wb. The reluctance of the air gap is

�A = 1

µ0A
(10-7)

= 2 × 10−3

(1.26 × 10−6)(3 × 10−4)
= 5 290 000 At/Wb Ans.

The total reluctance �T is the sum of � and �A.

�T = � + �A = 83 300 + 5 290 000 = 5 373 300 = 5.37 × 106 At/Wb

To maintain a B of 0.72 T requires a total flux of

φ = BA = 0.72(3 × 10−4) = 216 × 10−6 Wb
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The mmf in ampere-turns is found by the use of Eq. (10-6).

φ = mmf

�T

from which

mmf = �T φ = (5.37 × 106)(216 × 10−6) = 1160 At Ans.

10.10 Explain the terms of the induced voltage formula.

The equation is

vind = N
�φ

�t
(10-8)

N, the number of turns, is a constant. More turns will provide more induced voltage, while fewer
turns mean less voltage. Two factors are included in �φ/�t . Its value can be increased by a higher
value of �φ or a smaller value of �t . As an example, the value of 4 Wb/s for �φ/�t can be doubled
by either increasing �φ to 8 Wb or reducing �t to 1/2s. Then �φ/�t is 8/1 or 4/(1/2), which equals
8 Wb/s in either case. For the opposite case, �φ/�t can be reduced by a smaller value of �φ or a
higher value of �t .

10.11 The hysteresis loop for a magnetic material is shown by plotting a curve of flux density B for a
periodically reversing magnetizing force H (Fig. 10-22). For this material what are its (a) permeability,
(b) retentivity, and (c) coercive force?

Fig. 10-22 Hysteresis loop, BH curve
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(a) µ = B/H , which is the slope of the curve from zero at the center (current is zero when
the material is unmagnetized) to + Bmax. Since this curve is normally not a straight line, we
approximate its slope from Fig. 10-22. Approximately,

µ = B

H
≈ 0.6

400
= 1.5 × 10−3 (T · m)/At Ans.

(b) + Br or − Br is the flux density remaining after the magnetizing force H has been reduced to
zero. This residual induction of a magnetic material is called its retentivity. From Fig. 10-22,

Br = 0.6 T Ans.

(c) The coercive force of the material is − Hc, which equals the magnetizing force that must be
applied to reduce flux density to zero. From Fig. 10-22,

Hc = 300 At/m Ans.

Supplementary Problems

10.12 Match the term in column 1 with its closest meaning in column 2.

Column 1 Column 2

1. North and south poles (a) natural magnet

2. Ohm’s law (b) NI

3. Magnetite (c) Iron

4. North pole (d) Value of B when H = 0

5. Relative permeability (e) Force of attraction

6. Induced voltage (f ) µr less than 1

7. Ferromagnetic (g) mmf/�

8. Retentivity (h) H value when B = 0

9. Diamagnetic (i) Lines of force cutting a conductor

10. mmf (j ) B/H

(k) µ/µ0

(l) Lines of force flowing from

(m) Force of repulsion

(n) Aluminum

Ans. 1. (e) 2. (g) 3. (a) 4. (l) 5. (k) 6. (i) 7. (c) 8. (d) 9. (f ) 10. (b)

10.13 What is the flux density of a core having 20 000 lines and a cross-sectional area of 5 cm2?
Ans. B = 0.4 T
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10.14 Fill in the indicated values. All answers should be in SI units.

φ B A Ans. φ B A

(a) 35 µWb ? 0.001 m2 (a) .... 0.035 T ....

(b) ? 0.8 T 0.005 m2 (b) 400 µWb .... ....

(c) 10 000 lines ? 2 cm2 (c) .... 0.5 T ....

(d) 90 µWb ? 0.003 m2 (d) .... 0.03 T ....

10.15 Draw the lines of force between the south
poles of two bar magnets and indicate strong
and weak fields. Ans. See Fig. 10-23.

Fig. 10-23

10.16 Draw the lines of force for two parallel conductors having the same direction of current and indicate
the strong and weak fields. Ans. See Fig. 10-24.

Fig. 10-24
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10.17 Compute the ampere-turns rating of an electromagnet wound with 600 turns of wire when it is
energized with 3 A of current. Ans. NI = 1800 At

10.18 A core of annealed sheet steel is wound with 1500 turns of wire through which a current of 12 mA is
flowing. If the length of the coil is 20 cm, find the magnetomotive force and field intensity.
Ans. NI = 18 At, H = 90 At/m

10.19 A coil has a field intensity of 300 At. Its length is doubled from 20 to 40 cm for the same NI. What
is the new magnetic field intensity? Ans. H = 750 At/m

10.20 An iron core has 250 times more flux density than air for the same field intensity. What is the value
of µr? Ans. µr = 250

10.21 Fill in the indicated values. All answers are in SI units.

B, T H,At/m µ,(T · m)/At µr Ans. B, T H ,At/m µ, (T · m)/At µr

(a) ? 1200 650 × 10−6 ? (a) 0.78 .... .... 516

(b) ? 1000 ? 200 (b) 0.25 .... 252 × 10−6 ....

(c) 0.8 ? ? 500 (c) .... 1270 630 × 10−6 ....

(d) 0.1 150 ? ? (d) .... .... 667 × 10−6 529

10.22 A BH curve for soft iron is shown (Fig. 10-25). Find the value of permeability, retentivity, and coercive
force. Ans. µ = B/H ≈ 0.4/200 = 2000 × 10−6 (T · m)/At; Br = 0.4 T; Hc = 200 At/m

Fig. 10-25
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10.23 When it has an annealed iron core, a coil has flux density of 1.44 T at a field intensity of 500 At/m.
Find µ and µr . Ans. µ = 2880 × 10−6 (T · m)/At; µr = 2290

10.24 The µ of an annealed iron core is 5600×10−6 (T ·m)/At when the current is 80 mA. The coil consists
of 200 turns on core 20 cm in length. Find H , B, and µr .
Ans. H = 80 At/m; B = 0.45 T; µr = 4440

10.25 A coil of 100 turns is 8 cm in length. The current in the coil is 0.2 A. If the core is cast iron with a
B of 0.13 T, find H, µ, and µr .
Ans. H = 250 At/m; µ = 520 × 10−6 (T · m)/At; µr = 413

10.26 If the core in Problem 10.25 has a cross-sectional area of 2 cm2, find the reluctance and the mmf of
this magnetic circuit. Ans. � = 769 000 At/Wb; mmf = 20 At

10.27 A coil has 200 At (Fig. 10-26a) with a flux of 25 µWb in the iron core. Calculate the reluctance. If
the reluctance of the path with an air gap were 800 × 106 At/Wb (Fig. 10-26b), how much mmf
would be needed for the same flux of 25 µWb? Ans. � = 8 × 106 At/Wb; mmf = 20 000 At

10.28 A magnetic flux of 1000 lines cuts across a coil of 800 turns in 2 µs. What is the voltage induced in
the coil? Ans. vind = 4 kV

10.29 In a stationary field coil of 500 turns, calculate the induced voltage produced by the following flux
changes: (a) 4 Wb increasing to 6 Wb in 1 s; (b) 6 Wb decreasing to 4 Wb in 1 s; (c) 4000 lines of
flux increasing to 5000 lines in 5 µs; (d) 4 Wb remaining the same over 1 s.
Ans. (a) vind = 1 kV; (b) vind = 1 kV; (c) vind = 1 kV; (d) vind = 0 V

10.30 A magnetic circuit has a 10-V battery connected to a 50-� coil of 500 turns with an iron core of
20 cm in length (Fig. 10-27). Find (a) mmf; (b) field intensity H ; (c) flux density B in a core with
µr of 600; and (d) the total flux φ at each pole with an area of 4 cm2.
Ans. (a) mmf = 100 At; (b) H = 500 At/m; (c) B = 0.378 T; (d) φ = 1.51 × 10−4 Wb

Fig. 10-26 Fig. 10-27
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10.31 If a conductor cuts 3.5 Wb in 0.25 s, what is the voltage induced in the conductor?
Ans. vind = 14 V

10.32 If the iron core is removed from the coil in Problem 10.30, (a) What will the flux be in the air-core
coil? (b) What value of induced voltage would be produced by this change in flux while the core
is being moved out in 1/2 s? (c) What is the induced voltage after the core is removed and the flux
remains constant?
Ans. (a) φ = 2.52 × 10−7 Wb; (b) vind = 0.151 V; (c) vind = 0 V

10.33 The N pole of a permanent magnet is moved away from the coil (Fig. 10.28a). What is the polarity
of the coil and the direction of induced current? Ans. See Fig. 10-28b.

Fig. 10-28

10.34 A BH magnetization curve for soft iron has the following values:

B, T H,At/m

0.126 1000

0.252 2000

0.378 3000

0.428 4000

0.441 5000

(a) What is the value of µ? (b) Find µr . (c) At what value of H does the BH curve begin to saturate?
Ans. (a) µ ≈ 1.25 × 10−4(T · m)/At; (b) µr = 100; (c) H = 4000 At/m



 

Chapter 11

Direct-Current Generators and Motors

MOTORS AND GENERATORS

A motor is a machine that converts electric energy into rotary mechanical energy. Motors turn washing
machines, dryers, fans, furnace blowers, and much of the machinery found in industry. A generator, on the
other hand, is a machine that converts rotary mechanical energy into electric energy. The mechanical energy
might be supplied by a waterfall, steam, wind, gasoline or diesel engine, or an electric motor.

Components

The main parts of direct-current motors and generators are basically the same (Fig. 11-1).

Fig. 11-1 Main parts of a dc motor. (From B. Grob,
Basic Electronics, McGraw-Hill, New York,
1977, 4th ed., p. 338)

Armature

In a motor, the armature receives current from an external electrical source. This causes the armature to
turn. In a generator, the armature is rotated by an external mechanical force. The voltage generated in the
armature is then connected to an external circuit. In brief, the motor armature receives current from an external
circuit (the power supply), and the generator armature delivers current to an external circuit (the load). Since
the armature rotates, it is also called a rotor.

229
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Commutator

A dc machine has a commutator to convert the alternating current flowing in its armature into the direct
current at its terminals (in the case of the generator). The commutator (Fig. 11-1) consists of copper segments
with one pair of segments for each armature coil. Each commutator segment is insulated from the others by
mica. The segments are mounted around the armature shaft and are insulated from the shaft and armature iron.
Two stationary brushes are mounted on the frame of the machine so that they contact opposite segments of the
commutator.

Brushes

These graphite connectors are stationary and spring-mounted to slide or “brush” against the commutator
on the armature shaft. Thus, brushes provide a connection between the armature coils and the external load.

Field Winding

This electromagnet produces the flux cut by the armature. In a motor, current for the field is provided by
the same source that supplies the armature. In a generator, the field-current source may come from a separate
source called an exciter or from its own armature output.

SIMPLE DC GENERATOR

A simple dc generator consists of an armature coil with a single turn of wire. This armature coil cuts
across the magnetic field to produce voltage. If a complete path is present, current will move through the
circuit in the direction shown by the arrows (Fig. 11-2a). In this position of the coil, commutator segment 1
is in contact with brush 1, while commutator segment 2 is in contact with brush 2. As the armature rotates a
half turn in a clockwise direction, the contacts between the commutator segments and the brushes are reversed
(Fig. 11-2b). Now, segment 1 is in contact with brush 2 and segment 2 is in contact with brush 1. Because of
this commutator action, that side of the armature coil which is in contact with either of the brushes is always
cutting across the magnetic field in the same direction. Therefore, brushes 1 and 2 have constant polarity, and
a pulsating direct current is delivered to the external load circuit.

Fig. 11-2 Basic operation of a dc generator

Example 11.1 A dc generator with a single coil produces a pulsating dc output. By using more coils and combining
their output, a smoother waveform can be obtained. Draw a voltage output waveform that results when a second coil is
added to the armature and placed perpendicular to the first coil.
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See Fig. 11-3. Notice that a voltage is included at all times. Although the current still pulsates, the output is smoother.
In practical generators, many coils are wound around the armature to produce a still smoother dc output.

Fig. 11-3 Output of a two-coil dc generator Fig. 11-4 Simplex lap winding

ARMATURE WINDINGS

The armature coils used in large dc machines are usually wound in their final shape before being put on
the armature. The sides of the preformed coil are placed in the slots of the laminated armature core. There are
two ways the coils can be connected, lap winding and wave winding.

In a simplex lap winding, the ends of each coil are connected to adjacent commutator segments (Fig. 11-4).
In this way all the coils are connected in series. In a duplex lap winding there are in effect two separate sets
of coils, each set connected in series (Fig. 11-5). The two sets of coils are connected to each other only by the
brushes. Similarly, a triplex lap winding is in effect three separate sets of series-connected coils. In a simplex
lap winding, a single brush short-circuits the two ends of a single coil.

In a wave winding, the ends of each coil are connected to commutator segments two pole spans apart
(Fig. 11-6). Instead of short-circuiting a single coil, a brush will short-circuit a small group of coils in series.

The area in a generator where no voltage can be induced in an armature coil is called the commutating
or neutral plane. This plane is midway between adjacent north and south field poles. The brushes are always
set so that they short-circuit the armature coils passing through the neutral plane while, at the same time, the
output is taken from the other coils.

Example 11.2 Explain the commutating action in a simplex lap–wound armature that has 22 coils.
See Fig. 11-7. An armature with 22 coils is connected to 22 commutator segments. There are two brushes. The

+ brush is short-circuiting armature coil 11, while the – brush is short-circuiting armature coil 22. There is no voltage
induced in either of these coils. The two coil groups, 1–10 and 12–21, are connected in parallel by the brushes because
the voltages in both coil groups have the same polarity. The brushes also connect the generated voltage to the external
load circuit. While the brush is short-circuiting one armature coil, it is receiving the voltage and current induced in the
other armature coils because one end of two different coils is connected to the same commutator segment (e.g., coil 21 and
coil 22).
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Fig. 11-5 Duplex lap winding Fig. 11-6 Wave winding for a four-pole dc
machine

Fig. 11-7 Brush–commutator action in a simplex lap–wound
armature

Fig. 11-8 Circuit diagram of separately excited
generator

FIELD EXCITATION

DC generators take their names from the type of field excitation used. When the generator’s field is supplied
or “excited” from a separate dc source, such as a battery, it is called a separately excited generator (Fig. 11-8).
When a generator supplies its own excitation, it is called a self-excited generator. If its field is connected in
parallel with the armature circuit, it is called a shunt generator (Fig. 11-9a). When the field is in series with
the armature, the generator is called a series generator (Fig. 11-9b). If both shunt and series fields are used, the
generator is called a compound generator. Compound generators may be connected short-shunt (Fig. 11-9c),
with the shunt field in parallel only with the armature, or long-shunt (Fig. 11-9d), with the shunt field in parallel
with both the armature and series field. When the series field is so connected that its ampere-turns act in the same
direction as those of the shunt field, the generator is said to be a cumulative-compound generator. Field rheostats
are adjustable resistances placed in the field circuits to vary the field flux and therefore the emf generated by the
generator.



 

CHAP. 11] DIRECT-CURRENT GENERATORS AND MOTORS 233

Fig. 11-9 Circuit diagrams of dc generators

The compound generator is used more extensively than other types of generators because it can be designed
so that it has a wide variety of characteristics.

DC GENERATOR EQUIVALENT CIRCUIT

Voltage and current relationships of a dc generator equivalent circuit (Fig. 11-10) are, according to
Ohm’s law,

Vta = Vg − Iara (11-1)
Vt = Vg − Ia(ra + rs) (11-2)
IL = Ia − If (11-3)

where Vta = armature terminal voltage, V
Vg = armature generated voltage, V
Ia = armature current, A
Vt = generator terminal voltage, V
ra = armature-circuit resistance, �

rs = series-field resistance, �

rf = shunt-field resistance, �

IL = line current, A
If = shunt-field current, A

Fig. 11-10 DC generator equivalent circuit

Example 11.3 A dc generator has a 100-kW, 250-V rating. What do these ratings mean?
The generator can continuously deliver 100 kW of power to an external load. The terminal voltage Vt of the generator

is 250 V when it is delivering its rated current.
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Example 11.4 A 100-kW, 250-V dc generator has an armature current of 400 A, armature resistance (including brushes)
of 0.025 �, and series-field resistance of 0.005 �. It is driven at 1200 revolutions per minute (rpm) by a constant-
speed motor. Compute the armature generated voltage.

From Eq. (11-2),

Vg = Vt + Ia(ra + rs)

= 250 + 400(0.025 + 0.005) = 250 + 12 = 262 V Ans.

GENERATOR VOLTAGE EQUATIONS AND VOLTAGE REGULATION

The average generated voltage Vg of a generator may be calculated from the formula

Vg = pZφn

60b × 108
(11-4)

where Vg = average generated voltage of a dc generator, V
p = number of poles
Z = total number of conductors on armature (also called inductors)
φ = flux per pole
n = speed of the armature, rpm
b = number of parallel paths through armature, depending on type of armature winding

For any generator, all factors in Eq. (11-4) are fixed values except φ and n. Hence Eq. (11-4) may be
simplified to

Vg = kφn (11-5)

where k = pZ

60b × 108

Equation (11-5) indicates that the value of an induced emf in any circuit is proportional to the rate at which
the flux is being cut. Thus, if φ is doubled while n remains constant, Vg is doubled. Similarly, if n is doubled,
φ remaining constant, Vg will be doubled.

Example 11.5 When a generator is being driven at 1200 rpm, the generated voltage is 120 V. What will be the generated
voltage (a) if the field flux is decreased by 10 percent with the speed remaining fixed and (b) if the speed is reduced to
1000 rpm, the field flux staying unchanged?

(a) Vg1 = kφ1n1 or k = Vg1

φ1n1
(11-5)

Vg2 = kφ2n1 = Vg1

φ1�n
φ2�n1 = Vg1

φ2

φ1
= 120

1.00

1.00 − 0.10
= 120(0.90) = 108 V Ans.

(b) Vg2 = kφ1n2 = Vg1

�φ1n1
�φ1n2 = Vg1

n2

n1
= 120

1000

1200
= 100 V Ans.

Voltage regulation is the difference between the no-load (NL) and full-load (FL) terminal voltage of a
generator and is expressed as a percentage of the full-load value.

Voltage regulation = NL voltage − FL voltage

FL voltage
(11-6)

Low-percentage regulation, characteristic of lighting circuits, means that the generator’s terminal voltage is
nearly the same at full load as it is at no load.
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Example 11.6 A shunt generator has a full-load terminal voltage of 120 V. When the load is removed, the voltage
increases to 150 V. What is the percentage voltage regulation?

Voltage regulation = NL voltage − FL voltage

FL voltage
= 150 − 120

120
= 30

120
= 0.25 = 25% Ans.

LOSSES AND EFFICIENCY OF A DC MACHINE

The losses of generators and motors consist of copper losses in the electric circuits and mechanical losses
due to the rotation of the machine. Losses include:

1. Copper losses
(a) Armature I 2R losses
(b) Field losses

(1) Shunt field I 2R

(2) Series field I 2R

2. Mechanical or rotational losses
(a) Iron losses

(1) Eddy-current loss
(2) Hysteresis loss

(b) Friction losses
(1) Bearing friction
(2) Brush friction
(3) Windage or air friction loss

Copper losses are present because power is used when a current is made to flow through a resistance. As the
armature rotates in a magnetic field, the emf induced in the iron parts causes eddy currents to flow which
heat the iron and thus represent wasted energy. Hysteresis loss also results when a magnetic material is first
magnetized in one direction and then in an opposite direction. Other rotational losses are caused by bearing
friction, the friction of the brushes riding on the commutator, and air friction or windage.

Efficiency is the ratio of the useful power output to total power input.

Efficiency = output

input
(11-7)

Also, Efficiency = input − losses

input
= output

output + losses
(11-8)

Efficiency is usually expressed as a percentage.

Efficiency (%) = output

input
× 100

Example 11.7 A shunt generator has an armature-circuit resistance of 0.4 �, a field-circuit resistance of 60 �, and a
terminal voltage of 120 V when it is supplying a load current of 30 A (Fig. 11-11). Find the (a) field current, (b) armature
current, and (c) copper losses at the above load. (d) If the rotational losses are 350 W, what is the efficiency at the
above load?

(a) If = Vt

rf
= 120

60
= 2 A Ans.

(b) Ia = IL + If = 30 + 2 = 32 A Ans.

(c) Armature loss = I2
a ra = 322(0.4) = 410 W

Shunt-field loss = I2
f
rf = 22(60) = 240 W

Copper loss = armature loss + shunt-field loss = 410 + 240 = 650 W Ans.
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Fig. 11-11 DC shunt generator

(d)
Efficiency = output

output + losses
(11-8)

Output = P = Vt IL = 120(30) = 3600 W
Total losses = copper losses + rotational losses = 650 + 350 = 1000 W

Efficiency (%) = 3600

3600 + 1000
100 = 3600

4600
100 = 0.783(100) = 78.3% Ans.

DIRECT-CURRENT MOTOR

Motor Principle

Although the mechanical construction of dc motors and generators is very similar, their functions are
different. The function of a generator is to generate a voltage when conductors are moved through a field,
while that of a motor is to develop a turning effort, or torque, to produce mechanical rotation.

Direction of Armature Rotation

The left-hand rule is used to determine the direction of rotation of the armature conductors. The left-
hand rule for motors is as follows: With the forefinger, middle finger, and thumb of the left hand mutually
perpendicular, point the forefinger in the direction of the field and the middle finger in the direction of the current
in the conductor; the thumb will point in the direction in which the conductor tends to move (Fig. 11-12a).
In a single-turn rectangular coil parallel to a magnetic field (Fig. 11-12b), the direction of current in the left-
hand conductor is out of the paper, while in the right-hand conductor it is into the paper. Therefore, the left-hand
conductor tends to move upward with a force F1, and the right-hand conductor tends to move downward with
an equal force F2. Both forces act to develop a torque which turns the coil in a clockwise direction. A single-
coil motor (Fig. 11-12b) is impractical because it has dead centers and the torque developed is pulsating. Good
results are obtained when a large number of coils are used as in a four-pole motor (Fig. 11-13). As the armature
rotates and the conductors move away from under a pole into the neutral plane, the current is reversed in them
by the action of the commutator. Thus, the conductors under a given pole carry current in the same direction
at all times.

Torque

The torque T developed by a motor is proportional to the strength of the magnetic field and to the armature
current.

T = ktφIa (11-9)

where T = torque, ft-lb
kt = constant depending on physical dimensions of motor
φ = total number of lines of flux entering the armature from one N pole
Ia = armature current, A
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Fig. 11-12 Applications of left-hand rule for motors

Fig. 11-13 Armature-current directions in a four-pole
motor for counterclockwise rotation

DC MOTOR EQUIVALENT CIRCUIT

Voltage and current relationships of a dc motor equivalent circuit (Fig. 11-14) are as follows:

Vta = Vg + Iara (11-10)

Vt = Vg + Ia(ra + rs) (11-11)

IL = Ia + If (11-12)
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Fig. 11-14 DC motor equivalent circuit

where Vta = armature terminal voltage, V
Vg = counter emf, V
Ia = armature current, A
Vt = motor terminal voltage, V

and ra, rs, rf , IL, and If are as defined for the dc generator equivalent circuit (Fig. 11-10). A comparison of
a generator equivalent circuit (Fig. 11-10) with a motor equivalent circuit (Fig. 11-14) shows that the only
difference is the direction of line and armature current.

The counter emf of a motor, Vg , is generated by the action of the armature conductors cutting lines of
force. If in a shunt motor, Eq. (11-11) is multiplied by Ia (rs = 0),

VtIa = VgIa + I 2
a ra (11-13)

VtIa is the power supplied to the armature of the motor; I 2
a ra is the power lost as heat in the armature current;

and VtIa is the power developed by the armature. But this armature power is not the useful output since some
of it must be used to overcome the mechanical or rotational losses of the motor. The rated output of the motor
is equal to the input (Vt IL) less the heat losses (I 2R) and rotational losses. The common unit for motor output
is horsepower (hp), where

Horsepower = watts

746
(11-14)

Example 11.8 (a) Find the counter emf of a motor when the terminal voltage is 240 V and the armature current is 50 A.
The armature resistance is 0.08 �. The field current is negligible. (b) What is the power developed by the motor

armature? (c) What is the power delivered to the motor in kilowatts?

(a) Vt = Vg + Iara rs = 0

Vg = Vt − Iara = 240 − 50(0.08) = 240 − 4 = 236 V Ans.

(b) Power developed = VgIa = 236(50) = 11 800 W

Horsepower = watts

746
= 11 800

746
= 15.8 hp Ans.

(c) Power delivered = Vt IL = 240(50) = 12 000 W = 12 kW Ans.

SPEED OF A MOTOR

Speed is designated by the number of revolutions of the shaft with respect to time and is expressed in units
of revolutions per minute (rpm). A reduction of the field flux of a motor causes the motor speed to increase.
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Conversely, an increase in the field flux causes the motor speed to decrease. Because the speed of a motor
varies with field excitation, a convenient means for controlling the speed is to vary the field flux by adjusting
the resistance in the field circuit.

If a motor is able to maintain a nearly constant speed for varying loads, the motor is said to have a good
speed regulation. Speed regulation is usually expressed as a percentage as follows:

Speed regulation = no-load speed − full-load speed

full-load speed
(11-15)

Example 11.9 A 220 V shunt motor has an armature resistance of 0.2 �. For a given load on the motor, the armature
current is 25 A. What is the immediate effect on the torque developed by the motor if the field flux is reduced by 2 percent?

The torque developed when Ia = 25 A is

T1 = ktφIa = 25 ktφ (11-9)

and the counter emf is

Vg1 = Vt − Iara = 220 − 25(0.2) = 215 V

If φ is reduced by 2 percent, the value of Vg is also reduced by 2 percent since Vg = kφn and the speed n cannot change
instantly. Hence, the new counter emf is

Vg2 = 0.98(215) = 210.7 V

The new armature current is

Ia2 = Vt − Vg2

ra
= 220 − 210.7

0.2
= 46.5 A

and the new torque developed is

T2 = kt (0.98)φ(46.5) = 45.6 ktφ

The torque increase is

T2

T1
= 45.6 ktφ

25 ktφ
= 1.82 times Ans.

Thus a decrease in flux by 2 percent increases the torque of a motor 1.82 times. This increased torque causes the armature
speed to increase to a higher value, at which the increased counter emf (Vg ∝n) limits the armature current to a value just
high enough to carry the load at the higher speed.

Example 11.10 The no-load speed of a dc shunt motor is 1200 rpm. When the motor carries its rated load, the speed
drops to 1140. What is the speed regulation?

Speed regulation = NL speed − FL speed

FL speed
(11-15)

= 1200 − 1140

1140
= 0.053 = 5.3% Ans.

MOTOR TYPES

Shunt Motor

This is the most common type of dc motor. It is connected in the same way as the shunt generator
(Fig. 11-15a). Its characteristic speed-load and torque-load curves (Fig. 11-15b) show that the torque increases
linearly with an increase in armature current, while the speed drops slightly as the armature current is increased.
The basic speed is the full-load speed. Speed adjustment is made by inserting resistance in the field circuit
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Fig. 11-15 Characteristics of a typical shunt motor

with a field rheostat. At one setting of the rheostat, the motor speed remains practically constant for all loads.
Starters used with dc motors limit the armature starting current to 125–200 percent of full-load current. Care
must be taken never to open the field circuit of a shunt motor that is running unloaded because the motor speed
will increase without limit until the motor destroys itself.

Series Motor

The field of this type of motor is connected in series with the armature (Fig. 11-16a). The speed varies
from a very high speed at light load to a lower speed at full load (Fig. 11-16b). The series motor is suitable
for starting with heavy, connected loads (driving cranes and winches) because at high armature currents,
it develops a high torque and operates at low speed (Fig. 11-16b). At no load, the speed of a series motor will
increase without limit until the motor destroys itself (Fig. 11-16b). Large series motors are therefore generally
connected directly to their load rather than by belts and pulleys.

Fig. 11-16 Characteristics of a typical series motor

Compound Motor

It combines the operating characteristics of the shunt and series motors (Fig. 11-17a and b). The compound
motor may be operated safely at no load. As load is added, its speed decreases, and torque is greater compared
with that of a shunt motor (Fig. 11-18).
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Fig. 11-17 Characteristics of a typical compound motor

Fig. 11-18 Comparative characteristics for shunt, series, and
compound dc motors

STARTING REQUIREMENTS FOR MOTORS

There are two starting requirements for motors:

1. Both motor and supply lines are protected from flow of excessive current during the starting period
by placing external resistance in series with the armature circuit.

2. Motor-starting torque should be made as large as possible to bring the motor up to full speed in
minimum time.

The amount of starting resistance needed to limit the armature starting current to the desired value is

Rs = Vt

Is

− ra (11-16)

where Rs = starting resistance, �

Vt = motor voltage, V
Is = desired armature starting current, A
ra = armature resistance, �



 

242 DIRECT-CURRENT GENERATORS AND MOTORS [CHAP. 11

Example 11.11 A shunt motor on a 240-V line has an armature current of 75 A. If the field-circuit resistance is 100 �,
find the field current, line current, and power input to the motor (Fig. 11-19).

If = Vt

rf
= 240

100
= 2.4 A Ans.

IL = If + Ia = 2.4 + 75 = 77.4 A Ans.

P1N = Vt IL = 240(77.4) = 18 576 W = 18.6 kW Ans.

Fig. 11-19 Shunt motor Fig. 11-20 Equivalent dc motor circuit at start-up

Example 11.12 A 10-hp shunt motor with an armature resistance of 0.5 � is connected directly to a 220-V supply line.
What is the resulting current if the armature is held stationary? Neglect the field current. If the full-load armature

current is 40 A and it is desired to limit the starting current to 150 percent of this value, find the starting resistance that
must be added in series with the armature.

At start-up, when a motor armature is stationary, no counter emf is being generated. The only factor limiting the
current being drawn from the supply, therefore, is the armature-circuit resistance (Fig. 11-20). At motor start-up with
Rs = 0, Vg = 0, and negligible shunt current,

I = Vt

ra
= 220

0.5
= 440 A Ans.

which is far above the normal full-load armature current for a motor of this size. The result will be probable damage to
brushes, commutator, and windings. With Rs added in series in the armature circuit,

Rs = Vt

Is
− ra (11-16)

= 220

40(1.5)
− 0.5 = 3.67 − 0.5 = 3.17 � Ans.

Solved Problems

11.1 A generator has an emf of 520 V, has 2000 armature conductors or inductors, a flux per pole of
1 300 000 lines, a speed of 1200 rpm, and the armature has four paths. Find the number of poles.

From Eq. (11-4),

p = Vg

(
60b × 108)
Zφn

= 520
[
60(4) × 108](

2 × 103) (
1.3 × 106) (

1.2 × 103) = 4 poles Ans.



 

CHAP. 11] DIRECT-CURRENT GENERATORS AND MOTORS 243

11.2 A shunt-field winding of a 240-V generator has a resistance of 50 � (Fig. 11-21). How much field-
rheostat resistance must be added to limit the field current to 3 A when the generator is operating at
rated voltage?

Solve Ohm’s law for r : If = Vt

rf + r

r = Vt − If rf

If
= 240 − 3(50)

3
= 30 � Ans.

Fig. 11-21 Adding resistance to limit If Fig. 11-22

11.3 The terminal voltage of a shunt generator is 110 V when the generated voltage is 115 V and the
armature current is 20 A (Fig. 11-22). What is the armature resistance?

The generated voltage minus the voltage drop across the armature equals the terminal voltage.

Vg − Iara = Vt (11-2)

Solve for ra : ra = Vg − Vt

Ia

= 115 − 110

20
= 0.25 � Ans.

11.4 The terminal voltage of a 75-kW shunt generator is 600 V at rated load. The resistance of the shunt
field is 120 � and the armature resistance is 0.2 � (Fig. 11-23). Find the generated emf.

The rated current is

IL = P

Vt

= 75 000

600
= 125 A

If = Vt

rf
= 600

120
= 5 A

Ia = If + IL = 5 + 125 = 130 A

Vg = Vt + Iara = 600 + 130(0.2) = 626 V Ans.

11.5 A shunt generator requires 50-hp input from its prime mover when it delivers 150 A at 240 V. Find
the efficiency of the generator.

Output = 240(150) = 36 000 W

Input = 50(746) = 37 300 W

Efficiency (%) = output

input
× 100 (11-7)

= 36 000

37 300
100 = 0.965(100) = 96.5% Ans.
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Fig. 11-23 Fig. 11-24 Short-shunt compound generator

11.6 A short-shunt compound generator has a terminal voltage of 240 V when the line current is 50 A
(Fig. 11-24). The series-field resistance is 0.04 �. (a) Find the voltage drop across the series field.
(b) Find the voltage drop across the armature. (c) Find the armature current if the shunt-field current
is 2 A. (d) If the losses are 2000 W, what is the efficiency?

(a) ILrs = 50(0.04) = 2 V Ans.

(b) Vta = Vt + ILrs = 240 + 2 = 242 V Ans.

(c) Ia = If + IL = 2 + 50 = 52 A Ans.

(d) Output = VtIL = 240(50) = 12 000 W

Efficiency (%) = output

output + losses
× 100 (11-8)

= 12 000

12 000 + 2000
100 = 12 000

14 000
100 = 0.857(100) = 85.7% Ans.

11.7 From the following data on a shunt generator (Fig. 11-25), find the efficiency at full load:

Rated power output = 10 kW

Rated voltage = 230 V

Armature resistance = 0.6 �

Field resistance = 182 �

Rotational losses at full load = 700 W

First find the generator currents and then the copper losses.

IL = power out

Vt

= 10 000

230
= 43.48 A

If = Vt

rf
= 230

182
= 1.26 A

Ia = If + IL = 1.26 + 43.48 = 44.74 A

Copper losses:

Armature: I 2
a ra = (44.74)2(0.6) = 1201 W

Field: I 2
f rf = (1.26)2(182) = 289 W

Total copper losses = 1490 W
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Total losses:

Copper: 1490 W
Rotational: 700 W

Total = 2190 W

Efficiency (%) = output

output + losses
× 100 (11-8)

= 10 000

10 000 + 2190
100 = 10 000

12 190
100 = 0.820(100) = 82.0% Ans.

Fig. 11-25 Fig. 11-26

11.8 A shunt motor draws 6 kW from a 240-V line (Fig. 11-26). If the field resistance is 100 �, find
IL, If , and Ia .

P1N = VtIL

IL = P1N

Vts
= 6000

240
= 25 A Ans.

If = Vt

rf
= 240

100
= 2.4 A Ans.

Ia = IL − If = 25 − 2.4 = 22.6 A Ans.

11.9 A shunt motor connected to a 120-V line runs at a speed of 1200 rpm when the armature current is
20 A (Fig. 11-27). The armature resistance is 0.05 �. Assuming constant field flux, what is the speed
when the armature current is 60 A?

Speed is directly proportional to counter emf.

Vg1 = Vt − Ia1ra = 120 − 20(0.05) = 119 V

Vg2 = Vt − Ia2ra = 120 − 60(0.05) = 117 V

Vg1

Vg2
= n1

n2

n2 = Vg2

Vg1
n1 = 117

119
1200 = 1180 rpm Ans.
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Fig. 11-27 Fig. 11-28

11.10 The counter emf of a shunt motor is 218 V, the field resistance is 150 � and the field current is
1.5 A. The line current is 36.5 A (Fig. 11-28). (a) Find the armature resistance. (b) If the line current
during start-up must be limited to 55 A, how much starter resistance must be added in series with
the armature? (c) What is the horsepower developed by the motor? If the mechanical and iron losses
total 550 W, what is the horsepower output?

(a) Vt = If rf = 1.5(150) = 225 V

Ia = IL − If = 36.5 − 1.5 = 35 A

Iara + Vg = Vt

ra = Vt − Vg

Ia

= 225 − 218

35
= 7

35
= 0.2 � Ans.

(b) Neglecting the field current,

Rs = Vt

Is

− ra = 225

55
− 0.2 (11-16)

= 4.09 − 0.20 = 3.89 � Ans.

(c) The horsepower of the motor is the horsepower developed by the armature. The power output
is the horsepower available at the motor shaft.

VgIa = 218(35) = 7630 W

1 hp = 746 W

So hp = 7630

746
= 10.2 Ans.

The horsepower output is the horsepower developed by the armature less the power needed to
overcome the mechanical or rotational losses of the motor.

hp output = 7630 − 550

746
= 7080

746
= 9.5 Ans.

11.11 The efficiency at rated load of a 100-hp 600-V shunt motor is 85 percent (0.85) (Fig. 11-29). The
field resistance is 190 � and the armature resistance is 0.22 �. The full-load speed is 1200 rpm. Find
(a) the rated line current, (b) the field current, (c) the armature current at full load, and (d) the counter
emf at full load.
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Fig. 11-29

(a) Efficiency = output

input

Input = output

efficiency
= 100(746)

0.85
= 87 765 W

VtIL = input = 87 765 W

IL = 87 765

Vt

= 87 865

600
= 146.3 A Ans.

(b) If = Vt

rf
= 600

190
= 3.16 A Ans.

(c) Ia = IL − If = 146.3 − 3.2 = 143.1 A Ans.

(d) Vg = Vt − Iara = 600 − 143.1(0.22) = 600 − 31.5 = 568.5 V Ans.

11.12 A long-shunt compound motor has an armature current of 12 A, armature resistance of 0.05 � and a
series-field resistance of 0.15 � (Fig. 11-30). The motor is connected to a 115-V supply. Find (a) the
counter emf and (b) the horsepower developed in the armature.

Fig. 11-30

(a) Vt = Vg + Ia(ra + rs) (11-11)

Vg = Vt −Ia(ra+rs) = 115−12(0.05 + 0.15) = 115−12(0.2) = 115−2.4 = 112.6 V Ans.

(b) Developed hp = VgIa

746
= 112.6(12)

746
= 1.8 hp Ans.

11.13 At full load a 15-hp motor draws 55 A from a 240-V line. (a) What is the motor efficiency? (b) What
is the motor efficiency at no load?
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(a) Motor input = ILVt = 55(240) = 13 200 W
Motor output = 15 hp = 15(746) = 11 190 W

Motor efficiency (%) = output

input
× 100 = 11 190

13 200
100 = 0.848(100) = 84.8% Ans.

(b) The output of a motor is considered the power delivered to a load. At no load, motor output is
zero. Therefore,

Motor efficiency = 0% Ans.

Fig. 11-31 Fig. 11-32

11.14 At rated load the rotational losses (iron losses plus mechanical losses) of a 240-V shunt motor are
900 W (Fig. 11-31). The field resistance is 94 � and the armature-circuit resistance is 0.15 �. The
rated motor current is 145 A. Find (a) the field copper loss, (b) the armature copper loss, (c) the rated
horsepower output, and (d) the efficiency.

(a) If = Vt

rf
= 240

94
= 2.25 A

Field copper loss = I 2
f rf = (2.55)2(94) = 611 W Ans.

(b) Ia = IL − If = 145 − 2.25 = 142.5 A Ans.

Armature copper loss = I 2
a ra = (142.5)2(0.15) = 3046 W Ans.

(c) Total copper losses = 611 + 3046 = 3657 W
Rotational losses = 900 W

Total losses = 4557 W

Output = input − total losses

= VtIL − total losses = 240(145) − 4557 = 34 800 − 4557 = 30 243 W

Rated hp output = 30 243

746
= 40.5 Ans.
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(d) Efficiency (%) = output

input
× 100 = 30 243

34 800
100 = 0.869(100) = 86.9% Ans.

11.15 A 10-hp short-shunt compound motor is supplied by a 120-V source (Fig. 11-32). The full load
current is 95 A. The shunt-field resistance is 90 �, the armature resistance is 0.06 � and the series-
field resistance is 0.04 �. Find (a) the shunt-field current, (b) the armature current, (c) the counter
emf, (d) the efficiency at full load, (e) the full-load copper losses, and (f ) the rotational losses.

(a) Vta = Vt − ILrs = 120 − 95(0.04) = 116.2 V

If = Vta

rf
= 116.2

90
= 1.29 A Ans.

(b) Ia = IL − If = 95 − 1.29 = 93.7 A Ans.

(c) Vg = Vta − Iara = 116.2 − 93.7(0.06) = 110.6 V Ans.

(d) Efficiency = output

input
= 10 hp

VtIL

= 10(746)

120(95)
= 74 60

11 400
= 0.654

Efficiency (%) = 0.654(100) = 65.4% Ans.

(e) Shunt-field copper loss = I 2
f rf = (1.29)2(90) = 150 W

Series-field copper loss = I 2
Lrs = (95)2(0.04) = 361 W

Armature copper loss = I 2
a ra = (93.7)2(0.06) = 527 W

Total copper loss = 1038 W Ans.

(f ) Total losses = input − output = 11 400 − 7460 = 3940 W

Total losses = total copper losses + rotational losses = 3940

Rotational losses = 3940 − 1038 = 2902 W Ans.

Supplementary Problems

11.16 How many amperes will a 60-kW 240-V dc generator deliver at full load? Ans. 250 A

11.17 What is the full-load kilowatt output of a dc generator if the full-load line current is 30 A and the
terminal voltage is 115 V? Ans. 3.45 kW

11.18 A shunt generator generates 100 V when its speed is 800 rpm. What emf does it generate if the speed
is increased to 1200 rpm, the field flux remaining constant? Ans. 150 V

11.19 If the generated voltage of a generator is 120 V and the IR drop in the armature circuit is 5 V, what
is the terminal voltage? Ans. 115 V

11.20 A 240-V shunt generator has a field resistance of 100 �. What is the field current when the generator
operates at rated voltage? Ans. 2.4 A

11.21 A shunt generator is rated at 200 kW at 240 V. (a) What is the full-load current? (b) If the field
resistance is 120 �, what is the field current? (c) What is the full-load armature current?
Ans. (a) 833.3 A; (b) 2 A; (c) 835.3 A

11.22 In a 50-kW 240-V shunt generator, 260 V is generated in the armature when the generator delivers
rated current at rated voltage. The shunt-field current is 4 A. What is the resistance in the armature
circuit? Ans. ra = 0.049 �
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11.23 A shunt generator has a field resistance of 50 � in series with a rheostat. When the terminal voltage
of the generator is 110 V, the field current is 2 A. How much resistance is cut in on the shunt-field
rheostat? Ans. 5 �

11.24 Find the efficiency at full load of a 50-kW generator when the input is 80 hp. Ans. 83.8%

11.25 The losses of a 20-kW generator at full load are 5000 W. What is its efficiency? Ans. 80%

11.26 The full-load losses of a 20-kW 230-V shunt generator are as follows:

Field I 2R loss = 200 W

Armature I 2R loss = 1200 W

Windage and friction losses = 400 W

Iron loss = 350 W

Find the efficiency at full load. Ans. 90.3%

11.27 A short-shunt compound generator delivers 210 A to load at 250 V. Its shunt-field resistance is 24.6 �,
its shunt-field rheostat resistance is 6.4 �, its series-field resistance is 0.038 �, and its armature
resistance is 0.094 �. Find the copper losses in (a) the shunt-field winding, (b) the shunt-field rheostat,
(c) the series field, and (d) the armature winding. (e) If the rotational losses at full load are 800 W,
find the efficiency.
Ans. (a) 1704 W; (b) 443 W; (c) 1676 W; (d) 4480 W; (e) 85.2%

11.28 The voltage of a 110-V generator rises to 120 V when the load is removed. What is the percent of
regulation of the generator? Ans. 9.1%

11.29 Indicate direction of rotation of the motor armature in Fig. 11.33a and b.
Ans. (a) clockwise; (b) counterclockwise

Fig. 11-33

11.30 Find the armature current of a shunt motor when the terminal voltage is 110 V, the counter emf is
108 V, and the armature-circuit resistance is 0.2 �. Ans. 10 A

11.31 A certain shunt motor is connected to a 240-V line. The armature-circuit resistance is 0.1 �. When
the armature current is 50 A, what is the counter emf? Ans. 235 V
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11.32 A shunt motor draws a current of 38 A from a 120-V source. The field-circuit resistance is 50 � and
the armature-circuit resistance is 0.25 �. Find (a) the field current, (b) the armature current, (c) the
counter emf, and (d) the counter emf at start-up.
Ans. (a) 2.4 A; (b) 35.6 A; (c) 111.1 V; (d) 0 V

11.33 A 10-hp motor has a shunt-field resistance of 110 � and a field current of 2 A. What is the applied
voltage? Ans. 220 V

11.34 What horsepower is developed by a motor when the armature current is 18 A, the applied voltage is
130 V, and the counter emf is 124 V? Ans. 3 hp

11.35 A motor has a no-load speed of 900 rpm and a full-load speed of 855 rpm. What is the speed regulation?
Ans. 5.3%

11.36 The armature resistance of a shunt motor is 0.05 �. When the motor is connected across 120 V, it
develops a counter emf of 111 V. Find (a) the IR drop in the armature circuit, (b) the armature current,
(c) the armature current if the armature were stationary, and (d) the counter emf when the armature
current is 155 A. Ans. (a) 9 V; (b) Ia = 180 A; (c) Ia = 2400 A; (d) Vg = 112.2 V

11.37 The power input to a shunt motor is 5810 W for a given load on the motor. The terminal voltage is
220 V, the IaRa drop is 5.4 V, and the armature resistance is 0.25 �. Find (a) the counter emf, (b) the
power taken by the field, and (c) the field current.
Ans. (a) Vg = 214.6 V; (b) 1056 W; (c) If = 4.8 A

11.38 A 10-hp short-shunt compound motor is supplied by a 120-V source. The full-load current is 86 A.
The shunt-field resistance is 90 �, the armature resistance is 0.07 �, and the series-field resistance
is 0.06 �. Find (a) the shunt-field current, (b) the armature current, (c) the counter emf, (d) the
efficiency at full load, (e) the full-load copper losses, and (f ) the rotational losses.
Ans. (a) If = 1.28 A; (b) Ia = 84.7 A; (c) Vg = 108.9 V; (d) 72.3%; (e) 1093 W;
(f ) 1767 W

11.39 If the 10-hp motor of Problem 11.38 is now connected by long-shunt and the parameters given remain
the same, find the same quantities.
Ans. (a) If = 1.33 A; (b) Ia = 84.7 A; (c) Vg = 109.0 V; (d) 72.3%; (e) 1091 W;
(f ) 1769 W



 

Chapter 12

Principles of Alternating Current

GENERATING AN ALTERNATING VOLTAGE

An ac voltage is one that continually changes in magnitude and periodically reverses in polarity (Fig. 12-1).
The zero axis is a horizontal line across the center. The vertical variations on the voltage wave show the
changes in magnitude. The voltages above the horizontal axis have positive (+) polarity, while voltages below
the horizontal axis have negative (−) polarity.

Fig. 12-1 An ac voltage waveform Fig. 12-2 Loop rotating in magnetic field produces
an ac voltage

An ac voltage can be produced by a generator, called an alternator (Fig. 12-2). In the simplified generator
shown, the conductor loop rotates through the magnetic field and cuts lines of force to generate an induced
ac voltage across its terminals. One complete revolution of the loop around the circle is a cycle. Consider the
position of the loop at each quarter turn during a cycle (Fig. 12-3). At position A, the loop is traveling parallel
to the magnetic flux and therefore cuts no lines of force. The induced voltage is zero. At top position B, the loop
cuts across the field at 90◦ to produce maximum voltage. When it reaches C, the conductor is again moving
parallel to the field and cannot cut across the flux. The ac wave from A to C is 1

2 cycle of revolution, called
an alternation. In D, the loop cuts across the flux again for maximum voltage, but here the flux is cut in
the opposite direction (left to right) from B (right to left). Thus the polarity at D is negative. The loop
completes the last quarter turn in the cycle where it returns to position A, the point where it started. The
cycle of voltage values is repeated in positions A′B ′C′D′A′′ as the loop continues to rotate (Fig. 12-3).
A cycle includes the variations between two successive points having the same value and varying in the same
direction. For example, 1 cycle can be shown also between B and B ′ (Fig. 12-3).

ANGULAR MEASUREMENT

Because the cycles of voltage correspond to rotation of the loop around a circle, parts of the circle are
expressed in angles. The complete circle is 360◦. One half cycle, or one alternation, is 180◦. A quarter turn

252
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Fig. 12-3 Two cycles of alternating voltage generated by rotating loop. (From B. Grob, Basic Electronics, 4th ed.,
McGraw-Hill, New York, 1977, p. 313.)

is 90◦. Degrees are also expressed in radians (rad). One radian is equal to 57.3◦. A complete circle has 2π rad;
therefore

360◦ = 2π rad

Then 1◦ = π

180
rad (12-1)

or 1 rad = 180◦

π
(12-2)

In a two-pole generator (Fig. 12-2), the rotation of the armature coil through 360 geometric degrees
(1 revolution) will always generate 1 cycle (360◦) of ac voltage. But in a four-pole generator, an armature
rotation through only 180 geometric degrees will generate 1 ac cycle or 180 electrical degrees. Therefore, the
degree markings along the horizontal axis of ac voltage or current refer to electrical degrees rather than
geometric degrees.

Example 12.1 How many radians are there in 30◦?
Use Eq. (12-1) to convert from degrees into radians.

30◦ = 30◦ × equivalent rad

1◦ = 30◦ × π/180 rad

1◦ = π

6
rad Ans.

Example 12.2 How many degrees are there in π/3 rad?
Use Eq. (12-2) to convert from radians into degrees.

π

3
rad = π

3
rad × equivalent◦

1 rad
= π

3
rad × 180◦/π

1 rad
= 60◦ Ans.

In most handheld calculators, there is a selector switch to designate angles either in degrees or radians
(DEG or RAD), so it normally will not be necessary to convert the angles. However, it is useful to know how
the angle conversions can be done.
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SINE WAVE

The voltage waveform (Fig. 12-3) is called a sine wave. The instantaneous value of voltage at any point
on the sine wave is expressed by the equation

v = VM sin θ (12-3)

where v = instantaneous value of voltage, V
VM = maximum value of voltage, V

θ = angle of rotation, degrees (θ is the Greek lowercase letter theta)

Example 12.3 A sine wave voltage varies from zero to a maximum of 10 V. What is the value of voltage at the instant
that the cycle is at 30◦? 45◦? 60◦? 90◦? 180◦? 270◦?

Substitute 10 for VM in Eq. (12-3):

v = 10 sin θ

At 30◦: v = 10 sin 30◦ = 10(0.5) = 5 V Ans.
At 45◦: v = 10 sin 45◦ = 10(0.707) = 7.07 V Ans.
At 60◦: v = 10 sin 60◦ = 10(0.866) = 8.66 V Ans.
At 90◦: v = 10 sin 90◦ = 10(1) = 10 V Ans.
At 180◦: v = 10 sin 180◦ = 10(0) = 0 V Ans.
At 270◦: v = 10 sin 270◦ = 10(−1) = −10 V Ans.

ALTERNATING CURRENT

When a sine wave of alternative voltage is connected across a load resistance, the current that flows in the
circuit is also a sine wave (Fig. 12-4).

Fig. 12-4 One cycle of alternating current

Example 12.4 The ac sine wave voltage (Fig. 12-5a) is applied across a load resistance of 10 � (Fig. 12-5b). Show
the resulting sine wave of alternating current.

The instantaneous value of current is i = v/R. In a pure resistance circuit, the current waveform follows the polarity
of the voltage waveform. The maximum value of current is

IM = VM

R
= 10

10
= 1 A

In the form of an equation i = IM sin θ . (See Fig. 12-6.) Ans.
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Fig. 12-5 An ac voltage source is applied to a simple resistance circuit Fig. 12-6

FREQUENCY AND PERIOD

The number of cycles per second is called frequency. It is indicated by the symbol f and is expressed
in hertz (Hz). One cycle per second equals one hertz. Thus 60 cycles per second (formerly abbreviated cps)
equals 60 Hz. A frequency of 2 Hz (Fig. 12-7b) is twice the frequency of 1 Hz (Fig. 12-7a).

Fig. 12-7 Comparison of frequencies

The amount of time for the completion of 1 cycle is the period. It is indicated by the symbol T for time
and is expressed in seconds (s). Frequency and period are reciprocals of each other.

f = 1

T
(12-4)

T = 1

f
(12-5)

The higher the frequency, the shorter the period.
The angle of 360◦ represents the time for 1 cycle, or the period T . So we can show the horizontal axis of

the sine wave in units of either electrical degrees or seconds (Fig. 12-8).

Example 12.5 An ac current varies through one complete cycle in 1/100 s. What are the period and frequency? If the
current has a maximum value of 5 A, show the current waveform in units of degrees and milliseconds.

T = 1

100
s or 0.01 s or 10 ms Ans.

f = 1

T
(12-4)

= 1

1/100
= 100 Hz Ans.
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Fig. 12-8 Relationship between electrical
degrees and time

Fig. 12-9

See Fig. 12-9 for the waveform.

The wavelength λ (Greek lowercase lambda) is the length of one complete wave or cycle. It depends upon
the frequency of the periodic variation and its velocity of transmission. Expressed as a formula,

λ = velocity

frequency
(12-6)

For electromagnetic radio waves, the velocity in air or a vacuum is 186 000 mi/s, or 3 × 108 m/s, which is
the speed of light. Equation (12-6) is written in the familiar form

λ = c

f
(12-7)

where λ = wavelength, m
c = speed of light, 3 × 108 m/s, a constant
f = radio frequency, Hz

Example 12.6 TV Channel 2 has a frequency of 60 Hz. What is its wavelength?
Convert f = 60 MHz to f = 60 × 106 Hz and substitute into Eq. (12-7).

λ = c

f
= 3 × 108

60 × 106
= 5 m Ans.

PHASE RELATIONSHIPS

The phase angle between two waveforms of the same frequency is the angular difference at a given instant
of time. As an example, the phase angle between waves B and A (Fig. 12-10a) is 90◦. Take the instant of time
at 90◦. The horizontal axis is shown in angular units of time. Wave B starts at maximum value and reduces
to zero value at 90◦. Wave B reaches its maximum value 90◦ ahead of wave A, so wave B leads wave A

by 90◦. This 90◦ phase angle between waves B and A is maintained throughout the complete cycle and all
successive cycles. At any instant of time, wave B has the value that wave A will have 90◦ later. Wave B is
a cosine wave because it is displaced 90◦ from wave A, which is a sine wave. Both waveforms are called
sinusoids.

PHASORS

To compare phase angles or phases of alternating voltages and currents, it is more convenient to use phasor
diagrams corresponding to the voltage and current waveforms. A phasor is a quantity that has magnitude
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Fig. 12-10 Wave B leads wave A by a phase angle of 90◦

and direction. The terms phasor and vector are used for quantities that have direction. However, a phasor
quantity varies with time, while a vector quantity has direction in space. The length of the arrow in a phasor
diagram indicates the magnitude of the alternating voltage. The angle of the arrow with respect to the horizontal
axis indicates the phase angle. One waveform is chosen as the reference. Then the second waveform can be
compared with the reference by means of the angle between the phasor arrows. For example, the phasor VA

represents the voltage wave A with a phase angle of 0◦ (Fig. 12-10b). The phasor VB is vertical (Fig. 12-10b)
to show the phase angle of 90◦ with respect to phasor VA, which is the reference. Since lead angles are shown
in the counterclockwise direction from the reference phasor, VB leads VA by 90◦ (Fig. 12-10b).

Generally, the reference phasor is horizontal, corresponding to 0◦. If VB were shown as the reference
(Fig. 12-11b), VA would have to be 90◦ clockwise in order to have the same phase angle. In this case VA lags
VB by 90◦. There is no fundamental difference between VB leading VA by 90◦ (Fig. 12-11a) or VA lagging
VB by 90◦ (Fig. 12-11b).

Fig. 12-11 Leading and lagging phase angles
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When two waves are in phase (Fig. 12-12a), the phase angle is zero. Then the amplitudes add (Fig. 12-12b).
When two waves are exactly out of phase (Fig. 12-13a), the phase angle is 180◦. Their amplitudes are opposing
(Fig. 12-13b). Equal values of opposite phase cancel each other.

Fig. 12-12 Two waves in phase with angle of 0◦

Fig. 12-13 Two waves in opposite phase with angle of 180◦

Example 12.7 What is the phase angle between waves A and B (Fig. 12-14)? Draw the phasor diagram first with wave
A as reference and then with wave B as reference.

Fig. 12-14 Finding the phase angle
between wave A and
wave B

The phase angle is the angular distance between corresponding points on waves A and B. Convenient corresponding
points are the maximum, minimum, and zero crossing of each wave. At the zero crossings on the horizontal axis (Fig. 12-14),
the phase angle θ = 30◦. Since wave A reaches its zero crossing before wave B does, A leads B.
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Wave A as reference: VB lags VA by 30◦. Ans.

Wave B as reference: VA lags VB by 30◦.

Ans.

Though the phasors are not drawn to scale, VA is drawn smaller than VB because the maximum value of wave A is less
than that of wave B.

CHARACTERISTIC VALUES OF VOLTAGE AND CURRENT

Since an ac sine wave voltage or current has many instantaneous values throughout the cycle, it is con-
venient to specify magnitudes for comparing one wave with another. The peak, average, or root-mean-square
(rms) value can be specified (Fig. 12-15). These values apply to current or voltage.

Fig. 12-15 Amplitude values for ac sine wave

The peak value is the maximum value of VM or IM . It applies to either the positive or negative peak. The
peak-to-peak (p-p) value may be specified and is double the peak value when the positive and negative peaks
are symmetrical.

The average value is the arithmetic average of all values in a sine wave for 1 half-cycle. The half-cycle
is used for the average because over a full cycle the average value is zero.

Average value = 0.637 × peak value (12-8)

or Vav = 0.637 VM

Iav = 0.637 IM

The root-mean-square value or effective value is 0.707 times the peak value.

rms value = 0.707 × peak value (12-9)
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or Vrms = 0.707 VM

Irms = 0.707 IM

The rms value of an alternating sine wave corresponds to the same amount of direct current or voltage in
heating power. An alternating voltage with an rms value of 115 V, for example, is just as effective in heating
the filament of a light bulb as 115 V from a steady dc voltage source. For this reason, the rms value is also
called the effective value.

Unless indicated otherwise, all sine wave ac measurements are given in rms values. The letters V and I are
used to denote rms voltage and current. For instance, V = 220 V (an ac power-line voltage) is understood to
mean 220 V rms.

Use Table 12-1 as a convenient way to convert from one characteristic value to another.

Table 12-1 Conversion Table for AC Sine Wave Voltage
and Current

Multiply the Value By To Get the Value

Peak 2 Peak-to-peak

Peak-to-peak 0.5 Peak

Peak 0.637 Average

Average 1.570 Peak

Peak 0.707 rms (effective)

rms (effective) 1.414 Peak

Average 1.110 rms (effective)

rms (effective) 0.901 Average

Example 12.8 If the peak voltage for an ac wave is 60 V, what are its average and rms values?

Average value = 0.637 × peak value (12-8)

= 0.637(60) = 38.2 V Ans.

rms value = 0.707 × peak value (12-9)

= 0.707(60) = 42.4 V Ans.

Example 12.9 It is often necessary to convert from rms to peak value. Develop the formula.
Start with

rms value = 0.707 × peak value (12-9)

Then invert:

Peak value = 1

0.707
× rms value = 1.414 × rms value

or VM = 1.414 Vrms

IM = 1.414 Irms

Verify this relationship by referring to Table 12-1.
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Example 12.10 A commercial ac power-line voltage is 240 V. What are the peak and peak-to-peak voltages?
AC measurements are given in rms values unless noted otherwise. From Table 12-1,

VM = 1.414Vrms = 1.414(240) = 339.4 V Ans.

Vp-p = 2VM = 2(339.4) = 678.8 V Ans.

RESISTANCE IN AC CIRCUITS

In an ac circuit with only resistance, the current variations are in phase with the applied voltage (Fig. 12-16).
This in-phase relationship between V and I means that such an ac circuit can be analyzed by the same methods
used for dc circuits. Therefore, Ohm’s laws for dc circuits are applicable also to ac circuits with resistance only.
The calculations in ac circuits are generally in rms values, unless otherwise specified. For the series circuit
(Fig. 12-16a), I = V/R = 110/10 = 11 A. The rms power dissipation is P = I 2R = 112(10) = 1210 W.

Fig. 12-16 AC circuit with only resistance

Example 12.11 A 110-V ac voltage is applied across 5- and 15-� resistances in series (Fig. 12-17a). Find the current
and voltage drop across each resistance. Draw the phasor diagram.

Fig. 12-17

Use Ohm’s law,

RT = R1 + R2 = 5 + 15 = 20 �

I = V

RT
= 110

20
= 5.5 A Ans.

V1 = IR1 = 5.5(5) = 27.5 V Ans.

V2 = IR2 = 5.5(15) = 82.5 V Ans.
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Since the ac voltages V1 and V2 are in phase, phasors V1 and V2 are added to obtain phasor V . See Fig. 12-17b. The
length of each phasor is proportional to its magnitude. I is in phase with V .

Solved Problems

12.1 Find the instantaneous current when θ = 30◦ and 225◦ for the ac current wave (Fig. 12-18) and locate
these points on the waveform.

Fig. 12-18 Alternating-current waveform Fig. 12-19

It is seen that IM = 100 mA. The current wave is then

i = IM sin θ = 100 sin θ

At θ = 30◦: i = 100 sin 30◦ = 100(0.5) = 50 mA Ans.
At θ = 225◦: i = 100 sin 225◦ = 100(−0.707) = −70.7 mA Ans.

See Fig. 12-19.

12.2 Many ac waves (e.g., sine wave, square wave) can be produced by a device called a signal generator.
This unit usually can generate an ac voltage with a frequency as low as 20 Hz or as high as 200 MHz.
Three basic control knobs are function, frequency, and amplitude. The operator selects the controls to
produce a sine wave (function) at 100 kHz (frequency) with 5 V amplitude (maximum value). Draw
2 cycles of the ac voltage generated. Show both degrees and time units on the horizontal axis.

To obtain time units, solve for the period T , using Eq. (12-5).

T = 1

f
= 1

100 × 103
= 10 × 10−6 s = 10 µs

Now draw the sine wave of voltage (Fig. 12-20).

Fig. 12-20 AC voltage wave
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12.3 Calculate the time delay for a phase angle of 45◦ at a frequency of 500 MHz.

Find the period that corresponds to the time for 1 cycle of 360◦, and then find the proportional
part of the period that corresponds to 45◦.

T = 1

f
(12-5)

= 1

500
= 2 × 10−3 = 2 ms

At θ = 45◦: t = 45◦

360◦ (2 ms) = 0.25 ms Ans.

12.4 The sine wave of an alternating current shows a maximum value of 80 A. What value of dc current
will produce the same heating effect?

If an ac wave produces as much heat as 1 A of direct current, we say that the ac wave is as
effective as 1 A of direct current. So

Idc = Irms = 0.707 IM (12-9)

= 0.707(80) = 56.6 A Ans.

12.5 If an ac voltage has a peak value of 155.6 V, what is the phase angle at which the instantaneous
voltage is 110 V?

Write v = VM sin θ (12-3)

Solve for θ : sin θ = v

VM

θ = arcsin
v

VM

= arcsin
110

155.6
= 0.707 = 45◦ Ans.

12.6 The frequency of the audio range extends from 20 Hz to 20 kHz. Find the range of period and
wavelength for this sound wave over the range of audio frequencies.

Range of T: T = 1

f
(12-5)

At 20 Hz: T = 1

20
= 0.05 s = 50 ms

At 20 kHz: T = 1

20 × 103
= 0.05 ms

So T is from 0.05 to 50 ms Ans.

Range of λ: λ = c

f
(12-7)

where c = speed of light at 3 × 108 m/s
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At 20 Hz: λ = 3 × 108

20
= 15 × 106 m

At 20 kHz: λ = 3 × 108

20 × 103
= 15 × 103 m

So λ is from 15 × 103 to 15 × 106 m Ans.

12.7 Find the phase angle for the following ac waves (Fig. 12-21) and draw their phasor diagrams.

Fig. 12-21 Finding the phase angle between voltage and current waveforms

To determine the phase angle, select a corresponding point on each wave. The maximum and
zero crossing corresponding points are convenient. The angular difference of the two points is the
phase angle. Then compare the two points to decide if one wave is in phase with, leading, or lagging
the other wave.

In Fig. 12-21a, curves v and i reach their maximum values at the same instant, so they are in
phase (the phasor diagram as shown).

Ans.

In Fig. 12-21b, curve v reaches its zero value at a, 45◦ before curve i is zero at the corresponding
point b, so v leads i by 45◦ (phasor diagram as shown).

Ans.

In Fig. 12-21c, curve i reaches its maximum at b before curve v reaches its maximum at a so
i leads v by 45◦ (phasor diagram as shown).

Ans.
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12.8 A, B, and C are three sine ac voltage waveforms of the same frequency. Sine wave A leads sine wave B

by a phase angle of 60◦ and lags sine wave C by 130◦. What is the phase angle between wave B and
wave C? Which wave is leading?

Draw the sine waves with phase angles described. A convenient way to draw or measure the phase
angle between two sine waves is to compare their zero crossings. Wave A is drawn as the reference
beginning at 0◦ (Fig. 12-22). Wave B is drawn beginning at 60◦ to indicate that wave A leads wave
B by 60◦. Wave C is shown beginning at −130◦ to show that A lags C by that angle. Compare
the zero crossings on the horizontal axis of waves B and C as they move toward the positive cycle.
B crosses the axis upward at 60◦, while C does so at 230◦. The phase angle is the phase difference
between 230◦ and 60◦, or 170◦. Since B crosses the axis before wave C, B leads C.

Fig. 12-22 Measuring phase angle between sine waves

12.9 Alternating-current and voltage meters are always calibrated to read effective values. An ac voltmeter
indicates that the voltage across a resistive load is 40 V. What is the peak voltage across this load?

From Table 12-1,

VM = 1.414 V (effective or rms value is understood for V)

= 1.414(40) = 56.6 V Ans.

12.10 The current through an incandescent lamp is measured with an ac ammeter and found to be 0.95 A.
What is the average value of this current?

From Table 12-1,

Iav = 0.901I (effective or rms value is understood for I)

= 0.901(0.95) = 0.86 A Ans.

12.11 Find V , period T , frequency f , and peak-to-peak voltage Vp-p of the voltage waveform shown
(Fig. 12-23).

Use Eq. (12-9).

V = 0.707VM = 0.707(48 µV) = 33.9 µV Ans.
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Fig. 12-23 Finding characteristics of
a sine wave

The time for 1 cycle is 5 µs. Therefore,

T = 5 µs = 5 × 10−6 s Ans.

f = 1

T
(12-4)

= 1

5 × 10−6
= 200 × 103 Hz = 200 kHz Ans.

The ac wave is symmetric with respect to the horizontal axis. So

Vp-p = 2VM = 2(48) = 96 µV Ans.

12.12 Any waveform that is not a sine or cosine wave is a nonsinusoidal waveform. Common examples
are the rectangular and sawtooth waves (Fig. 12-24). What are the peak-to-peak voltages for these
particular waves?

Fig. 12-24 Nonsinusoidal waveforms

Peak-to-peak amplitudes, measured between the maximum and minimum peak values, are gen-
erally used for measuring nonsinusoidal wave shapes since they often have nonsymmetrical peaks.
By inspection of Fig. 12-24,

Rectangular wave: Vp-p = 5 + 2 = 7 V Ans.

Sawtooth wave: Vp-p = 10 + 5 = 15 V Ans.
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12.13 Calculate the frequency of the nonsinusoidal waveforms shown in Fig. 12-24.

The period T for a complete cycle is 4 µs (Fig. 12-24a) and 2 µs (Fig. 12-24b).

f = 1

T
also for periodic nonsinusoids

Rectangular wave: f = 1

4 µs
= 0.25 MHz Ans.

Sawtooth wave: f = 1

2 µs
= 0.5 MHz Ans.

12.14 A 120-V ac voltage is applied across a 20-� resistive load (Fig. 12-25). Find values of I , VM , Vp-p,
Vav, IM , Ip-p, Iav, and P .

By Ohm’s law,

I = V

RL

= 120

20
= 6 A Ans.

Use Table 12-1 to calculate voltage and current values.

VM = 1.414V = 1.414(120) = 169.7 V Ans.

Vp-p = 2VM = 2(169.7) = 339.4 V Ans.

Vav = 0.637VM = 0.637(169.7) = 108.3 V Ans.

IM = 1.414I = 1.414(6) = 8.5 A Ans.

Ip-p = 2IM = 2(8.5) = 17.0 A Ans.

Iav = 0.637IM = 0.637(8.5) = 5.4 A Ans.

P = I 2RL = 62(20) = 720 W Ans.

or P = V 2

RL

= 1202

20
= 720 W or P = VI = 120(6) = 720 W Ans.

Fig. 12-25 AC source with single
resistance load

12.15 A 20-� electric iron and a 100-� lamp are connected in parallel across a 120-V 60-Hz ac line
(Fig. 12-26). Find the total current, the total resistance, and the total power drawn by the circuit,
and draw the phasor diagram.
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Fig. 12-26 AC source in parallel circuit

For a parallel circuit, VT = V1 = V2 = 120 V

I1 = V1

R1
= 120

20
= 6 A I2 = V2

R2
= 120

100
= 1.2 A

Then
IT = I1 + I2 = 6 + 1.2 = 7.2 A Ans.

RT = VT

IT

= 120

7.2
= 16.7 � Ans.

In a purely resistive set of branch currents, the total current IT is in phase with the total voltage VT .
The phase angle is therefore equal to 0◦.

P = VT IT cos θ = 120(7.2)(cos 0◦) = 120(7.2)(1) = 864 W Ans.

Since the voltage in a parallel circuit is constant, the voltage is used as the reference phasor. The
currents I1 and I2 are drawn in the same direction as the voltage because the current through pure
resistances is in phase with the voltage. The I1 phasor is shown longer than I2 because its current
value is higher (see the phasor diagram).

12.16 A series–parallel ac circuit has two branches across the 60-Hz 120-V power line (Fig. 12-27). Find
I1, I2, I3, V1, V2, and V3. (Double-ended arrows are sometimes used to indicate direction for
ac current.)
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Fig. 12-27 AC source in series–parallel circuit

Proceed to solve the ac circuit with resistance only in the same manner as a dc circuit.

Step 1. Simplify the circuit to a single resistance RT .

Ra = R2R3

R2 + R3
= 20(30)

20 + 30
= 600

50
= 12 �

RT = R1 + Ra = 12 + 28 = 40 �

Step 2. Solve for the total current IT .

IT = VT

RT

= I1 = 120

40
= 3 A Ans.

Step 3. Solve for the branch currents I2 and I3.

I2 = R3

R2 + R3
IT = 30

50
3 = 1.8 A Ans.

I3 = IT − I2 = 3 − 1.8 = 1.2 A Ans.

Step 4. Solve for the branch voltages V2 and V3.

V1 = I1R1 = 3(28) = 84 V Ans.

V2 = V3 = I2R2 = 1.2(20) = 36 V Ans.

Step 5. Verify answer on voltage division.

VT = V1 + V2

120 = 84 + 36

120 V = 120 V Check
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Supplementary Problems

12.17 The peak voltage of an ac sine wave is 100 V. Find the instantaneous voltage at 0, 30, 60, 90, 135,
and 245◦. Plot these points and draw the sine wave voltage. Ans. See Fig. 12-28.

Fig. 12-28

12.18 If an ac voltage wave has an instantaneous value of 90 V at 30◦, find the peak value.
Ans. VM = 180 V

12.19 An ac wave has an effective value of 50 mA. Find the maximum value and the instantaneous value
at 60◦. Ans. IM = 70.7 mA; i = 61.2 mA

12.20 An electric stove draws 7.5 A from a 120-V dc source. What is the maximum value of an alternating
current which will produce heat at the same rate? Find the power drawn from the ac line.
Ans. IM = 10.6 A; P = 900 W

12.21 Calculate V , Vp-p, T , and f for the sine wave voltage in Fig. 12-29.
Ans. V = 38.2 µV; Vp-p = 108 µV; T = 2 µs; f = 0.5 MHz

Fig. 12-29 Fig. 12-30

12.22 What is the peak-to-peak voltage and frequency of the nonsymmetrical rectangular waveform in
Fig. 12.30? Ans. Vp-p = 25 V; f = 0.1 MHz
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12.23 Find the instantaneous voltage at 45◦ in a wave whose peak value is 175 V. Ans. V = 123.7 V

12.24 Find the peak value of an ac wave if the instantaneous current is 35 A at 30◦. Ans. IM = 70 A

12.25 Find the phase angle at which an instantaneous voltage of 36.5 V appears in a wave whose peak value
is 125 V. Ans. θ = 17◦

12.26 What is the period of an ac voltage that has a frequency of (a) 50 Hz, (b) 95 kHz, and (c) 106 kHz?
Ans. (a) T = 0.02 s; (b) T = 0.0105 ms; (c) T = 0.00943 ms or 9.43 µs

12.27 Find the frequency of an ac current when its period is (a) 0.01 s, (b) 0.03 ms, and (c) 0.006 ms.
Ans. (a) f = 100 Hz; (b) f = 33.3 kHz; (c) f = 166.7 kHz

12.28 What is the wavelength of radio station WMAL which broadcasts FM (frequency modulation) at
a frequency of 107.3 kHz? Ans. λ = 2796 m

12.29 What is the wavelength of an ac wave whose frequency is (a) 60 Hz, (b) 1 kHz, (c) 30 kHz, and
(d) 800 kHz? Ans. (a) λ = 5×106 m; (b) λ = 3×105 m; (c) λ = 10 000 m; (d) λ = 375 m

12.30 Find the frequency of a radio wave whose wavelength is (a) 600 m, (b) 2000 m, (c) 3000 m, and
(d) 6000 m. Ans. (a) f = 500 Hz; (b) f = 150 kHz; (c) f = 100 kHz; (d) f = 50 kHz

12.31 Determine the phase angle for each ac wave shown (Fig. 12-31) and draw its phasor. One cycle is
shown for each wave. Show I as the reference phasor.

Ans. (a) v and i are in phase

(b) v leads i by 180◦ or i lags v by 180◦

(c) i leads v by 90◦ or v lags i by 90◦

(d) i leads v by 90◦ or v lags i by 90◦

(e) v leads i by 130◦ or i lags v by 130◦

12.32 The ac power line delivers 120 V to your home. This is the voltage as measured by an ac voltmeter.
What is the peak value of this voltage? Ans. VM = 169.7 V
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Fig. 12-31

12.33 An industrial oven draws 8.5 A from a 12-V dc source. What is the maximum value of an ac current
which will heat at the same rate? Ans. IM = 12.0 A

12.34 Find the values indicated.

Peak Value rms Value Average Value Phase Angle Instantaneous Value

(a) 45 A ? ? 45◦ ?

(b) ? 220 V ? 60◦ ?

(c) ? ? 10 A 30◦ ?

(d) 200 V ? ? 60◦ ?

(e) ? 110 V ? 75◦ ?
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Peak Value rms Value Average Value Phase Angle Instantaneous Value

(f ) ? ? ? 15◦ 75.1 V

(g) 100 V ? ? ? 86.6 V

(h) ? ? 20 A ? 15.7 A

(i) ? 30 A ? ? 30 A

(j ) ? ? 100.1 V ? 136.1 V

Ans. Peak Value rms Value Average Value Phase Angle Instantaneous Value

(a) …. 31.8 A 28.7 A …. 31.8 A

(b) 311.1 V …. 198.2 V …. 269.4 V

(c) 15.7 A 11.1 A …. …. 7.85 A

(d) …. 141.4 V 127.4 V …. 173.2 V

(e) 155.6 V …. 99.1 V …. 150.3 V

(f ) 290.2 V 205.2 V 184.9 V …. ….

(g) …. 141.4 V 63.7 V 60◦ ….

(h) 31.4 A 22.2 A …. 30◦ ….

(i) 42.4 A …. 27.0 A 45◦ ….

(j ) 157.1 V 111.1 V …. 60◦ ….

12.35 An ac ammeter reads 22 A rms current through a resistive load, and a voltmeter reads 385 V rms
drop across the load. What are the peak values and the average values of the alternating current and
voltage? Ans. IM = 31.1 A; VM = 545 V; Iav = 19.8 A; Vav = 347 V

12.36 An ac power line delivers 240 V to a sidewalk heating cable that has a total resistance of 5 �. Find
I, VM , Vp-p, Vav, IM , Ip-p, Iav, and P .
Ans. I = 48 A; VM = 339 V; Vp-p = 678 V; Vav = 216 V; IM = 67.9 A; Ip-p = 135.8 A;

Iav = 43.3 A; P = 11 520 W

12.37 An electric soldering iron draws 0.8 A from a 120-V 60-Hz power line. What is its resistance? How
much power will it consume? Draw the phasor diagram. Ans. R = 150 �; P = 96 W

12.38 Find the current and power drawn from a 110-V 60-Hz line by a tungsten lamp whose resistance is
275 �. Draw the phasor diagram. Ans. I = 0.4 A; P = 44 W
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12.39 A circuit has a 5-M� resistor R1 in series with a 15-M� resistor R2 across a 200-V ac source.
Calculate I , V1, V2, P1, and P2.
Ans. I = 10 µA; V1 = 50 V; V2 = 150 V; P1 = 0.5 mW; P2 = 1.5 mW

12.40 For the ac series–parallel circuit (Fig. 12-32), find the total current, the current through each resistance,
and the voltage across each resistance.
Ans. IT = I1 = 24 A; I2 = 12 A; I3 = 12 A; V1 = 96 V; V2 = V3 = 24 V

Fig. 12-32

12.41 A series–parallel ac circuit has two branches across the 60-Hz 120-V power line. One branch has a
20-� R1 in series with a 10-� R2. The other branch has a 30-M� R3 in series with a 10-M� R4.
Calculate V1, V2, V3, and V4. Ans. V1 = 80 V; V2 = 40 V; V3 = 90 V; V4 = 30 V

12.42 An ac circuit has a 5-M� resistor R1 in parallel with a 10-M� resistor R2 across a 200-V source. Find
I1, I2, V1, V2, P1, and P2. Ans. I1 = 40 µA; I2 = 20 µA; V1 = V2 = 200 V; P1 = 8 mW;
P2 = 4 mW



 

Chapter 13

Inductance, Inductive Reactance,
and Inductive Circuits

INDUCTION

The ability of a conductor to induce voltage in itself when the current changes is its self-inductance, or
simply inductance. The symbol for inductance is L, and its unit is the henry (H). One henry is the amount of
inductance that permits one volt to be induced when the current changes at the rate of one ampere per second
(Fig. 13-1). The formula for inductance is

L = vL

�i/�t
(13-1)

where L = inductance, H
vL = induced voltage across the coil, V

�i/�t = rate of change of current, A/s

Fig. 13-1 The inductance of a coil is 1 H
when a change of 1 A/s induces
1 V across the coil

The self-induced voltage vL from Eq. (13-1) is

vL = L
�i

�t
(13-2)

Example 13.1 What is the value of inductance of a coil that induces 20 V when the current through the coil changes
from 12 to 20 A in 2 s?

We are given that

vL = 20 V �i = 20 − 12 = 8 A �t = 2 s

So �i

�t
= 8

2
= 4 A/s

L = vL

�i/�t
(13-1)

= 20

4
= 5 H Ans.

275
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Example 13.2 A coil has an inductance of 50 µH. What voltage is induced across the coil when the rate of change of
the current is 10 000 A/s?

vL = L
�i

�t
(13-2)

= (50 × 10−6)(104) = 0.5 V Ans.

When the current in a conductor or coil changes, the varying flux can cut across any other conductor or
coil located nearby, thus inducing voltages in both. A varying current in L1, therefore, induces voltage across
L1 and across L2 (Fig. 13-2). When the induced voltage vL2 produces current in L2, its varying magnetic field
induces voltage in L1. Hence, the two coils L1 and L2 have mutual inductance because current change in one
coil can induce voltage in the other. The unit of mutual inductance is the henry, and the symbol is LM . Two
coils have LM of 1 H when a current change of 1 A/s in one coil induces 1 V in the other coil.

The schematic symbol for two coils with mutual inductance is shown in Fig. 13-3.

Fig. 13-2 Mutual inductance between
L1 and L2

Fig. 13-3 Schematic symbols for
two coils with mutual
inductance

CHARACTERISTICS OF COILS

Physical Characteristics

A coil’s inductance depends on how it is wound, the core material on which it is wound, and the number
of turns of wire with which it is wound.

1. Inductance L increases as the number of turns of wire N around the core increases. Inductance
increases as the square of the turns increases. For example, if the number of turns is doubled (2×),
inductance increases 22 or 4×, assuming the area and length of the coil remain constant.

2. Inductance increases as the relative permeability µr of the core material increases.

3. As the area A enclosed by each turn increases, the inductance increases. Since the area is a function
of the square of the diameter of the coil, inductance increases as the square of the diameter.

4. Inductance decreases as the length of the coil increases (assuming the number of turns remains
constant).

Example 13.3 An approximate formula in SI units for the inductance of a coil where the length is at least
10 times the diameter is

L = µr
N2A

l
(1.26 × 10−6), H
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Note that this formula follows the proportional relationship described. Find L when µr = 200, N = 200 turns,
A = 1 × 10−4 m2, and l = 0.1 m.

L = 200
2002(1 × 10−4)

0.1
(1.26 × 10−6) = 10 × 10−3 H = 10 mH Ans.

Core Losses

Losses in the magnetic core are due to eddy-current losses and hysteresis losses. Eddy currents flow in a
circular path within the core material itself and dissipate as heat in the core. The loss is equal to I 2R, where R

is the resistance of the path through the core. The higher the frequency of alternating current in the inductance,
the higher the eddy currents and the greater the eddy-current loss.

Hysteresis losses arise from the additional power needed to reverse the magnetic field in magnetic materials
with an alternating current. Hysteresis losses generally are less than eddy-current losses.

To reduce eddy-current losses while sustaining flux density, the iron core can be made of laminated sheets
insulated from each other, insulated powdered-iron granules pressed into one solid, or ferrite material. Air-core
coils have practically no losses from eddy currents or hysteresis.

INDUCTIVE REACTANCE

Inductive reactance XL is the opposition to ac current due to the inductance in the circuit. The unit of
inductive reactance is the ohm. The formula for inductive reactance is

XL = 2πf L (13-3)

Since 2π = 2(3.14) = 6.28, Eq. (13-3) becomes

XL = 6.28f L

where XL = inductive reactance, �

f = frequency, Hz
L = inductance, H

If any two quantities are known in Eq. (13-3), the third can be found.

L = XL

6.28f
(13-4)

f = XL

6.28L
(13-5)

In a circuit containing only inductance (Fig. 13-4), Ohm’s law can be used to find current and voltage by
substituting XL for R.

IL = VL

XL

(13-6)

XL = VL

IL

(13-7)

VL = ILXL (13-8)

where IL = current through the inductance, A
VL = voltage across the inductance, V
XL = inductive reactance, � Fig. 13-4 Circuit with only XL
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Example 13.4 A resonant tank circuit consists of a 20-mH coil operating at a frequency of 950 kHz. What is the
inductive reactance of the coil?

XL = 6.28f L (13-3)

= 6.28(950 × 103)(20 × 10−3) = 11.93 × 104 = 119 300 � Ans.

Example 13.5 What must the inductance of a coil be in order that it have a reactance of 942 � at a frequency
of 60 kHz?

L = XL

6.28f
(13-4)

= 942

6.28(60 × 103)
= 2.5 × 10−3 = 2.5 mH Ans.

Example 13.6 A tuning coil in a radio transmitter has an inductance of 300 µH. At what frequency will it have an
inductive reactance of 3768 �?

f = XL

6.28L
(13-5)

= 3768

6.28(300 × 10−6)
= 2 × 106 = 2 MHz Ans.

Example 13.7 A choke coil of negligible resistance is to limit the current through it to 50 mA when 25 V is applied
across it at 400 kHz. Find its inductance.

Find XL by Ohm’s law and then find L.

XL = VL

IL
(13-7)

= 25

50 × 10−3
= 500 � Ans.

L = XL

6.28f
(13-4)

= 500

6.28(400 × 103)
= 0.199 × 10−3 = 0.20 mH Ans.

Example 13.8 The primary coil of a power transformer has an inductance of 30 mH with negligible resistance
(Fig. 13-5). Find its inductive reactance at a frequency of 60 Hz and the current it will draw from a 120-V line.

Find XL by using Eq. (13-4) and then IL by using Ohm’s law [Eq. (13-6)].

XL = 6.28f L = 6.28(60)(30 × 10−3) = 11.3 � Ans.

IL= VL

XL
= 120

11.3
= 10.6 A Ans.

INDUCTORS IN SERIES OR PARALLEL

If inductors are spaced sufficiently far apart so that they do not interact electromagnetically with
each other, their values can be combined just like resistors when connected together. If a number of
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Fig. 13-5 XL circuit Fig. 13-6 Inductances in series without mutual coupling

inductors are connected in series (Fig. 13-6), the total inductance LT is the sum of the individual
inductances, or

Series: LT = L1 + L2 + L3 + · · · + Ln (13-9)

If two series-connected coils are spaced close together so that their magnetic field lines interlink, their
mutual inductance will have an effect on the circuit. In that case the total inductance is

LT = L1 + L2 ± 2LM (13-10)

where LM is the mutual inductance between the coils. The plus (+) sign in Eq. (13-10) is used if the coils are
arranged in series-aiding form, while the minus (−) sign is used if the coils are connected in series-opposing
form. Series aiding means that the common current produces the same direction of magnetic field for the two
coils. The series-opposing connection results in opposite fields.

Three different arrangements for coils L1 and L2 are shown both pictorially and schematically in Fig. 13-7.
In Fig. 13-7a, the coils are spaced too far apart to interact electromagnetically. There is no mutual inductance,
so LM is zero. The total inductance is LT = L1 + L2. In Fig. 13-7b, the coils are spaced close together and
have windings in the same direction, as indicated by the dots. The coils are series-aiding, so LT = L1 +
L2 + 2LM . In Fig. 13-7c, the coil windings are in the opposite direction, so the coils are series-opposing,
and LT = L1 + L2 − 2LM .

The large dots above the coil (Fig. 13-7b and c) are used to indicate the polarity of the windings without
having to show the actual physical construction. Coils with dots at the same end (Fig. 13-7b) have the same
polarity or same direction of winding. When current enters the dotted ends for L1 and L2, their fields are
aiding and LM has the same sense as L.

If inductors are spaced sufficiently far apart so that their mutual inductance is negligible (LM = 0), the
rules for combining inductors in parallel are the same as for resistors. If a number of inductors are connected
in parallel (Fig. 13-8), their total inductance LT is

Parallel:
1

LT

= 1

L1
+ 1

L2
+ 1

L3
+ · · · + 1

Ln

(13-11)

The total inductance of two coils connected in parallel is

Parallel: LT = L1L2

L1 + L2
(13-12)

All inductances must be given in the same units. The shortcuts for calculating parallel R can be used
with parallel L. For example, if two 8-mH inductors are in parallel, the total inductance is LT = L/n =
8/2 = 4 mH.
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Fig. 13-7 L1 and L2 in series with mutual coupling LM

Fig. 13-8 Inductances in parallel without mutual coupling
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Example 13.9 A 10- and a 12-H choke used to limit current in a circuit are connected in series. Initially they are spaced
far apart. What is the total inductance?

LT = L1 + L2 (13-9)

= 10 + 12 = 22 H Ans.

Example 13.10 The two chokes of Example 13.9 are moved close together so that they are coupled by a mutual
inductance of 7 H. What are the total inductances if (a) the coils are wound in the same direction and (b) the coils are
wound in opposing directions?

(a) Series-aiding:

LT = L1 + L2 + 2LM (13-10)

= 10 + 12 + 2(7) = 22 + 14 = 36 H Ans.

(b) Series-opposing:

LT = L1 + L2 − 2LM (13-10)

= 10 + 12 − 2(7) = 22 − 14 = 8 H Ans.

Example 13.11 What is the total inductance of two parallel inductors with values of 8 and 12 H?

LT = L1L2

L1 + L2
(13-12)

= 8(12)

8 + 12
= 96

20
= 4.8 H Ans.

Example 13.12 A 6-H inductor and a 22-H inductor are connected in series and plugged into a 120-V ac 60-Hz outlet.
Assume that their resistance is negligible and that they have no mutual inductance. What is their inductive reactance

and what current will they draw?

LT = L1 + L2 = 6 + 22 = 28 H

XL = 6.28f LT (13-3)

= 6.28(60)(28) = 10 550 � Ans.

IL = VL

XL
= 120

10 550
= 0.0114 A or 11.4 mA Ans. (13-6)

INDUCTIVE CIRCUITS

Inductance Only

If an ac voltage v is applied across a circuit having only inductance (Fig. 13-9a), the resulting ac current
through the inductance, iL, will lag the voltage across the inductance, vL, by 90◦ (Fig. 13-9b and c). Voltages v

and vL are the same because the total applied voltage is dropped only across the inductance. Both iL and vL are
sine waves with the same frequency. Lowercase letters such as i and v indicate instantaneous values; capital
letters such as I and V show dc or ac rms values.
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Fig. 13-9 Circuit with L only

RL in Series

When a coil has series resistance (Fig. 13-10a), the rms current I is limited by both XL and R. I is the
same in XL and R since they are in series. The voltage drop across R is VR = IR, and the voltage drop across
XL is VL = IXL. The current I through XL must lag VL by 90◦ because this is the phase angle between
current through an inductance and its self-induced voltage (Fig. 13-10b). The current I through R and its IR
voltage drop are in phase so the phase angle is 0◦ (Fig. 13-10b).

Fig. 13-10 R and XL in series

To combine two waveforms out of phase, we add their equivalent phasors. The method is to add the tail of
one phasor to the arrowhead of the other, using the angle to show their relative phase. The sum of the phasors
is a resultant phasor from the start of one phasor to the end of the other phasor. Since the VR and VL phasors
form a right angle, the resultant phasor is the hypotenuse of a right triangle (Fig. 13-11). From the geometry
of a right triangle, the Pythagorean theorem states that the hypotenuse is equal to the square root of the sum
of the squares of the sides. Therefore, the resultant is

VT =
√

V 2
R + V 2

L (13-13)

where the total voltage VT is the phasor sum of the two voltages VR and VL that are 90◦ out of phase. All the
voltages must be in the same units—rms values, peak values, or instantaneous values. For example, when VT

is an rms value, VR and VL are also rms values. Most of the ac calculations will be made in rms units.
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Fig. 13-11 Voltage-phasor triangle

The phase angle θ between VT and VR (Fig. 13-11) is

tan θ = VL

VR

θ = arctan
VL

VR

(13-14)

Since VR is in phase with I , θ is also the phase angle between VT and I where I lags VT .

Example 13.13 A RL series ac circuit has a current of 1 A peak with R = 50 � and XL = 50 � (Fig. 13-
12a). Calculate VR , VL, VT , and θ . Draw the phasor diagram of VT and I . Draw also the time diagram of i, vR ,
vL, and vT .

VR = IR = 1(50) = 50 V peak Ans.

VL = IXL = 1(50) = 50 V peak Ans.

Then (see Fig. 13-12b) (13-13)VT =
√

V 2
R

+ V 2
L

=
√

502 + 502 = √
2500 + 2500 = √

5000 = 70.7 V peak Ans.

θ = arctan
VL

VR
= arctan

50

50
= arctan 1 = 45◦ Ans.

In a series circuit, since I is the same in R and XL, it is convenient to show I as the reference phasor at 0◦. The phasor
diagram is shown as Fig. 13-12c and the time diagram as Fig. 13-12d.

Impedance in series RL. The resultant of the phasor addition of R and XL is called impedance. The symbol
for impedance is Z. Impedance is the total opposition to the flow of current, expressed in ohms. The impedance
triangle (Fig. 13-13) corresponds to the voltage triangle (Fig. 13-11), but the common factor I cancels. The
equations for impedance and phase angle are derived as follows:

V 2
T = V 2

R + V 2
L

(IZ)2 = (IR)2 + (IXL)2

Z2 = R2 + X2
L

Z =
√

R2 + X2
L (13-15)
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Fig. 13-12
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tan θ = XL

R

θ = arctan
XL

R
(13-16)

Fig. 13-13 Phasor addition of R and XL to
find Z

Example 13.14 If a 50-� R and a 70-� XL are in series with 120 V applied (Fig. 13-14a), find the following: Z, θ ,
I , VR , and VL. What is the phase angle of VL, VR , and VT with respect to I? Prove that the sum of the series voltage
drops equals the applied voltage VT .

Fig. 13-14

Step 1. Find Z and θ (see Fig. 13-14b).

Z =
√

R2 + X2
L

(13-15)

=
√

502 + 702 = √
2500 + 4900 = √

7400 = 86 � Ans.
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θ = arctan
XL

R
(13-16)

= arctan
70

50
= arctan 1.40 = 54.5◦ Ans.

VT leads I by 54.5◦ (see Fig. 13-14c).

Step 2. Find I , VR , and VL.

I = VT

Z
= 120

86
= 1.40 A Ans.

VR = IR = 1.40(50) = 70.0 V Ans.

VL = IXL = 1.40(70) = 98.0 V Ans.

I and VR are in phase. VL leads I by 90◦ (see Fig. 13-14d).

Step 3. Show that VT is the phasor sum of VR and VL (see Fig. 13-14e).

VT =
√

V 2
R

+ V 2
L

(13-13)

=
√

(70.0)2 + (98.0)2 = √
14 504 ≈ 120 V Ans.

(The answer is not exactly 120 V because of rounding off I .) Therefore, the sum of the voltage drops equals the
applied voltage.

RL in Parallel

For parallel circuits with R and XL (Fig. 13-15a), the same applied voltage VT is across R and XL since
both are in parallel with VT . There is no phase difference between these voltages. Therefore, VT will be used
as the reference phasor. The resistive branch current IR = VT /R is in phase with VT . The inductive branch
current IL = VT /XL lags VT by 90◦ (Fig. 13-15b) because the current in an inductance lags the voltage across
it by 90◦. The phasor sum of IR and IL equals the total line current IT (Fig. 13-15c), or

IT =
√

I 2
R + I 2

L (13-17)

tan θ = − IL

IR

θ = arctan

(
− IL

IR

)
(13-18)

Fig. 13-15 R and XL in parallel
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Example 13.15 A RL parallel circuit has 100-V peak applied across R = 20 � and XL = 20 � (Fig. 13-16a). Find IR ,
IL, IT , and θ . (See Fig. 13-16b.) Draw the phasor and time diagrams of vT , iR , iL, and iT .

IR = VT

R
= 100

20
= 5 A peak Ans.

IL = VT

XL
= 100

20
= 5 A peak Ans.

IT =
√

I2
R

+ I2
L

(13-17)

=
√

52 + 52 = √
50 = 7.07 A peak Ans.

θ = arctan

(
− IL

IR

)
(13-18)

= arctan

(
−5

5

)
= arctan(−1) = −45◦ Ans.

Since VT is the same throughout the parallel circuit, VT is shown as the reference phasor at 0◦. IT lags VT by 45◦. (See
Fig. 13-16c.) For the time diagram, see Fig. 13-16d.

Impedance in parallel RL. For the general case of calculating the total impedance ZT of R and XL in
parallel, assume any number for the applied voltage VT because in the calculation of ZT in terms of the
branch currents the value of VT cancels. A convenient value to assume for VT is the value of either R or XL,
whichever is the higher number. This is only one method among others for calculating ZT .

Example 13.16 What is the impedance ZT of a 200-� R in parallel with a 400-� XL? Assume 400 V for the applied
voltage VT .

IR = VT

R
= 400

200
= 2 A

IL = VT

XL
= 400

400
= 1 A

IT =
√

I2
R

+ I2
L

= √
4 + 1 = √

5 = 2.24 A

ZT = VT

IT
= 400

2.24
= 178.6 � Ans.

The combined impedance of a 200-� R in parallel with a 400-� XL is equal to 178.6 � regardless of the value of the
applied voltage. The combined impedance must be less than the lowest number of ohms in the parallel branches. The total
impedance of a parallel RL circuit does not equal that of a series RL circuit; that is ZT �=

√
R2 + X2

L
, because the

resistance and inductive reactance combine to present a different load condition to the voltage source.

Q OF A COIL

The quality or merit Q of a coil is indicated by the equation

Q = XL

Ri

= 6.28f L

Ri

(13-19)
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Fig. 13-16

where Ri is the internal resistance of the coil equal to the resistance of the wire in the coil (Fig. 13-17). Q is
a numerical value without any units since the ohms cancel in the ratio of reactance to resistance. If the Q of a
coil is 200, it means that the XL of the coil is 200 times more than its Ri .

The Q of a coil may range in value from less than 10 for a low-Q coil up to 1000 for a very high Q coil.
Radio frequency (RF) coils have a Q of about 30–300.

As an example, a coil with an XL of 300 � and a Ri of 3 � has a Q of 300/3 = 100.

POWER IN RL CIRCUITS

In an ac circuit with inductive reactance, the line current I lags the applied voltage V . The real power P

is equal to the voltage multiplied by only that portion of the line current which is in phase with the voltage.
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Fig. 13-17 Schematic diagram of Q of a coil.
XL and Ri are distributed uni-
formly over the length of the coil

Fig. 13-18 Power triangle for RL circuit

Therefore,

Real power P = V (I cos θ) = VI cos θ (13-20)

where θ is the phase angle between V and I , and cos θ is the power factor (PF) of the circuit. Also,

Real power P = I 2R (13-21)

where R is the total resistive component of the circuit.
Reactive power Q in voltamperes reactive (VAR), is expressed as follows:

Reactive power Q = VI sin θ (13-22)

Apparent power S is the product of V × I . The unit is volt amperes (VA). In formula form,

Apparent power S = VI (13-23)

In all the power formulas, the V and I are in rms values. The relationships of real, reactive, and apparent
power can be illustrated by the phasor diagram of power (Fig. 13-18). Reactive power Q is inductive and
shown above the horizontal axis.

Example 13.17 The ac circuit (Fig. 13-19a) has 2A through a 173-� R in series with an XL of 100 �. Find the power
factor, the applied voltage V , real power P , reactive power Q, and apparent power S.

Fig. 13-19
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Step 1. Find the phase angle θ , cos θ , and impedance Z by the impedance triangle (Fig. 13-19b).

θ = arctan
XL

R
= arctan

100

173
= arctan 0.578 = 30◦ Ans.

PF = cos θ = cos 30◦ = 0.866 Ans.

Z = R

cos θ
= 173

cos 30◦ = 200 � Ans.

An alternative method to find Z is by using Z =
√

R2 + X2
L

.

Step 2. Find V .

V = IZ = 2(200) = 400 V Ans.

Step 3. Find P .

P = I2R (13-21)

= 22(173) = 692 W Ans.

or P = VI cos θ (13-20)

= 400(2)(cos 30◦) = 692 W

In both P calculations, the real power is the same because this is the amount of power supplied by the voltage
source and dissipated in the resistance. The inductive reactance merely transforms power back to the circuit.
Either formula for P can be used, depending on which is more convenient.

Step 4. Find Q and S.

Q = VI sin θ (13-22)

= 400(2)(sin 30◦) = 400 VAR lagging Ans.

In an inductive circuit, reactive power is lagging because I lags V .

S = VI (13-23)

= 400(2) = 800 VA Ans.

See Fig. 13-19c.
Table 13-1 summarizes the relationships of current, voltage, impedance, and phase angle in RL circuits.

Table 13-1 Summary Table for Series and Parallel RL Circuits

XL and R in Series XL and R in Parallel

I the same in XL and R VT the same across XL and R

VT =
√

V 2
R

+ V 2
L

IT =
√

I2
R

+ I2
L

Z =
√

R2 + X2
L

= VT

I
ZT = VT

IT
VR lags VL by 90◦ IL lags IR by 90◦

θ = arctan
XL

R
θ = arctan

(
− IL

IR

)
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Solved Problems

13.1 A steady current of 20 mA is passed through a coil with an inductance of 100 mH. What is the voltage
induced by the coil?

If the circuit is dc, the rate of change of current �i/�t = 0. So

vL = L
�i

�t
(13-2)

= L(0) = 0 V Ans.

A voltage can be induced only when a coil is carrying a changing current.

13.2 Current through a coil increases to 20 A in 1/1000 s. If its inductance is 100 µH, what is the induced
voltage at that instant?

vL = L
�i

�t
(13-2)

= (
100 × 10−6) (

20

1/1000

)
= (

10−4)(2 × 104) = 2 V Ans.

13.3 A 120-Hz 20-mA ac current is present in a 10-H inductor. What is the reactance of the inductor and
the voltage drop across the inductor?

XL = 6.28f L (13-3)

= 6.28(120)(10) = 7536 � Ans.

VL = ILXL

= (20 × 10−3)(7536) = 150.7 V Ans.

13.4 In Problem 13.3, what are the maximum and average values of the voltage developed across the
inductor?

In a reactive ac circuit, the same relations exist for the various values of voltage such as rms,
peak, average, and instantaneous. The rms value is implied when no statement is made otherwise.

VM = 1.414 V

VL,M = 1.414VL = 1.414(150.7) = 213.1 V Ans.

Vav = 0.91 V

VL,av = 0.91VL = 0.91(150.7) = 137.1 V Ans.

13.5 A 225-µH choke coil of negligible resistance is to limit the current through it to 25 mA when 40 V
are impressed across it. What is the frequency of the current?

XL = VL

IL

(13-7)

= 40

25 × 10−3
= 1600 �
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f = XL

6.28L
(13-5)

= 1600

6.28
(
255 × 10−6

) = 106 = 1 MHz or 1000 kHz Ans.

13.6 A simple high-pass filter (Fig. 13-20) is one in which high-frequency waves pass through the
capacitor C to the output and low-frequency waves pass through the inductor L. What is the reac-
tance of the 15-mH coil to (a) a 2000-Hz (low-frequency) current and (b) a 400-kHz (high-frequency)
current?

(a) XL = 6.28f L (13-3)

= 6.28
(
2 × 103)(15 × 10−3) = 188.4 � Ans.

(b) XL = 6.28
(
400 × 103)(15 × 10−3) = 37 680 � Ans.

Fig. 13-20

13.7 What is the total inductance of the circuit shown in Fig. 13-21a?

Step 1. Reduce the parallel inductors to their equivalents.

L4 = L2L3

L2 + L3
= 3(6)

3 + 6
= 18

9
= 2 mH

See Fig. 13-21b.

Step 2. Add the series inductors.

LT = L1 + L4 = 10 + 2 = 12 mH Ans.

See Fig. 13-21c.

13.8 If a frequency of 2 MHz is applied to the circuit of Fig. 13-21, what is the reactance of the circuit?

XL = 6.28f LT = 6.28
(
2 × 106)(12 × 10−3) = 150.72 × 103 = 150 720 � Ans.

13.9 With two coils L1 and L2 as wound (Fig. 13-22), find the total inductance.

Since the windings are wound in the same direction relative to the dots, L1 and L2 are series-
aiding. Then, using Eq. (13-10),

LT = L1 + L2 + 2LM = 9 + 13 + 6 = 28 H Ans.
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Fig. 13-21

13.10 The windings of L2 (Fig. 13-22) are now wound in reverse (Fig. 13-23). What is the total
inductance now?

Because the windings are wound in opposite directions relative to the dots, L1 and L2 are
series-opposing. Then

LT = L1 + L2 − 2LM = 9 + 13 − 6 = 16 H Ans.

Fig. 13-22 Fig. 13-23

13.11 A 20-H coil is connected across a 110-V 60-Hz power line. If the coil has zero resistance, find the
current and power drawn. Draw the phasor diagram.

XL = 6.28f L (13-3)

= 6.28(60)(20) = 7536 �

IL = VL

XL

(13-6)

= 110

7536
= 14.6 mA Ans.

P = VI cos θ (13-20)

= 110
(
14.6 × 10−3)(cos 90◦) = 110

(
14.6 × 10−3)(0) = 0 W Ans.
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In a purely reactive circuit (R = 0), real power is zero because no energy is dissipated. Also
P = I 2R = I 2(0) = 0. In the phasor diagram, IL lags VL by 90◦.

13.12 A tuning coil has an inductance of 39.8 µH and an internal resistance of 20 �. Find its impedance
to a frequency of 100 kHz and the current through the coil if the voltage drop is 80 V across the
entire coil. Also find the resistive drop and the inductive drop of the coil, and draw the phasor
diagram.

A coil with Ri and XL is treated as a series RL circuit.

Step 1. Find XL and then Z, θ .

XL = 6.28f L (13-3)

= 6.28
(
105)(39.8 × 10−6) = 25 �

Z =
√

R2
i + X2

L (13-15)

=
√

202 + 252 = 32 � Ans.

θ = arctan
XL

Ri

(13-16)

= arctan
25

20
= arctan 1.25 = 51.3◦

Step 2. Find I .

I = V

Z
= 80

32
= 2.5 A Ans.

Step 3. Find VR , VL, and check θ .

VR = IRi = 2.5(20) = 50 V Ans.

VL = IXL = 2.5(25) = 62.5 V Ans.

Also θ = arctan
VL

VR

(13-14)

= arctan
62.5

50
= 1.25 = 51.3◦ Check
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Step 4. Draw phasor diagram.
Ans.

13.13 A choke is an inductance coil with a very low resistance. The ac voltage drop across R is therefore
very low. That is, practically all the ac voltage drop is across L. For this to occur, XL is taken as 10
or more times the series R. Find the minimum inductance required for a choke with a resistance of
100 � when the frequency of the circuit is (a) 5 kHz, (b) 5 MHz, and (c) 50 MHz. If the applied
voltage VT is 200 V, (d) what is the voltage across the choke and the resistance?

XL = 10R = 10(100) = 1000 �

(a) L = XL

6.28f
(13-4)

= 1000

6.28
(
5 × 103

) = 32 mH Ans.

(b) L = 1000

6.28
(
5 × 106

) = 32 µH Ans.

(c) L = 1000

6.28
(
5 × 107

) = 3.2 µH Ans.

(d)
Z =

√
R2

i + X2
L (13-15)

=
√

1002 + 10002 = 1005 �

I = VT

Z
= 200

1005
= 0.199 A

VR = IR = 0.199(100) = 19.9 V Ans.

VL = IXL = 0.199(1000) = 199 V Ans.

Note that VL is practically all the applied voltage and VR is small by comparison.

13.14 The purpose of a high-pass filter circuit (Fig. 13-24) is to permit high frequencies to pass on to the
load but to prevent the passing of low frequencies. Find the branch currents, the total current, and the
percentage of the total current passing through the resistor for (a) a 1.5-kHz (low) audio-frequency
signal and (b) a 1-MHz (high) radio-frequency signal.
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Fig. 13-24

(a) Step 1. Find XL at f = 1.5 kHz.

XL = 6.28f L = 6.28
(
1.5 × 103)(20 × 10−3) = 188.4 �

Step 2. Find branch currents IL and IR .

IL = V

XL

= 80

188.4
= 0.425 A Ans.

IR = V

R
= 80

5000
= 0.016 A Ans.

Step 3. Find total current IT .

IT =
√

I 2
R + I 2

L (13-17)

=
√

(0.425)2 + (0.016)2 = √
0.1809 = 0.425 A Ans.

Since XL � R, the current is mostly inductive.

Step 4. Find IR as a percentage of IT .

IR

IT

× 100 = 0.016

0.425
100 = 0.038(100) = 3.8% Ans.

Therefore, only 3.8 percent of the 1.5-kHz audio signal passes through the resistor.

(b) Step 1. Find XL now at f = 1 MHz.

XL = 6.28f L = 6.28
(
1 × 106)(20 × 10−3) = 125.6 k�

Step 2. Find IL and IR .

IL = V

XL

= 80

125.6 × 103
= 0.637 mA Ans.

IR = 16 mA Ans.

IR remains the same as in part (a).
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Step 3. Find IT .

IT =
√

I 2
R + I 2

L =
√

162 + (0.637)2 = √
256.41 = 16.01 mA Ans.

Since R � XL, the current is mostly resistive.

Step 4. Find IR as a percentage of IT .

IR

IT

× 100 = 16

16.01
100 = 0.999(100) = 99.9% Ans.

Thus, theoretically 100 percent of the 1-MHz radio signal passes through the resistor.

It is clear that the circuit is an excellent high-pass filter by passing almost 100 percent of the
high radio frequency to the load and only 3.8 percent of the low audio frequency to the load.

13.15 If the Q of a coil is greater than 5, its internal resistance Ri may be disregarded so that Z = XL.
If the Q is smaller than 5, then the resistance must be added to the reactance to obtain the impedance

by the formula Z =
√

R2
i + X2

L. A coil has Ri = 5 � and XL = 30 � at a certain frequency. Find
the Q and Z of the coil.

Q = XL

Ri

(13-19)

= 30

5
= 6 Ans.

Since Q > 5, the resistance may be disregarded, so the impedance is equal to the inductive
reactance.

Z = XL = 30 � Ans.

We can determine the percent error by finding Z with R included and comparing values.

Z =
√

R2
i + X2

L =
√

52 + 302 = 30.4 �

With R not included, Z = 30 �, as found above. The error is 30.4 − 30 = 0.4 �. Therefore, the
percent error is

0.4

30.4
100 = 1.3%

The error is well within the range of human error in taking measurements and therefore is
negligible.

13.16 What is the inductance of a coil whose resistance is 100 � if it draws 0.55 A from a 110-V, 60-Hz
power line?

Step 1. Find Z.

Z = V

I
= 100

0.55
= 200 �
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Step 2. Find XL.

Z =
√

R2
i + X2

L

Z2 = R2
i + X2

L

XL =
√

Z2 − R2
i =

√
2002 − 1002 =

√
3 × 104 = 173 �

Step 3. Find L.

L = XL

6.28f
= 173

6.28 × 60
= 0.459 H Ans.

13.17 A 500-� R is in parallel with 300-� XL (Fig. 13-25). Find IT , θ , and ZT .

Fig. 13-25

Assume VT = 500 V. (Refer to discussion on total impedance, p. 287.) Then

IR = VT

R
= 500

500
= 1 A

IL = VT

XL

= 500

300
= 1.67 A

IT =
√

I 2
R + I 2

L =
√

12 + (1.67)2 = 1.95 A Ans.

θ = arctan

(
− IL

IR

)
= arctan(−1.67) = −59.1◦ Ans.

ZT = VT

IT

= 500

1.95
= 256.4 � Ans.

13.18 The frequency in Problem 13.17 is increased by a factor of 2. Now find IT , θ , and ZT .

Since XL is directly proportional to f ,

XL = 300(2) = 600 �
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Assume VT = 600 V. Then

IR = VT

R
= 600

500
= 1.2 A

IL = VT

XL

= 600

600
= 1 A

IT =
√

I 2
R + I 2

L =
√

(1.2)2 + 12 = 1.56 A Ans.

θ = arctan

(
− IL

IR

)
= arctan

(
− 1

1.2

)
= arctan (−0.83) = −39.8◦ Ans.

ZT = VT

IT

= 600

1.56
= 384.6 � Ans.

Increasing the frequency in an RL parallel circuit decreases θ , since more XL means less IL.

13.19 Show that the real power P = (VMIM/2) cos θ .

P = VI cos θ (13-20)

The effective or rms value of voltage (or current) is its maximum value divided by
√

2. So substitute

V = VM√
2

and I = IM√
2

into Eq. (13-20) to obtain

P =
(

VM√
2

IM√
2

)
cos θ = VMIM

2
cos θ Ans.

13.20 An induction motor operating at a power factor of 0.8 draws 1056 W from a 110-V ac line. What is
the current?

Given PF = cos θ = 0.80, V = 110 V, and P = 1056 W.

P = VI cos θ (13-20)

from which

I = P

V cos θ
= 1056

110(0.8)
= 12 A Ans.

Supplementary Problems

13.21 If the rate of change of current in a coil is large, the voltage induced is high. Compare the induced
voltages of a coil with an inductance of 10 mH when the rate of change of current is 2000 A/s and
when the rate is 5 times faster at 10 000 A/s.
Ans. When �i/�t = 2000 A/s, vL = 20 V. When �i/�t = 10 000 A/s, vL = 100 V
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13.22 How fast must current change in a 100-µH coil so that a voltage of 3 V is induced?
Ans. �i/�t = 30 000 A/s

13.23 At a particular instant the current changes at 1000 A/s. If 1.5 V is induced, what is the inductance of
the coil? Ans. L = 1.5 mH

13.24 Find the inductive reactance of a 0.5-H choke coil at (a) 200 Hz, (b) 2000 Hz, (c) 20 kHz,
and (d) 2 MHz. Ans. (a) XL = 628 �; (b) XL = 6280 �; (c) XL = 62 800 �;
(d) XL = 6280 k�

13.25 A choke coil in a FM receiver has an inductance of 20 µH. What is its reactance at 10 MHz?
Ans. XL = 1256 �

13.26 A 2-mH coil in a tuning circuit is resonant at 460 kHz. What is its inductive reactance at this frequency?
Ans. XL = 5778 �

13.27 A transmitter tuning coil must have a reactance of 95.6 � at 3.9 MHz. Find the inductance of the coil.
Ans. L = 3.9 µH

13.28 A 25-H choke coil in a filter circuit of a power supply operates at 60 Hz. Find (a) its inductive reac-
tance, (b) the coil current flowing if the voltage across the coil is 105 V, and (c) the rms, peak, and
average values of this current.
Ans. (a) XL = 9420 �; (b) IL = 11.1 mA; (c) IL = 11.1 mA; IL,M = 15.7 mA;
IL,av = 10.1 mA

13.29 A choke coil with no resistance acts as a current limiter to 25 mA when 40 V is applied across it at a
frequency of 500 kHz. What is its inductance? Ans. L = 0.51 mH

13.30 Two 2-H coils are connected in series so that the mutual inductance between them is 0.2 H. Find the
total inductance when they are connected to be (a) series-aiding and (b) series-opposing.
Ans. (a) LT = 4.4 H; (b) LT = 3.6 H

13.31 A number of coils are connected together to form an inductance network. Group A is made up of three
12-H chokes in parallel; group B of a 3- and a 5-H choke in parallel; and group C of a 4- and 6-H
choke in parallel. Groups A, B, and C are then connected in series. Find the equivalent inductance
of (a) group A, (b) group B, and (c) group C; and (d) find the total inductance of the network.
Ans. (a) 4 H; (b) 1.88 H; (c) 2.4 H; (d) 8.3 H

13.32 Find the total inductance of the circuits (Fig. 13-26). The coils are spaced far apart so that mutual
inductance is negligible.
Ans. (a) LT = 15 mH; (b) LT = 4 mH; (c) LT = 1.48 H; (d) LT = 5.1 H

13.33 Find the total inductance of the circuits (Fig. 13-27). The coils are spaced sufficiently close so that
mutual inductance is present.
Ans. (a) LT = 11 H; (b) LT = 8 H; (c) LT = 14 H; (d) LT = 8 H

13.34 A resistance of 12 � is connected in series with a coil whose inductive reactance is 5 �. If the
impressed ac voltage is 104 V, find the impedance, the line current, the voltage drop across the
resistor and coil, the phase angle, and the power. Draw the voltage-phasor diagram.
Ans. Z = 13 �; I = 8 A; VR = 96 V; VL = 40 V; θ = 22.6◦, I lags VT ; P = 768 W; phasor
diagram: see Fig. 13-28.
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Fig. 13-26

Fig. 13-27
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13.35 A lightning protector circuit contains 55.7-mH coil in series with a 6-� resistor. What current will
flow when it is tested with a 110-V 60-Hz voltage? How much power will the lightning protector
consume? Ans. I = 5.05 A (Z = 21.8 �); P = 153 W

Fig. 13-28 Phasor diagram Fig. 13-29 Phasor diagram

13.36 The coil of a telephone relay has a resistance of 400 � and an inductance of 16 mH. If the relay is
operated at a frequency of 1 kHz, find the impedance of the coil and the voltage that must be impressed
across the coil in order to operate the relay at its rated current of 10 mA. Draw the voltage-phasor
diagram. Ans. Z = 412.4 �; Vcoil = 4.12 V; phasor diagram: see Fig. 13-29

13.37 A 60-V source at 1.5 kHz is impressed across a loudspeaker of 5000 � and 2.12 H inductance. Find
the current and power drawn. Ans. I = 2.9 mA (Z = 20 600 �); P = 42.1 mW

13.38 What is the inductive reactance of a single-phase motor if the line voltage is 220 V, the line current
is 15 A, and the resistance of the motor coils is 10 �? Also what is the angle of lag, the power factor,
and the power consumed by the motor? (Treat this problem as a simple RL series circuit.)
Ans. XL = 10.7 �; θ = 47◦; PF = 0.682; P = 2250 W

13.39 What is the minimum inductance for a RF choke in series with a resistance of 50 � at a radio frequency
of 1000 kHz, if the resistive drop is to be considered negligible? If the applied voltage is 100 V, what
is the voltage across the resistance? (See Problem 13-13.)
Ans. L = 0.08 mH; VR = 9.95 V

13.40 A 20-� resistor and a 15-� inductive reactance are placed in parallel across a 120-V ac line. Find the
branch currents, the total current, the impedance, and the power drawn; and draw the phasor diagram.
Ans. IR = 6 A; IL = 8 A; IT = 10 A; ZT = 12 �; P = 720 W; phasor diagram: see Fig. 13-30.

Fig. 13-30 Phasor diagram

13.41 A 100-� R is in parallel with a 100-� XL. If VT = 100 V, calculate IT , θ , and ZT .
Ans. IT = 1.41 A; θ = −45◦; ZT = 70.7 �

13.42 The frequency is halved in Problem 13.41. Find IT , θ , and ZT . Compare the difference in values.
Ans. IT = 2.24 A; θ = −63.4◦; ZT = 44.6 �. Reducing the frequency in an RL parallel circuit
increases θ because less XL means more IL. With less XL, ZT is less.
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13.43 A 50-� R and a 120-� XL are connected in parallel across a 120-V ac line. Find the (a) branch
currents, (b) total current, (c) impedance, (d) power drawn, and (e) draw the phasor diagram.
Ans. (a) IR = 2.4 A; IL = 1 A; (b) IT = 2.6 A; (c) ZT = 46.2 �; (d) P = 288 W;
(e) phasor diagram: see Fig. 13-31

Fig. 13-31 Fig. 13-32

13.44 A 40-� resistor and a 10-mH coil are in parallel across an 80-V 500-Hz ac line. Find the (a) branch
currents, (b) total current, (c) impedance, (d) power drawn; and (e) draw the phasor diagram.
Ans. (a) IR = 2 A; IL = 2.5 A; (b) IT = 3.2 A; (c) ZT = 25 �; (d) P = 160 W; (e) phasor
diagram: see Fig. 13-32.

13.45 For the high-pass filter circuit (Fig. 13-33), find the (a) branch currents, (b) total current, and
(c) percentage of total current that passes through the resistor for the case of audio frequency (AF) at
1 kHz and for the case of radio frequency (RF) at 2 MHz. (Calculate current values to three significant
figures.)
Ans. AF case: (a) IL = 0.797 A; IR = 0.0333 A; (b) IT = 0.798 A; (c) 4.2%. RF case:
(a) IL = 0.398 mA; IR = 33.3 mA; (b) IT = 33.3 mA; (c) 100%

Fig. 13-33

13.46 A 120-V 60-Hz power line is connected across a 12-H choke coil whose resistance is 500 �. Find
(a) the inductive reactance, (b) the Q of the coil, (c) the impedance, and (d) the current.
Ans. (a) XL = 4522 �; (b) Q = 9.0; (c) Z = 4522 �; (d) IL = 27 mA

13.47 The primary of an audio-frequency transformer has a resistance of 100 � and an inductance of
25 mH. What are the inductive reactance and the impedance at 2 kHz?
Ans. XL = 314 �; Z = 330 �

13.48 Find the inductance of a coil whose resistance is 500 � if it draws 10 mA from a 110-V 60-Hz
source. Ans. L = 29.2 H (XL = 11 000 �)

13.49 A coil having a Q of 25 draws 20 mA when connected to a 12-V, 1-kHz power supply. What is its
inductance? Ans. L = 95.5 mH (XL = 600 �)
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13.50 For the circuit (Fig. 13-34), find (a) the inductive reactance, (b) the impedance, (c) the rms current,
and (d) the peak current.
Ans. (a) XL = 37.7 �; (b) Z = 41.0 � (circuit R = 16 �); (c) I = 5.85 A; (d) IM = 8.27 A

13.51 An inductive load operating at a phase angle of 53◦ draws 1400 W from a 120-V line. Find the current
drawn. Ans. I = 19.4 A

13.52 An inductance of 5 � resistance and 12 � reactance is connected across a 117-V 60-Hz ac line. Find
the real, apparent, and reactive power. Ans. P = 405 W; S = 1053 VA; Q = 972 VAR lagging

Fig. 13-34 Fig. 13-35

13.53 A toy electric train semaphore has a 24-� lamp in parallel with a solenoid coil of 30-� inductive
reactance (Fig. 13-35). If it operates from the 12-V winding of a 60-Hz power transformer, find (a) the
total current, (b) the impedance, (c) the phase angle, (d) the power drawn, and (e) the reactive power.
Ans. (a) IT = 0.64 A; (b) ZT = 18.8 �; (c) θ = −38.7◦; (d) P = 6 W; (e) Q = 4.8 VAR
lagging



 

Chapter 14

Capacitance, Capacitive Reactance,
and Capacitive Circuits

CAPACITOR

A capacitor is an electrical device which consists of two conducting plates of metal separated by an
insulating material called a dielectric (Fig. 14-1a). Schematic symbols shown (Fig. 14-1b and c) apply to all
capacitors.

Fig. 14-1 Capacitor and schematic symbols

A capacitor stores electric charges in the dielectric. The two plates of the capacitor shown in Fig. 14-2a

are electrically neutral since there are as many protons (positive charge) as electrons (negative charge) on each
plate. Thus the capacitor has no charge. Now a battery is connected across the plates (Fig. 14-2b). When
the switch is closed (Fig. 14-2c), the negative charge on plate A is attracted to the positive terminal of the
battery, while the positive charge on plate B is attracted to the negative terminal of the battery. This movement
of charges will continue until the difference in charge between plates A and B is equal to the electromotive
force (voltage) of the battery. The capacitor is now charged. Since almost none of the charge can cross the
space between plates, the capacitor will remain in this condition even if the battery is removed (Fig. 14-3a).
However, if a conductor is placed across the plates (Fig. 14-3b), the electrons find a path back to plate A and
the charges on each plate are again neutralized. The capacitor is now discharged.

Fig. 14-2 Charging a capacitor

305
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Fig. 14-3 Discharging a capacitor

Example 14.1 Explain the charging and discharging action of a simple capacitor circuit when switch 1 is closed with
switch 2 open (Fig. 14-4a), and when switch 1 is open with switch 2 closed (Fig. 14-4b).

When switch S1 is closed and switch S2 is open (Fig. 14-4a), the battery voltage is applied across the two plates A

and B. The capacitor charges to a voltage equal to that of the battery. Plate A is charged positively and plate B is charged
negatively. When S1 is open and S2 is closed, the excess electrons on plate B will move through S2 to plate A (Fig. 14-4b).
Now the capacitor acts as a voltage source with plate A the positive terminal and plate B the negative terminal. The motion
of electrons off plate B reduces its negative charge, and their arrival at plate A reduces its positive charge. This motion of
electrons continues until there is no charge on plate A or plate B and the voltage between the two plates is zero.

Fig. 14-4 Simple capacitor circuit

CAPACITANCE

Electrically, capacitance is the ability to store an electric charge. Capacitance is equal to the amount of
charge that can be stored in a capacitor divided by the voltage applied across the plates:

C = Q

V
(14-1)
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where C = capacitance, F
Q = amount of charge, C
V = voltage, V

Equation (14-1) can be rewritten as follows:

Q = CV (14-2)

V = Q

C
(14-3)

The unit of capacitance is the farad (F). The farad is that capacitance that will store one coulomb of charge
in the dielectric when the voltage applied across the capacitor terminals is one volt.

The characteristic of a dielectric that describes its ability to store electric energy is called the dielectric
constant. Air is used as a reference and is given a dielectric constant of 1. Some other dielectric materials are
Teflon, paper, mica, Bakelite, or ceramic. Paper, for example, has an average dielectric constant of 4, meaning
it can provide an electric flux density four times as great as that for air for the same applied voltage and equal
physical size.

The capacitance of a capacitor depends on the area of the conductor plates, the separation between the
plates, and the dielectric constant of the insulating material. For a capacitor with two parallel plates, the formula
to find its capacitance is

C = k
A

d
(8.85 × 10−12) (14-4)

where C = capacitance, F
k = dielectric constant of the insulating material
A = area of the plate, m2

d = distance between the plates, m

The farad is too high a unit for most capacitors. Therefore, we conveniently use the microfarad (µF), which
equals one-millionth farad (10−6 F), the nanofarad (nF), which equals one-billionth farad (10−9 F), and the
picofarad (pF), which equals one-millionth microfarad (10−6 µF). Thus, 1 F = 106 µF = 109 nF = 1012 pF.

Example 14.2 What is the capacitance of a capacitor that stores 4 C of charge at 2 V?

C = Q

V
(14-1)

= 4

2
= 2 F Ans.

Example 14.3 What is the charge taken on by a 10-F capacitor at 3 V?

Q = CV (14-2)

= 10(3) = 30 C Ans.

Example 14.4 What is the voltage across a 0.001-F capacitor that stores 2 C?

V = Q

C
(14-3)

= 2

0.001
= 2000 V Ans.
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Example 14.5 The area of one plate of a two-plate mica capacitor is 0.0025 m2 and the separation between plates is
0.02 m. If the dielectric constant of mica is 7, find the capacitance of the capacitor.

C = k
A

d

(
8.85 × 10−12

)
(14-4)

= 7
0.0025

0.02

(
8.85 × 10−12

)
= 7.74 × 10−12 F = 7.74 pF Ans.

Example 14.6 If the area of each plate in Example 14.5 is increased five times, and neither the dielectric nor the spacing
is changed for the capacitor, what is the new capacitance?

Since capacitance is proportional to area, increasing the area five times increases the capacitance five times so that

C = 5(7.74) = 38.7 pF Ans.

TYPES OF CAPACITORS

Commercial capacitors are named according to their dielectric. Most common are air, mica, paper, and
ceramic capacitors, plus the electrolytic type. These types are compared in Table 14-1. Most types of capacitors
can be connected to an electric circuit without regard to polarity. But electrolytic capacitors and certain ceramic
capacitors are marked to show which side must be connected to the more positive side of a circuit.

Table 14-1 Types of Capacitors

Dielectric Construction Capacitance Range

Air Meshed plates 10–400 pF

Mica Stacked sheets 10–5000 pF

Paper Rolled foil 0.001–1 µF

Ceramic Tubular 0.5–1600 pF

Disk 0.002–0.1 µF

Electrolytic Aluminum 5–1000 µF

Tantalum 0.01–300 µF

CAPACITORS IN SERIES AND PARALLEL

When capacitors are connected in series (Fig. 14-5), the total capacitance CT is

Series:
1

CT

= 1

C1
+ 1

C2
+ 1

C3
+ · · · + 1

Cn

(14-5)

The total capacitance of two capacitors in series is

Series: CT = C1C2

C1 + C2
(14-6)

When n number of series capacitors have the same capacitance, CT = C/n.

Fig. 14-5 Capacitances in series
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When capacitors are connected in parallel (Fig. 14-6), the total capacitance CT is the sum of the individual
capacitances.

Parallel: CT = C1 + C2 + C3 + · · · + Cn (14-7)

There is a limit to the voltage that may be applied across any capacitor. If too high a voltage is applied,
a current will be forced through the dielectric, sometimes burning a hole in it. The capacitor then will short-
circuit and must be discarded. The maximum voltage that may be applied to a capacitor is called the working
voltage and should not be exceeded.

Fig. 14-6 Capacitances in parallel

Example 14.7 Find the total capacitance of a 3-µF, a 5-µF, and a 10-µF capacitor connected in series (Fig. 14-7).
Write Eq. (14-5) for three capacitors in series.

1

CT
= 1

C1
+ 1

C2
+ 1

C3
= 1

3
+ 1

5
+ 1

10
= 19

30

CT = 30

19
= 1.6 µF Ans.

Fig. 14-7 Fig. 14-8

Example 14.8 What is the total capacitance and working voltage of a capacitor series combination if C1 and C2 are
both 200-µF 150-V capacitors (Fig. 14-8)?

CT = C

n
= 200

2
= 100 µF Ans.

The total voltage that may be applied across a group of capacitors in series is equal to the sum of the working voltages of
the individual capacitors. Therefore,

Working voltage = 150 + 150 = 300 V Ans.
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Example 14.9 A capacitor in a radio receiver tuning circuit has a capacitance
of 310 pF (Fig. 14-9). When the stage is aligned, a variable capacitor (called a
trimmer) in parallel with it is adjusted to a capacitance of 50 pF. What is the total
capacitance of the combination?

Write Eq. (14-7) for two capacitors in parallel.

CT = C1 + C2 = 310 + 50 = 360 pF Ans.

Fig. 14-9

CAPACITIVE REACTANCE

Capacitive reactance XC is the opposition to the flow of ac current due to the capacitance in the circuit.
The unit of capacitive reactance is the ohm. Capacitive reactance can be found by using the equation

XC = 1

2πfC
= 1

6.28fC
= 0.159

fC
(14-8)

where XC = capacitive reactance, �

f = frequency, Hz
C = capacitance, F

If any two quantities in Eq. (14-8) are known, the third can be found.

C = 0.159

fXC

(14-9)

f = 0.159

CXC

(14-10)

Voltage and current in a circuit containing only capacitive reactance can be found using Ohm’s law.
However, in the case of a capacitive circuit, R is replaced by XC .

VC = ICXC (14-11)

IC = VC

XC

(14-12)

XC = VC

IC

(14-13)

where IC = current through the capacitor, A
VC = voltage across the capacitor, V
XC = capacitive reactance, �

Example 14.10 What is the capacitive reactance of a 0.001-F capacitor at 60 Hz (Fig. 14-10)?

XC = 0.159

fC
(14-8)

= 0.159

60(0.001)
= 2.65 � Ans.

Example 14.11 A capacitor in a telephone circuit has a capacitance of 3 µF (Fig. 14-11). What current flows through
it when 15 V at 800 Hz is impressed across it?
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Fig. 14-10 Fig. 14-11

Find XC and then IC by Ohm’s law.

XC = 0.159

fC
(14-8)

= 0.159

800
(
3 × 10−6

) = 66.25 �

IC = VC

XC
(14-12)

= 15

66.25
= 0.226 = 226 mA Ans.

Example 14.12 A 120-Hz 25-mA ac current flows in a circuit containing a 10 µF capacitor (Fig. 14-12). What is the
voltage drop across the capacitor?

Find XC and then VC by Ohm’s law.

XC = 0.159

f C
(14.8)

= 0.159

120(10 × 10−6)
= 132.5 �

VC = ICXC (14.11)

= (25 × 10−3)(132.5) = 3.31 V Ans. Fig. 14-12

CAPACITIVE CIRCUITS

Capacitance Only

If an ac voltage v is applied across a circuit having only capacitance (Fig. 14-13a), the resulting ac current
through the capacitance, ic, will lead the voltage across the capacitance, vc, by 90◦ (Fig. 14-13b and c).
(Quantities expressed as lowercase letters, ic and vc, indicate instantaneous values.) Voltages v and vc are the
same because they are parallel. Both ic and vc are sine waves with the same frequency. In series circuits, the
current IC is the horizontal phasor for reference (Fig. 14-13d) so the voltage VC can be considered to lag IC

by 90◦.

RC in Series

As with inductive circuits, the combination of resistance and capacitive reactance (Fig. 14-14a) is called
impedance. In a series circuit containing R and XC , the same current I flows in XC and R. The voltage drop
across R is VR = IR, and the voltage drop across XC is VC = IXC . The voltage across XC lags the current
through XC by 90◦ (Fig. 14-14b). The voltage across R is in phase with I since resistance does not produce a
phase shift (Fig. 14-14b).
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Fig. 14-13 Circuit with C only

Fig. 14-14 R and XC in series

To find the total voltage VT , we add phasors VR and VC . Since they form a right triangle (Fig. 14-15),

VT =
√

V 2
R + V 2

C (14-14)

Note that the IXC phasor is downward, exactly opposite from an IXL phasor (see Fig. 13-11), because of the
opposite phase angle.

The phase angle θ between VT and VR (Fig. 14-15) is expressed according to the following equation:

tan θ = −VC

VR

θ = arctan

(
−VC

VR

)
(14-15)

Example 14.13 An RC series ac circuit has a current of 1 A peak with R = 50 � and XC = 120 � (Fig. 14-16a).
Calculate VR , VC , VT , and θ . Draw the phasor diagram of VC and I . Also draw the time diagram of i, vR , vC , and vT .

VR = IR = 1(50) = 50 V peak Ans.

VC = IXC = 1(120) = 120 V peak Ans.
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Fig. 14-15 Voltage-phasor triangle Fig. 14-16 a, b

Then VT =
√

V 2
R

+ V 2
C

(14-14)

=
√

502 + 1202

= √
2500 + 14 400 = √

16 900 = 130 V peak Ans.

θ = arctan

(
−VC

VR

)
(14-15)

= arctan

(
−120

50

)
= arctan(−2.4) = −67.4◦ Ans.

In a series circuit since I is the same in R and XC , I is shown as the reference phasor at 0◦ (Fig. 14-16b). I leads VT by
67.4◦ or, equivalently, VT lags I by 67.4◦. For the time diagram, see Fig. 14-16c.

Impedance in series RC. The voltage triangle (Fig. 14-15) corresponds to the impedance triangle (Fig. 14-17)
because the common factor I in VC and VR cancels.

VC = IXC

VR = IR

tan θ = − IXC

IR
= −XC

R

Impedance Z is equal to the phasor sum for R and XC .

Z =
√

R2 + X2
C (14-16)

The phase angle θ is

θ = arctan

(
−XC

R

)
(14-17)

Example 14.14 A 40-� XC and a 30-� R are in series across a 120-V source (Fig. 14-18a). Calculate Z, I , and θ .
Draw the phasor diagram.

Z =
√

R2 + X2
C

(14-16)

=
√

302 + 402 = √
2500 = 50 � Ans.
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Fig. 14-16c
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Fig. 14-17 Series RC impedance triangle

Fig. 14-18

By Ohm’s law,

I = VT

Z
= 120

50
= 2.4 A Ans.

θ = arctan

(
−XC

R

)

= arctan

(
−40

30

)
= arctan(−1.33) = −53.1◦ Ans.

(14-17)

For the phasor diagram, see Fig. 14-18b.

RC in Parallel

In the RC parallel circuit (Fig. 14-19a), the voltage is the same across the source, R, and XC since they
are all in parallel. Each branch has its individual current. The resistive branch current IR = VT/R is in phase
with VT . The capacitive branch current IC = VT/XC leads VT by 90◦ (Fig. 14-19b). The phasor diagram has
the source voltage VT as the reference phasor because it is the same throughout the circuit. The total line
current IT equals the phasor sum of IR and IC (Fig. 14-19c).

Fig. 14-19 XC and R in parallel
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IT =
√

I 2
R + I 2

C (14-18)

tan θ = IC

IR

θ = arctan
IC

IR

(14-19)

Impedance in parallel RC. The impedance of a parallel circuit equals the total voltage VT divided by the
total current IT .

ZT = VT

IT

(14-20)

Example 14.15 A 15-� resistor and a capacitor of 20 � capacitive reactance are placed in parallel across a 120-V ac
line (Fig. 14-20a). Calculate IR , IC , IT , θ , and ZT . Draw the phasor diagram.

IR = VT

R
= 120

15
= 8 A Ans.

IC = VT

XC
= 120

20
= 6 A Ans.

IT =
√

I2
R

+ I2
C

(14-18)

=
√

82 + 62 = √
100 = 10 A Ans.

θ = arctan
IC

IR
(14-19)

= arctan
6

8
= arctan 0.75 = 36.9◦ Ans.

ZT = VT

IT
(14-20)

= 120

10
= 12 � Ans.

For the phasor diagram, see Fig. 14-20b.

Fig. 14-20

POWER IN RC CIRCUITS

The power formulas given previously for RL circuits are equally applicable to RC circuits.

Real power P = VI cos θ, W (14-21)
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or P = I 2R = V 2

R
, W (14-22)

Reactive power Q = VI sin θ, VAR (14-23)

Apparent power S = VI, VA (14-24)

Capacitance, like inductance, consumes no power. The only part of the circuit consuming power is the
resistance. Reactive power θ in an RC circuit is capacitive and shown below the horizontal axis.

Table 14-2 summarizes the relationships of current, voltage, impedance, and phase angle in RC circuits.

Table 14-2 Summary Table for Series and Parallel
RC Circuits

XC and R in Series XC and R in Parallel

I the same in XC and R VT the same across XC and R

VT =
√

V 2
R

+ V 2
C

IT =
√

I2
R

+ I2
C

Z =
√

R2 + X2
C

= VT

I
ZT = VT

IT

VC lags VR by 90◦ IC leads IR by 90◦

θ = arctan

(
−XC

R

)
θ = arctan

IC

IR

Solved Problems

14.1 What is the total capacitance of three capacitors connected in parallel if their values are 0.15 µF,
50 V; 0.015 µF, 100 V; and 0.003 µF, 150 V (Fig. 14-21)? What would be the working voltage of this
combination?

Write Eq. (14-5) for three capacitors in parallel.

CT = C1 + C2 + C3 = 0.15 + 0.015 + 0.003 = 0.168 µF Ans.

The working voltage of a group of parallel capacitors is only as high as the lowest working voltage.
Therefore, the working voltage of this combination is only 50 V.

Fig. 14-21

14.2 A technician has the following capacitors available: 300 pF, 75 V; 250 pF, 50 V; 200 pF, 50 V; 150 pF,
75 V; and 50 pF, 75 V. Which of these should be connected in parallel to form a combination with a
capacitance of 500 pF and 75 V working voltage?
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Capacitors with voltage ratings less than 75 V must not be used because of possible short-
circuit damage. The remaining capacitors with 75-V ratings are 300, 150, and 50 pF, the sum
of which is 500 pF. Therefore, the safe parallel combination is as shown in Fig. 14-22, where
CT = 300 + 150 + 50 = 500 pF.

Fig. 14-22

14.3 What is the range of total capacitances available in an oscillator circuit that uses a variable tuning
capacitor of 35- to 300-pF range in series with a fixed capacitor of 250 pF (Fig. 14-23)?

At the low point in the range of total capacitance, we have 35 pF in series with 250 pF.

CT 1 = C1C2

C1 + C2
= 35(250)

35 + 250
= 8750

285
= 30.7 pF Ans.

At the high point in the range, we have 300 pF in series with 250 pF.

CT 2 = 300(250)

300 + 250
= 75 000

550
= 136.4 pF Ans.

Therefore, the range is from 30.7 to 136.4 pF.

14.4 What capacitance must be added in parallel with a 550-pF capacitor in order to get a total capacitance
of 750 pF (Fig. 14-24)?

Write Eq. (14-7) for two capacitors in parallel.

CT = C1 + C2

750 = 550 + C2

C2 = 750 − 550 = 200 pF Ans.

Fig. 14-23 Fig. 14-24
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14.5 Find the total capacitance of the capacitive networks shown in Figs. 14-25, 14-26a, and 14-27a.

(a) See Fig. 14-25. Simple series combination:

CT = C1C2

C1 + C2
= 3(2)

3 + 2
= 6

5
= 1.2 µF Ans.

Fig. 14-25

(b) See Fig. 14-26a, b, and c. Series–parallel combination:

Parallel: Ca = C2 + C3 = 0.1 + 0.2 = 0.3 µF

Series: CT = C1Ca

C1 + Ca

= 0.3(0.3)

0.3 + 0.3
= 0.09

0.6
= 0.15 µF Ans.

Fig. 14-26

(c) See Fig. 14-27a, b, and c. Parallel–series combination:

Series: Ca = C3C4

C3 + C4
= 4(5)

4 + 5
= 20

9
= 2.22 pF

Parallel: CT = C1 + C2 + Ca = 2 + 3 + 2.22 = 7.22 pF Ans.

Fig. 14-27
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14.6 Find the total capacitance of the series circuit and the capacitive reactance of the group of capacitors
when used in a 60-Hz circuit (Fig. 14-28).

1

CT

= 1

C1
+ 1

C2
+ 1

C3
(14-5)

= 1

0.1
+ 1

0.5
+ 1

0.25
= 8

0.5

CT = 0.5

8
= 0.0625 µF Ans.

XC = 0.159

f CT

(14-8)

= 0.159

60(0.0625 × 10−6)
= 42 400 � Ans.

Fig. 14-28

14.7 A capacitor draws 6 mA when connected across a 110-V 60-Hz line. What will be the current drawn
if both the frequency and capacitance are doubled?

We look at two relationships. First, because IC = VC/XC , we can say IC is inversely proportional
to XC , or

IC ∝ 1

XC

Second, because XC = 0.159/fC, we can say XC is inversely proportional to the product of f

and C, or

XC ∝ 1

fC

So if f and C are doubled, XC is decreased by 1/4.

XC ∝ 1

(2f )(2C)
= 1

4fC

And when XC is decreased by 1/4, IC is increased four times. Therefore

IC = 4(6) = 24 mA Ans.

14.8 A 20-µF capacitor in an audio amplifier circuit produces a voltage drop of 5 V at 1 kHz. Find the
current passed by the capacitor.

Find XC and then IC .

XC = 0.159

fC
(14-8)

= 0.159

(1 × 103)(20 × 10−6)
= 7.95 �

IC = VC

XC

(14-12)

= 5

7.95
= 0.629 A Ans.



 

CHAP. 14] CAPACITANCE, CAPACITIVE REACTANCE, AND CAPACITIVE CIRCUITS 321

14.9 Calculate the value of the bypass capacitor in an audio circuit if it is to have a reactance of 800 � at
10 kHz.

C = 0.159

fXC

(14-9)

= 0.159

(10 × 103)(800)
= 0.02 µF Ans.

14.10 A capacitor is inserted in a circuit to obtain a leading current of 5 A. If the voltage is 110 V, 60 Hz,
what is the capacitance?

Find XC and then C.

XC = VC

IC

(14-13)

= 110

5
= 22 �

C = 0.159

fXC

(14-9)

= 0.159

60(22)
= 121 × 10−6 = 121 µF Ans.

14.11 A capacitance of 20 pF draws 10 mA when connected across a 95-V source. Find the frequency of
the ac voltage.

Find XC and then f .

XC = VC

IC

(14-13)

= 95

10 × 10−3
= 9500 �

f = 0.159

CXC

(14-10)

= 0.159

(20 × 10−12)(9500)
= 838 kHz Ans.

14.12 Find the impedance of an RC combination when the coupling capacitor is 0.01 µF, the audio frequency
is 1 kHz, and the resistance of the circuit is 3 k� (Fig. 14-29). A coupling capacitor, because it provides
more reactance at lower frequencies, results in less ac voltage across R and more across C.

Find XC and then Z.

XC = 0.159

fC
(14-8)

= 0.159

(1 × 103)(0.01 × 10−6)
= 15 900 �

Z =
√

R2 + X2
C (14-16)

= √
30002 + 15 9002 = 16 180 � Ans. Fig. 14-29
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14.13 In a series RC circuit, the higher the XC compared with R, the more capacitive is the circuit. With
higher XC there is more voltage drop across the capacitive reactance, and the phase angle increases
toward −90◦. To illustrate, find the indicated quantity.

Case R, � XC, � Z, � θ Nature of Circuit

(a) XC = R 10 10 ? ? ?
(b) XC < R 10 1 ? ? ?
(c) XC > R 1 10 ? ? ?

(a)
Z =

√
R2 + X2

C (14-16)

=
√

102 + 102 = 14.1 � Ans.

θ = arctan

(
−XC

R

)
(14-17)

= arctan
−10

10
= arctan(−1) = −45◦ Ans.

The circuit is capacitive.

(b) Z =
√

102 + 12 = 10.0 � Ans.

θ = arctan(−0.1) = −5.7◦ Ans.

The circuit is only slightly capacitive.

(c) Z =
√

12 + 102 = 10.0 � Ans.

θ = arctan (−10) = −84.3◦ Ans.

The circuit is almost entirely capacitive. Recall that if R = 0 (pure capacitive circuit), Z =
XC = 10 � at θ = −90◦. The complete table is as follows:

Case R, � XC, � Z, � θ Nature of Circuit

(a) XC = R 10 10 14.1 −45◦ Capacitive

(b) XC < R 10 1 10.0 −5.7◦ Slightly capacitive

(c) XC > R 1 10 10.0 −84.3◦ Very capacitive

14.14 In a parallel RC circuit, as XC becomes smaller compared with R, practically all the line current is
the IC component. Thus the parallel circuit is capacitive. The phase angle approaches 90◦ because
the line current is mostly capacitive. To illustrate, find the indicated quantity. Assume VT = 10 V.

Case R, � XC, � IR, A IC, A IT , A θ Nature of Circuit

(a) XC = R 10 10 ? ? ? ? ?
(b) XC > R 1 10 ? ? ? ? ?
(c) XC < R 10 1 ? ? ? ? ?
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(a)
IR = VT

R
= 10

10
= 1 A Ans.

IC = VT

XC

= 10

10
= 1 A Ans.

IT =
√

I 2
R + I 2

C (14-18)

=
√

12 + 12 = 1.41 A Ans.

θ = arctan
IC

IR

(14-19)

= arctan 1 = 45◦ Ans.

The circuit is capacitive.

(b)

IR = 10

1
= 10 A Ans.

IC = 10

10
= 1 A Ans.

IT =
√

102 + 12 = 10.0 A Ans.

θ = arctan
1

10
= 5.7◦ Ans.

The circuit is only slightly capacitive.

(c)
IR = 10

10
= 1 A Ans.

IC = 10

1
= 10 A Ans.

IT =
√

12 + 102 = 10.0 A Ans.

θ = arctan 10 = 84.3◦ Ans.

The circuit is almost entirely capacitive.

Recall that if R = 0 (pure capacitive circuit), IT = IC = 10 A at θ = 90◦. The complete table is as
follows:

Case R, � XC, � IR, A IC, A IT , A θ Nature of Circuit

(a) XC = R 10 10 1 1 1.4 45◦ Capacitive
(b) XC > R 1 10 10 1 10.0 5.7◦ Slightly capacitive
(c) XC < R 10 1 1 10 10.0 84.3◦ Very capacitive

14.15 A voltage of 10 V at a frequency of 20 kHz is applied across a 1-µF capacitor. Find the current and
the real power used. Draw the phasor diagram.
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Find XC and then IC .

XC = 0.159

fC
(14-8)

= 0.159

(20 × 103)(1 × 10−6)
= 7.95 �

IC = VC

XC

(14-12)

= 10

7.95
= 1.26 A Ans. Fig. 14-30

Phasor diagram
Now find P .

P = VI cos θ (14-21)

V = VC and I = IC so

P = 10(1.26)(cos 90◦) = 10(1.26)(0) = 0 W Ans.

No net power is consumed in the circuit when there is no resistance. For the phasor diagram, see
Fig. 14-30. IC leads VC by 90◦.

14.16 A capacitance of 3.53 µF and a resistance of 40 � are connected in series across a 110-V 1.5-kHz ac
source (Fig. 14-31). Find XC , Z, θ , I , VR , VC , and P . Draw the phasor diagram.

Step 1. Find XC .

XC = 0.159

fC
= 0.159

(1.5 × 103)(3.53 × 10−6)
= 30 � Ans.

Step 2. Find Z and θ .

Z =
√

R2 + X2
C =

√
402 + 302 = 50 � Ans.

θ = arctan

(
−XC

R

)
= arctan

(
−30

40

)
= arctan (−0.75) = −36.9◦ Ans.

Step 3. Find I .

I = VT

Z
= 110

50
= 2.2 A Ans.

Step 4. Find VR and VC . By Ohm’s law,

VR = IR = 2.2(40) = 88 V Ans.

VC = IXC = 2.2(30) = 66 V Ans.

Step 5. Find P .

P = I 2R = (2.2)2(40) = 193.6 W Ans.

Step 6. Draw the phasor diagram (see Fig. 14-31b). I leads VT by 36.9◦.
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Fig. 14-31

14.17 The purpose of a low-pass filter circuit (Fig. 14-32) is to permit low frequencies to pass on to the
load but to prevent the passing of high frequencies. Find the branch currents, total current, phase
angle, and the percentage of the total current passing through the resistor for (a) a 1.5-kHz (low)
audio-frequency signal and (b) a 1-MHz (high) radio-frequency signal.

Fig. 14-32

(a) Step 1. Find XC at f = 1.5 kHz.

XC = 0.159

fC
= 0.159

(1.5 × 103)(1 × 10−9)
= 106 k�

Step 2. Find branch currents IC and IR .

IC = VT

XC

= 100

106 × 103
= 0.94 mA Ans.

IR = VT

R
= 100

5 × 103
= 20 mA Ans.

Step 3. Find IT and θ .

IT =
√

I 2
R +I 2

C =
√

202+(0.94)2 =√
400+0.88=√

400.88=20.02 mA Ans.

θ =arctan
IC

IR

=arctan
0.94

20
=arctan0.047=2.7◦ Ans.

Step 4. Find IR as a percentage of IT .

IR

IT

× 100 = 20

20.02
100 = 0.999(100) = 99.9% Ans.

Thus, practically all the 1.5 kHz audio-signal current passes through the resistor.
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(b) Step 1. Find XC now at f = 1 MHz.

XC = 0.159

fC
= 0.159

(1 × 106)(1 × 10−9)
= 159 �

Step 2. Find IC and IR .

IC = VT

XC

= 100

159
= 0.629 = 629 mA Ans.

IR = 20 mA Ans.

IR is the same as in part (a).

Step 3. Find IT and θ .

IT =
√

I 2
R +I 2

C =
√

202+6292 =√
400+395641=√

396041=629.3 mA Ans.

θ = arctan
IC

IR

= arctan
629

20
= arctan31.45 = 88.2◦ Ans.

Step 4. Find IR as a percentage of IT .

IR

IT

× 100 = 20

629.3
100 = 0.332(100) = 3.2% Ans.

Thus, only 3.2 percent of the 1-MHz radio signal current passes through the resistor.

It is clear that the circuit is an excellent low-pass filter by passing practically all the low-
frequency (1.5-kHz) current through the resistor, but very little of the high-frequency (1-MHz)
current through it.

Supplementary Problems

14.18 What is the capacitance of a capacitor that stores 10.35 C at 3 V? Ans. C = 3.45 F

14.19 What charge is taken on by a 0.5-F capacitor connected across a 50-V source? Ans. Q = 25 C

14.20 Find the capacitance of a capacitor that has one plate area of 0.5 m2, a distance between plates of
0.01 m, and a dielectric of paper with dielectric constant of 3.5. Ans. C = 1549 pF

14.21 What is the reactance of a 500-pF capacitor at (a) 40 kHz, (b) 100 kHz, and (c) 1200 kHz?
Ans. (a) XC = 7950 �; (b) XC = 3180 �; (c) XC = 265 �

14.22 Two capacitors in parallel are connected across a 120-V line. The first capacitor has a charge of
0.00006 C and the second capacitor has a charge of 0.000048 C. What is the capacitance of each
capacitor and what is the total capacitance? Ans. C1 = 0.5 µF; C2 = 0.4 µF; CT = 0.9 µF
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14.23 Find the indicated quantity.

C, F Q, C V , V Ans. C, F Q, C V , V

(a) ? 11 110 (a) 0.1 …. ….

(b) 0.3 ? 220 (b) …. 66 ….

(c) 0.2 50 ? (c) …. …. 250

14.24 The capacitance of a known parallel-plate capacitor with air as a dielectric is 0.248 µF. What is the
capacitance if (a) Teflon with a dielectric constant of 2.1 replaces air; (b) the area of one plate is
reduced by one-half; (c) the separation distance is increased by a factor of 1 1

2 ; and (d) rubber with a
dielectric constant of 3 replaces air, the area of a plate is increased by 1 1

4 , and the separation distance
is reduced to three-fourths its original value?
Ans. (a) C = 0.521 µF; (b) C = 0.124 µF; (c) C = 0.165 µF; (d) C = 1.24 µF

14.25 What is the reactance of an oscillator capacitor of 400 pF to a frequency of 630 kHz?
Ans. XC = 631 �

14.26 Find the total capacitance of the capacitive networks shown (Fig. 14-33).
Ans. (a) CT = 0.40 µF; (b) CT = 0.065 µF; (c) CT = 0.04 µF; (d) CT = 0.05 µF;

(e) CT = 0.84 µF

Fig. 14-33
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14.27 A 10-V 1-MHz signal appears across a 1200-pF capacitor. Find the current passed by the capacitor.
Ans. IC = 75.2 mA; (XC = 133 �)

14.28 A filter circuit consists of an inductor and two capacitors (Fig. 14-34). Its purpose is to smooth the
power-supply voltages so that a pure direct current is delivered to the load. If the reactance of C1 is
175 � at a frequency of 60 Hz, what is its capacitance? Ans. C1 = 15.1 µF

Fig. 14-34 Fig. 14-35

14.29 Find the impedance of the output of the tone control circuit (Fig. 14-35).
Ans. Z = 4700 �; (XC = 3980 �)

14.30 What is the total capacitance of each of the following three capacitors connected in parallel:
300-pF 100-V, 0.001-µF 150 V, and 0.003-µF 50-V? What is the working voltage of the parallel
combination? Ans. CT = 4300 pF or 0.0043 µF, 50 V

14.31 What capacitance must be added in parallel to a 200-pF capacitor in order to obtain a total capacitance
of 1100 pF? Ans. 900 pF

14.32 Two capacitors are placed in series across the secondary line of a transformer to reduce voltage
peaks. What is the total capacitance and what is the working voltage of the pair of 0.008-µF 650-V
capacitors? Ans. CT = 0.004 µF, 1300 V

14.33 A Colpitts oscillator has two capacitors in series, C1 = 300 pF and C2 = 300 pF, and oscillates at a
frequency of 100 kHz. What is the total capacitance and what is the reactance?
Ans. CT = 150 pF; XC = 10 600 �

14.34 What is the capacitive reactance between two transmission wires if the stray capacitance between
them is 10 pF and one wire carries a radio frequency of 1200 kHz?
Ans. XC = 13 250 � or 13.25 k�

14.35 Find the indicated quantity.

XC, � f C IC VC , V

(a) ? 120 Hz 10 µF 25 mA ?
(b) ? 4.2 MHz ? 160 mA 400
(c) 200 600 kHz ? ? 10
(d) ? 800 Hz 2 µF ? 20
(e) 1000 500 Hz ? 22 mA ?
(f ) ? ? 30 pF 20 mA 106
(g) ? ? 0.01 µF 4 A 3
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Ans.
XC, � f C IC VC , V

(a) 133 …. …. …. 3.32
(b) 2500 …. 15.2 pF …. ….
(c) …. …. 1325 pF 50 mA ….
(d) 99.4 …. …. 0.2 A ….
(e) …. …. 0.318 µF …. 22
(f ) 5300 1 MHz …. …. ….
(g) 0.75 21.25 MHz …. …. ….

14.36 Find the impedance of a capacitor if its reactance is 40 � and its resistance is 20 �.
Ans. Z = 44.7 �

14.37 Find the impedance of a capacitive circuit to a 1.5-kHz audio signal if the resistance is 2000 � and
the capacitance is 0.02 µF. Ans. Z = 5670 �

14.38 What is the impedance of a capacitive circuit to 20-kHz frequency if its resistance is 400 � and its
capacitance is 0.032 µF? Ans. Z = 471 �

14.39 A 120-V 60-Hz ac voltage is impressed across a series circuit of a 10-� resistor and a capacitor whose
reactance is 15 �. Find the impedance, phase angle, line current, voltage drop across the resistor and
the capacitor, and power. Draw the phasor diagram.
Ans. Z = 18 �; θ = 56.3◦, I leading VT ; I = 6.67 A; VR = 66.7 V; VC = 100 V; P = 444 W.

For the phasor diagram, see Fig. 14-36.

Fig. 14-36 Fig. 14-37

14.40 A 110-V 200-Hz ac voltage is applied across a series circuit of a 100-� resistor and a 15.9-µF
capacitor. Find Z, θ, I, VR, VC , and P . Draw the phasor diagram.
Ans. Z = 122 �; θ = 26.6◦, I leading VT ; I = 0.982 A; VR = 100 V; VC = 50 V; P = 100 W.
For the phasor diagram, see Fig. 14-37.

14.41 A 5-k� resistor and an unknown capacitor are placed in series across a 60-Hz line. If the voltage
across the resistor is 30 V and the voltage across the capacitor is 60 V, find the impressed voltage, the
current in the resistor, the capacitive reactance, and the capacitance of the capacitor.
Ans. VT = 67.1 V; I = IR = 6 mA; XC = 10 k�; C = 0.265 µF

14.42 A circuit consisting of a 30-µF capacitance in series with a rheostat is connected across a 120-V
60-Hz line. What must the value of the resistance be in order to permit a current of 1 A to flow?
(Hint: Solve the impedance triangle in Fig. 14-38 for R.) Ans. R = 81.2 �
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14.43 In a resistance-coupled stage (Fig. 14-39), the voltage drop across points A and B is 14.14 V. If the
frequency of the current is 1 kHz, find the voltage across the resistor. Draw the phasor diagram.
Ans. VR = 10 V; for the phasor diagram, see Fig. 14-40.

Fig. 14-38 Fig. 14-39 Fig. 14-40

14.44 A 15-� resistor and an 8-� capacitive reactance are placed in parallel across a 120-V ac line. Find
the phasor branch currents, total current and phase angle, impedance, and power drawn; and draw
the phasor diagram.
Ans. IR = 8 A; IC = 15 A; IT = 17 A, θ = 61.9◦, IT leads VT ; ZT = 7.1 �; P = 960 W; for the
phasor diagram, see Fig. 14-41

Fig. 14-41 Fig. 14-42

14.45 A 20-� resistor and a 7.95-µF capacitor are connected in parallel across a 100-V 2-kHz source. Find
the branch currents, total current and phase angle, impedance, and power drawn; and draw the phasor
diagram.
Ans. IR = 5 A; IC = 10 A; IT = 11.2 A, θ = 63.4◦, IT leads VT ; ZT = 8.9 �; P = 500 W; for
the phasor diagram, see Fig. 14-42

14.46 For the low-pass filter circuit (Fig. 14-43), find IC , IR , IT , and the percentage of IT that passes
through the resistor for an audio frequency at 1 kHz and for a radio frequency at 2 MHz.
Ans. AF case: IC = 0.5 mA; IR = 19.9 mA; IT = 19.9 mA; 100 percent; RF case: IC = 1 A;
IR = 19.9 mA; IT = 1.002 A; 2 percent

Fig. 14-43
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14.47 Find the indicated values for an RC parallel circuit.

VT , V R XC IR IC IT ZT θ◦ P , W

(a) 120 120 � 60 � ? ? ? ? ? ?
(b) 8 4 k� 8 k� ? ? ? ? ? ?
(c) 20 40 � 40 � ? ? ? ? ? ?

Ans. VT , V R XC IR IC IT ZT θ◦ P , W

(a) . . . . . . . . . . . . 1 A 2 A 2.24 A 54.5 � 63.4 120
(b) . . . . . . . . . . . . 2 mA 1 mA 2.24 mA 3.57 k� 26.6 0.016
(c) . . . . . . . . . . . . 0.5 A 0.5 A 0.707 A 28.2 � 45 10



 

Chapter 15

Single-Phase Circuits

THE GENERAL RLC CIRCUIT

The preceding two chapters have explained how a combination of inductance and resistance and then
capacitance and resistance behave in a series circuit and in a parallel circuit. We saw how the RL and RC
combination affect the current, voltage, power, power factor, and phase angle of a circuit. In this chapter, all
three fundamental circuit parameters—inductance, capacitance, and resistance—are combined and their effect
on circuit values studied.

RLC IN SERIES

Current in a series circuit containing resistance, inductive reactance, and capacitive reactance (Fig. 15-1a)
is determined by the total impedance of the combination. The current I is the same in R, XL, and XC since
they are in series. The voltage drop across each element is found by Ohm’s law:

VR = IR VL = IXL VC = IXC

where VR = voltage drop across the resistance, V
VL = voltage drop across the inductance, V
VC = voltage drop across the capacitance, V

Fig. 15-1 R, XL, and XC in series; XL > XC for inductive circuit

The voltage drop across the resistance is in phase with the current through the resistance (Fig. 15-1b). The
voltage across the inductance leads the current through the inductance by 90◦. The voltage across the capacitance
lags the current through the capacitance by 90◦ (Fig. 15-1b). Since VL and VC are exactly 180◦ out of phase
and acting in exactly opposite directions, they are added algebraically. When XL is greater than XC , the circuit
is inductive, VL is greater than VC , and I lags VT (Fig. 15-1c).

332
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When XC is greater than XL, the circuit is capacitive. Now VC is greater than VL so that I leads VT

(Fig. 15-2).

Fig. 15-2 R, XL, and XC in series; XC > XL for capacitive circuit

When XL > XC , the voltage-phasor diagram (Fig. 15-1c) shows that the total voltage VT and phase angle
are as follows:

VT =
√

V 2
R + (VL − VC)2 (15-1)

θ = arctan
VL − VC

VR

(15-2)

When XC > XL (Fig. 15-2b),

VT =
√

V 2
R + (VC − VL)2 (15-3)

θ = arctan

(
−VC − VL

VR

)
(15-4)

where VT = applied voltage, V
VR = voltage drop across the resistance, V
VL = voltage drop across the inductance, V
VC = voltage drop across the capacitance, V

θ = phase angle between VT and I , degrees

Example 15.1 In an RLC series ac circuit (Fig. 15-3a), find the applied voltage and phase angle. Draw the voltage-phasor
diagram.

By Ohm’s law,

VR = IR = 2(4) = 8 V VL = IXL = 2(19.5) = 39 V VC = IXC = 2(12) = 24 V

With VL > VC ,

VT =
√

V 2
R

+ (VL − VC)2 =
√

82 + (39 − 24)2 =
√

82 + 152 = 17 V Ans. (15-1)
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Fig. 15-3

θ = arctan
VL − VC

VR
(15-2)

= arctan
39 − 24

8
= arctan

15

8
= arctan 1.88 = 61.9◦ I lags VT Ans.

For the phasor diagram, see Fig. 15-3b.

Impedance in Series RLC

Impedance Z is equal to the phasor sum of R, XL, and XC . In Fig. 15-4a:

When XL > XC , Z =
√

R2 + (XL − XC)2 (15-5)

In Fig. 15-4b:

When XC > XL, Z =
√

R2 + (XC − XL)2 (15-6)

It is convenient to define net reactance X as

X = XL − XC (15-7)

Then, from Eqs. (15-5) and (15-6),

Z =
√

R2 + X2 (15-8)

for both inductive and capacitive RLC series circuits (Fig. 15-4).

Fig. 15-4 Series RLC impedance-phasor triangle
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Example 15.2 Find the impedance of the series RLC circuit in Example 15.1.

Z =
√

R2 + X2 (15-8)

X = XL − XC = 19.5 − 12 = 7.5 �

Then Z =
√

42 + (7.5)2 = 8.5 � Ans.

Or, more simply, by Ohm’s law,

Z = VT

I
= 17

2
= 8.5 � Ans.

Example 15.3 When inductive reactance XL and capacitive reactance XC are exactly equal in a series RLC circuit,
a condition called series resonance exists. If in a series circuit R = 4 � and XL = XC = 19.5 �, find Z and VT .

Z =
√

R2 + X2 (15-8)

X = XL − XC = 19.5 − 19.5 = 0

Then Z =
√

R2 = R = 4 � Ans.

So VT = IZ = IR = 2(4) = 8 V Ans.

Note that in series resonance, the impedance of the circuit is equal to the resistance of the circuit. This is the minimum
value of impedance for the circuit. Therefore at resonance, the highest current will flow.

RLC IN PARALLEL

A three-branch parallel ac circuit (Fig. 15-5a) has resistance in one branch, inductance in the second
branch, and capacitance in the third branch. The voltage is the same across each parallel branch, so VT =
VR = VL = VC . The applied voltage VT is used as the reference line to measure phase angle θ . The total
current IT is the phasor sum of IR , IL, and IC . The current in the resistance IR is in phase with the applied
voltage VT (Fig. 15-5b). The current in the inductance IL lags the voltage VT by 90◦. The current in the
capacitor IC leads the voltage VT by 90◦. IL and IC are exactly 180◦ out of phase and thus acting in opposite

Fig. 15-5 R, XL, and XC in parallel; IL > IC for inductive circuit
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directions (Fig. 15-5b). When IL > IC , IT lags VT (Fig. 15-5c) so the parallel RLC circuit is considered
inductive.

If IC > IL, the current relationships and phasor triangle (Fig. 15-6) show that IT now leads VT so this
type of parallel RLC circuit is considered capacitive.

Fig. 15-6 R, XL, and XC in parallel; IC > IL for capacitive circuit

When IL > IC , the circuit is inductive and

IT =
√

I 2
R + (IL − IC)2 (15-9)

θ = arctan

(
−IL − IC

IR

)
(15-10)

and when IC > IL, the circuit is capacitive and

IT =
√

I 2
R + (IC − IL)2 (15-11)

θ = arctan
IC − IL

IR

(15-12)

In a parallel RLC circuit, when XL > XC , the capacitive current will be greater than the inductive current
and the circuit is capacitive. When XC > XL, the inductive current is greater than the capacitive current and
the circuit is inductive. These relationships are opposite to those for a series RLC circuit.

Impedance in Parallel RLC

The total impedance ZT of a parallel RLC circuit equals the total voltage VT divided by the total
current IT .

ZT = VT

IT

(15-13)

Example 15.4 A 400-� resistor, a 50-� inductive reactance, and a 40-� capacitive reactance are placed in parallel
across a 120-V ac line (Fig. 15-7a). Find the phasor branch currents, total current, phase angle, and impedance. Draw the
phasor diagram.
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Fig. 15-7

Step 1. Find IR , IL, and IC .

IR = VT

R
= 120

400
= 0.3 A Ans.

IL = VT

XL
= 120

50
= 2.4 A Ans.

IC = VT

XC
= 120

40
= 3.0 A Ans.

Step 2. Find IT and θ . Since XL > XC (50 � > 40 �) or IC > IL (3.0 A > 2.4 A), the circuit is capacitive.

IT =
√

I2
R

+ (IC − IL)2 (15-11)

=
√

(0.3)2 + (3.0 − 2.4)2 =
√

(0.3)2 + (0.6)2 = 0.671 A Ans.

θ = arctan
IC − IL

IR
(15-12)

= arctan
3.0 − 2.4

0.3
= arctan

0.6

0.3
= arctan 2 = 63.4◦ IT leads VT Ans.

Step 3. Find ZT , using Eq. (15-13).

ZT = VT

IT
= 120

0.671
= 179 � Ans.

Step 4. Draw the phasor diagram (Fig. 15-7b).

Example 15.5 A parallel RLC circuit in which XL = XC is said to be in parallel resonance. Since XL and XC are
dependent upon the values of L, C, and frequency f , parallel resonance (that is, XL = XC ) can be obtained by choosing
the proper values of L and C for a given frequency. If the values of L and C are already given, then the frequency can
be varied until XL = XC . If in Example 15.4, XL = XC = 40 �, find the values of the same quantities as in that
example.

Step 1. Find IR , IL, and IC .

IR = VT

R
= 120

400
= 0.3 A Ans.

IL = IC = VT

XL
= 120

40
= 3 A Ans.
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Step 2. Find IT and θ . Since IL and IC are equal and opposite in phase,

IT =
√

I2
R

+ (IC − IL)2 (15-11)

=
√

I2
R

= IR = 0.3 A Ans.

Note that only 0.3 A comes from the source though the reactive branch currents are each 3 A. At resonance these
currents are equal and opposite so that they cancel each other.

θ = arctan
IL − IC

IT
(15-12)

= arctan
0

IT
= arctan 0 = 0◦ IT in phase with VT Ans.

Step 3. Find ZT , using Eq. (15-13).

ZT = VT

IT
= 120

0.3
= 400 � Ans.

Step 4. Draw the phasor diagram.

Note that a parallel resonant circuit reduces to a resistive circuit (θ = 0◦). Because IL and IC cancel each
other, the current IT is a minimum so impedance ZT is a maximum.

RL AND RC BRANCHES IN PARALLEL

Total current IT for a circuit containing parallel branches of RL and RC (Fig. 15-8) is the phasor sum of
the branch currents I1 and I2. A convenient way to find IT is to (1) add algebraically the horizontal components
of I1 and I2 with respect to the phasor reference VT , (2) add algebraically the vertical components of I1 and
I2, and (3) form a right triangle with these two sums as legs and calculate the value of the hypotenuse (IT )
and its angle to the horizontal.

Example 15.6 An ac circuit has an RL branch parallel to an RC branch (Fig. 15-9a). Find the total current, phase angle,
and impedance of this circuit.

Step 1. For the RL branch, find Z1, θ1, and I1.

Z1 =
√

R2
1 + X2

1 =
√

62 + 82 = 10 � θ1 = arctan
X1

R1
= arctan

8

6
= 53.1◦

I1 = VT

Z1
= 60

10
= 6 A
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Fig. 15-8 Parallel RL and RC branches Fig. 15-9a

I1 lags VT in the RL branch (inductive circuit) by 53.1◦. Resolve I1 into its horizontal and vertical components
with respect to VT (Fig. 15-9b).

Horizontal component: I1 cos θ1 = 6 cos
(−53.1◦) = 3.6 A

Vertical component: I1 sin θ1 = 6 sin
(−53.1◦) = −4.8 A

Fig. 15-9b, c

Step 2. For the RC branch, find Z2, θ2, and I2.

Z2 =
√

R2
2 + X2

2 =
√

42 + 42 = 5.66 � θ2 = arctan

(
−X2

R2

)
= arctan −4

4
= arctan −1 = −45◦

I2 = VT

Z2
= 60

5.66
= 10.6 A

I2 leads VT in the RC branch (capacitive circuit) by 45◦. Resolve I2 into its horizontal and vertical components
with respect to VT (Fig. 15-9c).

Horizontal component: I2 cos θ2 = 10.6 cos 45◦ = 7.5 A

Vertical component: I2 sin θ2 = 10.6 sin 45◦ = 7.5 A

Step 3. Find IT .
IT is the phasor sum of I1 and I2. Add the horizontal components of I1 and I2.

3.6 + 7.5 = 11.1 A
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Add the vertical components of I1 and I2.

−4.8 + 7.5 = 2.7 A

The resultant phasor is IT (Fig. 15-9d).

IT =
√

(11.1)2 + (2.7)2 = √
130.5 = 11.4 A Ans.

θ = arctan
2.7

11.1
= arctan 0.243 = 13.7◦ Ans.

ZT = VT

IT
= 60

11.4
= 5.26 � Ans.

Note that IT leads VT (Fig. 15-9d) so that the circuit is leading
and thus capacitive.

Fig. 15-9d

POWER AND POWER FACTOR

The instantaneous power p is the product of the current i and the voltage v at that instant of time t .

P = vi (15-14)

When v and i are both positive or both negative, their product p is positive. Therefore, power is being expended
throughout the cycle (Fig. 15-10). If v is negative while i is positive during any part of the cycle (Fig. 15-11),
or if i is negative while v is positive, their product will be negative. This “negative power” is not available for
work; it is power returned to the line.

Fig. 15-10 Power–time diagram when voltage and current
are in phase

Fig. 15-11 Power–time diagram in series RL cir-
cuit where current lags voltage by phase
angle θ
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The product of the voltage across the resistance and the current through the resistance is always positive
and is called real power. Real power can be considered as resistive power that is dissipated as heat. Since
the voltage across a reactance is always 90◦ out of phase with the current through the reactance, the product
px = vxix is always negative. This product is called reactive power and is due to the reactance of a circuit.
Similarly, the product of the line voltage and the line current is known as apparent power.

Real power, reactive power, and apparent power can be represented by a right triangle (Fig. 15-12a). From
this triangle the power formulas are:

Real power P = VRIR = VI cos θ, W (15-15)

or P = I 2R, W (15-16)

P = V 2

R
, W (15-17)

Reactive power Q = VXIX = VI sin θ, VAR (15-18)

Apparent power S = VI, VA (15-19)

In a circuit where the net reactance is inductive, Q is lagging and shown above the horizontal axis
(Fig. 15-12b); when the net reactance is capacitive, Q is leading and shown below the horizontal axis
(Fig. 15-12c).

Fig. 15-12 Power triangle

The ratio of real power to apparent power, called the power factor (PF), is

PF = real power

apparent power
= VRIR

VI
= VI cos θ

VI
= cos θ (15-20)

Also from Eq. (15-15),

PF = cos θ = P

VI
(15-21)

The cos θ of a circuit is the power factor, PF, of the circuit. The power factor determines what portion of
the apparent power is real power and can vary from 1 when the phase angle θ is 0◦, to 0 when θ is 90◦. When
θ = 0◦, P = V I , the formula for voltage and current of a circuit in phase. When θ = 90◦, P = V I × 0 = 0,
indicating that no power is being expended or consumed.
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A circuit in which the current lags the voltage (i.e., an inductive circuit) is said to have a lagging PF
(Fig. 15-12b); a circuit in which the current leads the voltage (i.e., a capacitive circuit) is said to have a
leading PF (Fig. 15-12c).

Power factor is expressed as a decimal or as a percentage. A power factor of 0.7 is the same as a power
factor of 70 percent. At unity (PF = 1 or 100 percent), the current and voltage are in phase. A 70 percent PF
means that the device uses only 70 percent of the voltampere input. It is desirable to design circuits that have
a high PF since such circuits make the most efficient use of the current delivered to the load.

When we state that a motor draws 10 kVA (1 kVA = 1000 VA) from a power line, we recognize that this
is the apparent power taken by the motor. Kilovoltamperes always refers to the apparent power. Similarly,
when we say a motor draws 10 kW, we mean that the real power taken by the motor is 10 kW.

Example 15.7 A current of 7 A lags voltage of 220 V by 30◦. What is the PF and real power taken by the load?

PF = cos θ (15-20)

= cos 30◦ = 0.866 Ans.

P = VI cos θ (15-15)

= 220(7)(0.866) = 1334 W Ans.

Example 15.8 A motor rated at 240 V, 8 A draws 1536 W at full load. What is its PF?
Use Eq. (15-21).

PF = P

VI
= 1536

240(8)
= 0.8 or 80% Ans.

Example 15.9 In the RLC series ac circuit shown in Fig. 15-3a, the line current of 2 A lags the applied voltage of 17 V
by 61.9◦. Find PF, P , Q, and S. Draw the power triangle.

PF = cos θ (15-20)

= cos 61.9◦ = 0.471 or 47.1% lagging Ans.

P = VI cos θ (15-15)

= 17(2)(0.471) = 16 W Ans.

or P = I2R (15-16)

= 22(4) = 16 W Ans.

Q = VI sin θ (15-18)

= 17(2)(sin 61.9◦) = 17(2)(0.882) = 30 VAR lagging Ans.

S = VI (15-19)

= 17(2) = 34 VA Ans.

Ans.
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Power Factor Correction

In order to make the most efficient use of the current delivered to a load, we desire a high PF or a PF
that approaches unity. A low PF is generally due to the large inductive loads, such as induction motors, which
take a lagging current. In order to correct this low PF, it is necessary to bring the current as closely in phase
with the voltage as possible. That is, the phase angle θ is made as small as possible. This is usually done by
placing a capacitive load, which produces a leading current, in parallel with the inductive load.

Example 15.10 With the use of a phasor diagram show how the PF produced by an inductive motor can be corrected
to unity.

We show an induction motor circuit (Fig. 15-13a) and its current-phasor diagram (Fig. 15-13b). Current I lags the
voltage V by an angle θ where PF = cos θ = 0.7. We desire to raise the PF to 1.0. We do this by connecting a capacitor
across the motor (Fig. 15-14a). If the capacitor current is equal to the inductive current, the two cancel one another
(Fig. 15-14b). The line current I1 is now less than its original value and in phase with V so that PF = cos 0◦ = 1. Notice
that the current through the motor I remains unchanged. The reactive part of the current to the motor is being supplied by
the capacitor. The line now has only to supply the component of current for the resistive part of the motor load.

Fig. 15-13 An induction motor represented by a series RL circuit

Fig. 15-14 Induction motor with parallel capacitor added

Example 15.11 An induction motor draws 1.5 kW and 7.5 A from a 220-V 60-Hz line. What must be the capacitance
of a capacitor in parallel in order to raise the total PF to unity (Fig. 15-15a)?

Step 1. Find phase angle θM and then the reactive power QM of the motor load.

PM = VMIM cos θM (15-15)
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Fig. 15-15

from which
cos θM = PM

VMIM
= 1500

220(7.5)
= 0.909

θM = arccos 0.909 = 24.6◦

From the motor power triangle (Fig. 15-15b),

QM = 1500 tan 24.6◦ = 687 VAR lagging

Step 2. Find the current IC drawn by the capacitor. For the current to have PF = 1, the capacitor must have a QC =
687 VAR leading to balance the QM = 687 VAR lagging. Since reactive power in a pure capacitor is also its
apparent power,

QC = SC = VCIC (15-18)

IC = SC

VC
= 687

220
= 3.12 A

Step 3. Find the reactance of the capacitor.

XC = VC

IC
= 220

3.12
= 70.5 �

Step 4. Find the capacitance of the capacitor, using Eq. (14-9).

C = 0.159

f XC
= 0.159

60(70.5)
= 37.6 × 10−6 = 37.6 µF Ans.

Example 15.12 An induction motor takes 15 kVA at 440 V and
75 percent PF lagging. What must be the PF of a 10-kVA capacitive
load connected in parallel in order to raise the total PF to unity?

Step 1. Find the reactive power of the induction motor, QM .

PFM = cos θ = 0.75

θ = arccos 0.75 = 41.4◦

QM = VI sin θ = 15 sin 41.4◦ = 9.92 kVAR lagging
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Step 2. Find the phase angle and then the PF for the capacitive load.
To have a circuit with PF = 1, the total reactive power must
equal zero. Since the motor uses 9.92 kVAR lagging, the
leading PF load must also use 9.92 kVAR. From the power
triangle for leading load,

sin θ = QS

SS
= 9.92

10
= 0.992

θ = arcsin 0.992 = 82.7◦

PF = cos θ = cos 82.7◦ = 0.127 = 12.7% leading Ans.

Solved Problems

15.1 For the RLC series circuit (Fig. 15-16a), find XL, XC , Z, I , VR , VL, VC , P , and PF. Draw the
voltage-phasor diagram.

Fig. 15-16

Step 1. Find XL, XC , and then Z.

XL = 6.28 fL (13-4)

= 6.28(2 × 103)(2.55 × 10−3) = 32 � Ans.

XC = 0.159

f C
(14-8)

= 0.159

(2 × 103)(1.59 × 10−6)
= 50 � Ans.

X = XL − XC = 32 − 50 = −18 �

Minus indicates the circuit is capacitive (XC > XL).

Z =
√

R2 + X2 =
√

242 + (−18)2 = 30 � Ans.

θ = arctan
X

R
= arctan

(
−18

24

)
= −36.9◦ Ans.
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Step 2. Find I , VR , VL, and VC by Ohm’s law.

I = VT

Z
= 30

30
= 1 A Ans.

VR = IR = 1(24) = 24 V Ans.

VL = IXL = 1(32) = 32 V Ans.

VC = IXC = 1(50) = 50 V Ans.

Step 3. Find P and PF.

P = I 2R = 12(24) = 24 W Ans.

PF = cos θ = cos(−36.9◦) = 0.8 leading Ans.

Step 4. Draw the voltage-phasor diagram (see Fig. 15-16b).

15.2 The output signal of a rectifier is 200 V at 120 Hz. It is fed to a filter circuit consisting of a 30-H
filter choke coil and a 20-µF capacitor (Fig. 15-17). How much 120-Hz voltage appears across the
capacitor? (The purpose of the filter is to reduce considerably the voltage across the capacitor.)

Fig. 15-17 Filter choke coil

Step 1. Find XL, XC , and Z.

XL = 6.28 f L = 6.28(120)(30) = 22 600 �

XC = 0.159

f C
= 0.159

120(20 × 10−6)
= 66 �

X = XL −XC = 22 600−66 = 22 534 � = 22 500 � (rounded to three significant figures)

Z =
√

R2 + X2

Since X � R,

Z ≈ X = 22 500 �

Step 2. Find I .

I = VT

Z
= 200

22 500
= 8.89 mA
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Step 3. Find VC .

VC = IXC = (8.89 × 10−3)(66) = 0.587 V Ans.

This is a satisfactory filter since only 0.587 V out of a total of 200 V ac gets through to the output
circuit.

15.3 Find the impedance and current of an RLC series circuit containing a number of series resistances
and reactances (Fig. 15-18).

Fig. 15-18 Series RLC circuit

Add the values of similar circuit elements.

Resistance: RT = R1 + R2 = 10 + 15 = 25 �

Capacitance: XC,T = XC1 + XC2 = 20 + 10 = 30 �

Inductance: XL,T = XL1 + XL2 = 30 + 25 = 55 �

Net reactance: XT = XL,T − XC,T = 55 − 30 = 25 �

Z =
√

R2
T + X2

T =
√

252 + 252 = 35.4 � Ans.

I = VT

Z
= 100

35.4
= 2.82 A Ans.

15.4 A 30-� resistor, a 40-� inductive reactance, and a 60-� capacitive reactance are connected in
parallel across a 120-V 60-Hz ac line (Fig. 15-19a). Find IT , θ , ZT , and P . Is the circuit inductive
or capacitive? Draw the current-phasor diagram.

Step 1. Find IT and θ .

IR = VT

R
= 120

30
= 4 A IL = VT

XL

= 120

40
= 3 A IC = VT

XC

= 120

60
= 2 A
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Fig. 15-19

Since IL > IC , the circuit is inductive.

IT =
√

I 2
R + (IL − IC)2 (15-9)

=
√

42 + 12 = 4.12 A Ans.

θ = arctan

(
−IL − IC

IR

)
(15-10)

= arctan

(
−1

4

)
= −14◦ Ans.

Step 2. Find ZT .

ZT = VT

IT

= 120

4.12
= 29.1 A Ans.

Step 3. Find P .

P = VT IT cos θ = 120(4.12)(cos 14◦) = 480 W Ans.

or P = I 2
RR = 42(30) = 480 W Ans.

Step 4. Draw the current-phasor diagram (see Fig. 15-19b). IT lags VT by 14◦.

15.5 An ac circuit can have a number of parallel resistances and reactances (Fig. 15-20). This circuit has
more components than Fig. 15-19a (Problem 15.4). Verify that it has the same value of IT , ZT , and θ .

Fig. 15-20 Six-branch parallel RLC circuit
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IR1 = 120

60
= 2 A IL1 = 120

80
= 1.5 A IC1 = 120

120
= 1 A

IR2 = 120

60
= 2 A IL2 = 120

80
= 1.5 A IC2 = 120

120
= 1 A

IR,T = 2 + 2 = 4 A IL,T = 1.5 + 1.5 = 3 A IC,T = 1 + 1 = 2 A

The total resistance branch current is 4 A; total inductive branch current, 3 A; and total capacitive
branch current, 2 A. These current values are the same, respectively, in Fig. 15-19a. Therefore, IT ,
ZT , and θ have the same values for both circuits.

15.6 An induction motor of 6-� resistance and 8-� inductive reactance is in parallel with a synchronous
motor of 8-� resistance and 15-� capacitive reactance (Fig. 15-21a). Find the total current drain
from a 150-V 60-Hz source, phase angle, total impedance, power factor, and power drawn by the
circuit. Find the series impedance, current, and phase angle for each branch.

Fig. 15-21
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Step 1. Find Z1, I1, and θ1, for branch 1.

Z1 = R1 = 15 � I1 = VT

R1
= 150

15
= 10 A

θ1 = 0◦ since I1 is in phase with VT

Calculate horizontal and vertical components of current with respect to VT (Fig. 15-21b).

Horizontal component: 10 A

Vertical component: 0 A

Step 2. Find Z2, I2, and θ2 for branch 2.

Z2 =
√

R2
2 + X2

L2 =
√

62 + 82 = 10 � I2 = VT

Z2
= 150

10
= 15 A

θ2 = arctan
XL2

R2
= arctan

8

6
= 53.1◦

I2 lags VT in RL series branch by 53.1◦ (Fig. 15-21c).

Horizontal component: 15 cos(−53.1◦) = 9 A
Vertical component: 15 sin(−53.1◦) = −12 A

Step 3. Find Z3, I3, and θ3 for branch 3.

Z3 =
√

R2
3 + X2

C3 =
√

82 + 152 = 17 � I3 = VT

Z3
= 150

17
= 8.82 A

θ3 = arctan

(
−XC3

R3

)
= arctan

(
−15

8

)
= −61.9◦

I3 leads VT in RC series branch by 61.9◦ (Fig. 15-21d).

Horizontal component: 8.82 cos 61.9◦ = 4.15 A
Vertical component: 8.82 sin 61.9◦ = 7.78 A

Step 4. Find LT , θ , ZT , PF, and P of the circuit. IT is the phasor sum of I1, I2, and I3. The
horizontal component of IT is the sum of the horizontal components of I1, I2, and I3, and
the vertical component of IT is the sum of their vertical components.

Horizontal component of IT = 10 + 9 + 4.15 = 23.2 A

Vertical component of IT = 0 − 12 + 7.78 = −4.22 A

The resultant phasor is IT (Fig. 15-21e).

IT =
√

(23.2)2 + (−4.22)2 = 23.6 A Ans.

θ = arctan

(
−4.22

23.2

)
= −10.3◦ Ans.

ZT = VT

IT

= 150

23.6
= 6.36 � Ans.
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PF = cos θ = cos(−10.3◦) = 0.984 lagging (IT lags VT ) Ans.

P = VT IT cos θ = 150(23.6)(0.984) = 3480 W Ans.

15.7 What value of resistance dissipates 800 W of ac power with 5 A rms current?

Use P = I 2R (15-16)

from which R = P

I 2
= 800

52
= 800

25
= 32 � Ans.

15.8 An ac motor operating at 75 percent PF draws 8 A from a 110-V ac line. Find the apparent and real
power.

Apparent power: S = VI (15-19)
= 110(8) = 880 VA Ans.

Real (true) power: P = VI cos θ (15-15)
PF = cos θ = 0.75

P = 110(8)(0.75) = 660 W Ans.

15.9 A motor operating at 85 percent PF draws 300 W from a 120-V line. What is the current drawn?

P = VI cos θ (15-15)

from which I = P

V cos θ
= 300

120(0.85)
= 2.94 A Ans.

15.10 A 10-kVA induction motor operating at 80 percent lagging PF and a 5-kVA synchronous motor operat-
ing at 70 percent leading PF are connected in parallel across a 220-V 60-Hz power line (Fig. 15-22a).
Find the total real power PT , total reactive power QT , total power factor (PF)T , total apparent
power ST , and total current IT .

Fig. 15-22a

The approach to this problem with two motors in parallel is first to solve the power triangle
for the induction motor, then the power triangle for the synchronous motor, and finally to combine
by phasor addition the components of the two power triangles to arrive at the power triangle of the
combined motors.

Step 1. Find the power relationships of the induction motor.

SA = VI = 10 kVA, given
PA = VI cos θA = 10(0.80) = 8 kW
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θA = arccos 0.8 = 36.9◦
QA = VI sin θA = 10(sin 36.9◦) = 10(0.6) = 6 kVAR lagging because circuit is inductive

The induction motor power triangle is as shown in Fig. 15-22b.

Fig. 15-22b, c, d

Step 2. Find power relationships of the synchronous motor.

SB = VI = 5 kVA, given

PB = VI cos θB = 5(0.70) = 3.5 kW

θB = arccos 0.7 = 45.6◦

QB = VI sin θB = 5(sin 45.6◦) = 5(0.71) = 3.57 kVAR leading because circuit is
capacitive

The synchronous motor power triangle is as shown in Fig. 15.22c.

Step 3. Find power relations of combined motors. If the power drawn by one branch is not in
phase with the power drawn by another branch, power must be added by phasor addition.
Therefore, PT and QT are the phasor sums of PA, PB and QA, QB , respectively. ST is the
resultant phasor of PT and QT .

PT = PA + PB = 8 + 3.5 = 11.5 kW Ans.

QT = QA − QB = 6 − 3.57 (QA > QB)

= 2.43 kVAR lagging Ans.

θT = arctan
QT

PT

= arctan
2.43

11.5
= arctan 0.211 = 11.9◦

(PF)T = cos θT = cos 11.9◦ = 0.979 = 97.9% lagging Ans.

ST =
√

P 2
T + Q2

T =
√

(11.5)2 + (2.43)2 = 11.8 kVA Ans.

The combined motors’ power triangle is as shown in Fig. 15-22d. Notice that the addition
of the synchronous motor has raised the PF from 0.80 to 0.979.

15.11 An induction motor takes 7.2 kW at 80 percent PF lagging from a 220-V 60-Hz power line (Fig. 15-23).
Find the capacitance of a capacitor placed across the motor terminals in order to increase the PF to 1.
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Fig. 15-23

Step 1. Find S and Q of the induction motor.

S = P

PF
= 7.2

0.8
= 9 kVA PF = cos θ = 0.8 θ = arccos 0.8 = 36.9◦

Q = P tan θ = 7.2 tan 36.9◦ = 5.4 kVAR lagging

Step 2. Find the current drawn by the capacitor IC . To balance 5.4 kVAR lagging, it is necessary
that the capacitor take 5.4 kVAR leading. Since reactive power in a pure capacitor is also
its apparent power,

SC = VCIC = 5.4 kVA

IC = SC

VC

= 5400

220
= 24.6 A

Step 3. Find the reactance of the capacitor.

XC = VC

IC

= 220

24.6
= 8.94 �

Step 4. Find the capacitance of the capacitor.

C = 0.159

f XC

= 0.159

60(8.94)
= 296 × 10−6 = 296 µF Ans.

15.12 An inductive load draws 5 kW at 60 percent PF lagging from a 220-V line. Find the kilovoltampere
rating of the capacitor needed to raise the total PF unity.

Step 1. Find the power relations of the inductive load (see Fig. 15-24).

Fig. 15-24

S = P

PF
= 5

0.6
= 8.33 kVA PF = cos θ = 0.6 θ = arccos 0.6 = 53.1◦

Q = 8.33 sin 53.1◦ = 6.66 kVAR lagging
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Step 2. Find the kilovoltampere rating of the capacitor. In order to raise the PF to 1, the capacitor
must provide 6.66 kVAR of reactive power leading. Since the apparent power in a capacitor
is equal to its reactive power,

SC = QC = 6.66 kVA Ans.

15.13 A plant load draws 2000 kVA from a 240-V line at a PF of 0.7 lagging. Calculate the kilovoltamperage
required of a capacitor bank in parallel with the plant for the overall PF to be 0.9 lagging.

We use the method of power triangles.

PF = cos θ = 0.7 θ = arccos 0.7 = 45.6◦

Real power of the plant load:

P = VI cos θ = 2000(0.7) = 1400 kW

Reactive power of the plant load:

Q = VI sin θ = 2000 sin 45.6◦ = 1430 kVAR lagging

Therefore, the power triangle of the original plant is as shown in Fig. 15-25a.

Fig. 15-25 Method of power triangles

We add a parallel capacitor bank to improve the power factor of the plant to 0.9 lagging. The total
real power remains the same. We calculate the new Q of the plant.

(PF)1 = cos θ = 0.9 θ1 = arccos 0.9 = 25.8◦ Q1 = 1400 tan 25.8◦ = 677 kVAR lagging

The total reactive power of a circuit is equal to the algebraic sum of the reactive powers of each
branch. Therefore,

Q of the capacitor bank = original Q of the plant − new Q of the plant

= 1430 − 677 = 753 kVAR leading

Thus S of the capacitor bank = 753 kVA Ans.

The power triangle with the capacitor bank added (Fig. 15-25b) shows how the leading Q of the
capacitor reduces the overall plant Q to 677 kVAR lagging to produce an improved PF of 0.9.
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15.14 A series RL combination in an ac circuit has R = 10 � and XL = 12 �. A capacitor is connected
across the combination (Fig. 15-26a). What should be the reactance of the capacitor if the circuit is
to have a PF of unity?

Fig. 15-26

Step 1. Find I1.

Z1 =
√

R2 + X2
L =

√
102 + 122 = 15.6 � θ = arctan

XL

R
= arctan

12

10
= 50.2◦

Assume VT = 156 V. This choice is arbitrary but is conveniently used because the
impedance of the RL branch is 15.6 �. Then

I1 = VT

Z1
= 156

15.6
= 10 A

The phasor diagram is as shown in Fig. 15-26b.

Step 2. Find I2. For PF = 1, IT must be in phase with VT . IT is the phasor sum of I1 and I2. The
current in the capacitor, I2 (leading VT by 90◦), must cancel the vertical component of I1
in order for IT to be in phase with VT (Fig. 15-26b). Therefore,

I2 = 10 sin 50.2◦ = 7.68 A

Step 3. Find XC .

XC = VT

I2
= 156

7.68
= 20.3 � Ans.

Supplementary Problems

15.15 In a series circuit, R = 12 �, XL = 7 �, and XC = 2 �. Find the impedance and phase angle of the
circuit and the line current when the ac voltage is 110 V. Also find all voltage drops and draw the
voltage-phasor diagram.
Ans. Z = 13 �, θ = 22.6◦; I = 8.46 A (lagging); VR = 101.5 V; VL = 59.2 V; VC = 16.9 V;
phasor diagram: Fig. 15-27.
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Fig. 15-27 Phasor diagram

15.16 In a series circuit, R = 6 �, XL = 4 �, and XC = 12 �. Find Z, θ , I , VR , VL, VC , and P when the
line voltage is 115 V.
Ans. Z = 10 �; θ = −53.1◦; I = 11.5 A (leading); VR = 69 V; VL = 46 V; VC = 138 V;
P = 794 W

15.17 A 130-V 200-Hz power supply is connected across a 10-k� resistor, a 0.05-µF capacitor, and a 10-H
coil in series. Find XL, XC , Z, θ , I , and P .
Ans. XL = 12 560 �; XC = 15 900 �; Z = 10 540 �; θ = −18.5◦; I = 12.3 mA (leading);
P = 1.51 W

15.18 A rectifier delivers 250 V at 120 Hz to a filter circuit consisting of a filter choke coil having 25-H
inductance and 400-� resistance, and a 25-µF capacitor (Fig. 15-28). Find the reactance of the coil,
the reactance of the capacitor, the impedance of the circuit, the current, and the amount of the 120-Hz
voltage that will appear across the capacitor.
Ans. XL = 18 840 �; XC = 53 �; Z = 18 790 �. For practical purposes the circuit is predomi-
nantly inductive (Z ≈ XL). I = 13.3 mA; VC = 0.7 V. Note that only 0.7 V out of a total of 250 V
of the 120-Hz ac reaches the output.

Fig. 15-28

15.19 A series circuit has R = 300 �, XC1 = 300 �, XC2 = 500 �, XL1 = 400 �, and XL2 = 800 �, all
in series with an applied voltage VT of 400 V. Calculate Z, I , and θ .
Ans. Z = 500 �; I = 0.8 A (lagging); θ = 53.1◦

15.20 A 10-H coil and a 0.75-µF capacitor are in series with a variable resistor. What must be the value of
the resistance in order to draw 0.4 A from a 120-V 60-Hz line?
Ans. R = 186 �; (XL − XC = 235 �)

15.21 A series resonant circuit (XL = XC) has a 0.1-H inductance, a 1.013-µF capacitor, and a 5-� resistor
connected across a 50-V 500-Hz supply line. Find the inductive and capacitive reactance, impedance,
phase angle, current, and voltage across each part of the circuit. Draw the phasor diagram.
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Ans. XL = 314 �; XC = 314 �; Z = 5 �; θ = 0◦; I = 10 A; VR = 50 V; VL = 3140 V;
VC = 3140 V; phasor diagram: Fig. 15-29.

Fig. 15-29 Phasor diagram

15.22 Fill in the indicated values for a series RLC circuit.

VT , V θ◦ I, A R, � XL, � XC, � Z, � VR , V VL, V VC , V P , W Circuit Type

(a) ? ? 1 3 8 4 ? ? ? ? ? ?
(b) 104 ? ? 12 2 7 ? ? ? ? ? ?
(c) 110 ? ? 22 18 18 ? ? ? ? ? ?
(d) ? 45◦ ? 15 30 ? ? 30 ? ? ? ?
(e) 14.1 ? 0.1 ? 150 250 ? ? ? ? ? ?

Ans.

VT , V θ◦ I, A R, � XL, � XC, � Z, � VR, V VL, V VC, V P, W Circuit Type

(a) 5 53.1◦ .... .... .... .... 5 3 8 4 3 Inductive
(b) .... −22.6◦ 8 .... .... .... 13 96 16 56 768 Capacitive
(c) .... 0 5 .... .... .... 22 110 90 90 550 Resonant
(d) 42.4 .... 2 .... .... 15 21.2 .... 60 30 60 Inductive
(e) .... −45◦ .... 99.4 .... .... 141 10 15 25 1 Capacitive

15.23 A 30-� resistor, a 15-� inductive reactance, and a 12-� capacitive reactance are connected in
parallel across a 120-V 60-Hz line. Find (a) the phasor branch currents, (b) total current and phase
angle, (c) impedance, and (d) power drawn by the circuit; and (e) draw the current-phasor diagram.
Ans. (a) IR = 4 A; IL = 8 A; IC = 10 A; (b) IT = 4.47 A (leading); θ = 26.6◦; (c) ZT =
26.8 �; (d) P = 480 W; (e) phasor diagram: Fig. 15-30

Fig. 15-30 Phasor diagram
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15.24 A 100-� resistor, a 3-mH coil, and a 0.05-µF capacitor are in parallel across a 200-V 10-kHz ac
source. Find (a) the reactance of the coil and capacitor, (b) phasor current drawn by each branch,
(c) total current, (d) impedance and phase angle, and (e) power drawn by the circuit; and (f ) draw
the phasor diagram.
Ans. (a) XL = 188 �; XC = 318 �; (b) IR = 2 A; IL = 1.06 A; IC = 0.63 A; (c) IT =
2.05 A (lagging); (d) ZT = 97.6 �; θ = −12.1◦; (e) P = 400 W; (f ) phasor diagram:
Fig. 15-31

Fig. 15-31 Phasor diagram

15.25 With 420 mV applied, an ac circuit has the following parallel branches: R1 = 100 �; R2 = 175 �;
XL1 = 60 �; XL2 = 420 �; XC = 70 �. Calculate IT , ZT , and θ .
Ans. IT = 6.9 mA (lagging); ZT = 60.9 �; θ = −16.9◦

15.26 Repeat Problem 15.23 but substitute a 15-� capacitive reactance for the given 12-� capacitive
reactance. Because XL = XC = 15 �, we have now a parallel resonant circuit. A parallel resonant
circuit has a maximum impedance and a minimum current at the resonant frequency.
Ans. (a) IR = 4 A; IL = 8 A; IC = 8 A; (b) IT = 4 A (compare with Problem 15.23); θ = 0◦;
(c) ZT = 30 � (compare with Problem 15.23); (d) P = 480 W; (e) phasor diagram: Fig. 15-32

Fig. 15-32 Phasor diagram

15.27 Find the indicated values for an RLC parallel circuit.

V , V R, � XL, � XC, � IR IL IC IT ZT θ P , W Circuit Type

(a) 110 27.5 22 55 ? ? ? ? ? ? ? ?
(b) 90 45 40 30 ? ? ? ? ? ? ? ?
(c) 90 45 40 40 ? ? ? ? ? ? ? ?

Ans.

V , V R, � XL, � XC, � IR , A IL, A IC , A IT , A ZT , � θ◦ P , W Circuit Type

(a) .... .... .... .... 4 5 2 5 22 −36.9◦ 440 Inductive
(b) .... .... .... .... 2 2.25 3 2.14 42.1 20.6◦ 180 Capacitive
(c) .... .... .... .... 2 2.25 2.25 2 45 0 180 Resonant

15.28 Find IT , θ , PF, and ZT of an ac circuit with an RL branch in parallel to an RC branch (Fig. 15-33).
Ans. IT = 7.82 A; θ = −33.5◦; PF = 0.834 lagging; Z = 3.07 �
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Fig. 15-33 Fig. 15-34

15.29 For the circuit shown, calculate IT , θ , ZT , PF, and P (Fig. 15-34).
Ans. IT = 44.8 A; θ = 53◦; ZT = 14.5 �; PF = 0.602 leading; P = 17 530 W

15.30 With 420 mV applied, an ac circuit has the five following parallel branches: R1 = 100 �; R2 =
175 �; XL1 = 60 �; XL2 = 420 �; and XC = 70 �. Find IT , θ , and ZT .
Ans. IT = 6.90 mA (lagging); θ = −16.9◦; ZT = 60.9 �

15.31 Find the power factor of a washing-machine motor if it draws 4 A and 420 W from a 110-V ac line.
Ans. PF = 0.955, or 95.5%

15.32 Find the PF of a refrigerator motor if it draws 300 W and 3.5 A from a 120-V ac line.
Ans. PF = 71.4%

15.33 The lights and motors in a shop draw 20 kW of power. The PF of the entire load is 60 percent. Find
the number of kilovoltamperes of power delivered to the load. Ans. S = 33.3 kVA

15.34 A 50-V 60-Hz power supply is connected across an RLC series ac circuit with R = 3 �, XL = 6 �,
and XC = 2 �. Find the apparent power, real power, reactive power, and power factor; and draw the
power triangle.
Ans. S = 500 VA; P = 300 W; Q = 400 VAR lagging; PF = 0.6; power triangle: Fig. 15-35

Fig. 15-35 Power triangle

15.35 A current of 8 A lags a voltage of 250 V by 30◦. What is the power factor and the real power taken
by the load? Ans. PF = 0.866 lagging; P = 1732 W

15.36 A motor operating at an 85 percent PF draws 300 W from a 120-V line. What is the current drawn?
Ans. I = 2.94 A

15.37 A 220-V line delivers 15 kVA to a load at 80 percent PF lagging. Find the PF of a 12-kVA synchronous
motor in parallel to raise the PF to 100 percent.
Ans. PF = 66.1% leading
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15.38 A bank of motors draws 30 kW at 75 percent PF lagging from a 440-V 60-Hz line. Find the kilovolt-
amperage and the capacitance of a capacitor placed across the motor terminals if it is to raise the total
PF to 1.0. Ans. S = 26.5 kVA; C = 363 µF

15.39 A motor draws 2 kW and 10 A from a 220-V 60-Hz line. Find the voltamperage and the capacitance
of a capacitor in parallel that will raise the total PF to 1. Ans. S = 916 VA; C = 50 µF

15.40 A 220-V 20-A induction motor draws 3 kW of power. A 4-kVA capacitive load is placed in parallel to
adjust the PF to unity. What must be the PF of the capacitive load? Ans. PF = 59.3% leading

15.41 A plant load draws 2000 kVa from a 240-V line at a PF of 0.7 lagging. Find the kilovoltamperage
required of a capacitor bank in parallel with the plant for the overall PF to be 0.9 leading.
Ans. 2107 kVA

15.42 A series RL branch in an ac circuit has R = 8 � and XL = 10 �. A capacitor is connected in parallel
across the branch. What should be the reactance of the capacitor if the unit is to have PF of unity?
Ans. XC = 16.4 �

15.43 Find IT , θ , ZT , PF, and P for the circuit shown (Fig. 15-36).
Ans. IT = 4.49 A; θ = −20.9◦; ZT = 22.3 �; PF = 0.934 lagging; P = 419 W

Fig. 15-36



 

Chapter 16

Alternating-Current Generators and Motors

ALTERNATORS

Alternating-current generators are also called alternators. Almost all electric power for homes and industry
is supplied by alternators in power plants. A simple alternator consists of (1) a strong, constant magnetic field;
(2) conductors that rotate across the magnetic field; and (3) some means of making a continuous connection to
the conductors as they are rotating (Fig. 16-1). The magnetic field is produced by current flowing through the
stationary, or stator, field coil. Field-coil excitation is supplied by a battery or other dc source. The armature,
or rotor, rotates within the magnetic field. For a single turn of wire around the rotor, each is connected to a
separate slip ring, which is insulated from the shaft. Each time the rotor turn makes one complete revolution,
one complete cycle of alternating current is developed (Fig. 16-2). A practical alternator has several hundred
turns wound into the slots of the rotor. Two brushes are spring-held against the slip rings to provide the
continuous connection between the alternating current induced in the rotor or armature coil and the external
circuits.

Fig. 16-1 A simple alternator having a stationary field and a rotating
armature

The small ac generator usually has a stationary field and a rotating armature (Fig. 16-1). One disadvantage
is that the slip-ring and brush contacts are in series with the load. If these parts become worn or dirty, current
flow may be interrupted. However, if the dc field excitation is connected to the rotor, the formerly stationary
coils will have alternating current induced into them (Fig. 16-3). A load can be connected across these armature
coils without the necessity of any moving contacts in the circuit. Field excitation is fed to the rotating field
through the slip rings and brushes. Another advantage of this rotating-field and stationary-armature generator
is the greater ease of insulating stator fields compared with insulating rotating field coils. Since voltages as
high as 18 000–24 000 V are commonly generated, this high voltage need not be brought out through slip
rings and brushes but can be brought directly to the switch gear through insulated leads from the stationary
armature.

The amount of generated voltage of an ac generator depends on the field strength and speed of the rotor.
Since most generators are operated at constant speed, the amount of emf depends on field excitation.
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Fig. 16-2 Generating 1 cycle of ac voltage with a single-coil alternator
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Fig. 16-3 A simple alternator having a rotating field and a station-
ary armature

The frequency of the generated emf depends on the number of field poles and on the speed at which the
generator is operated, or

f = pn

120
(16-1)

where f = frequency of generated voltage, Hz
p = total number of poles
n = rotor speed, revolutions per minute (rpm)

Regulation of an ac generator is the percentage rise in terminal voltage as load is reduced from the rated
full-load current to zero, with the speed and excitation being constant, or

Voltage regulation = no-load voltage − full-load voltage

full-load voltage
(16-2)

Example 16.1 What is the frequency of a four-pole alternator operating at a speed of 1500 rpm?

f = pn

120
(16-1)

= 4(1500)

120
= 50 Hz Ans.

Example 16.2 An alternator is operating at 120 V with no load. A load is now applied to the generator. The voltage
output drops (the field current remains the same) to 110 V. What is the regulation?

Voltage regulation = no-load voltage − full-load voltage

full-load voltage
(16-2)

= 120 − 110

110
= 10

110
= 0.091 = 9.1% Ans.

When the output voltage is not steady, there would be a constant flickering of electric lights, and TV sets would not operate
properly. Automatic voltage-regulator devices are used to make up for the drop in output voltage by increasing the field
current. Voltage regulation is usually a function external to the alternator.
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PARALLELING GENERATORS

Most power plants have several ac generators operating in parallel in order to increase the power available.
Before two generators may be paralleled, their terminal voltages must be equal, their voltages must be in
phase, and their frequencies must be equal. When these conditions are met, the two generators are operating
in synchronism. The operation of getting the generators into synchronism is called synchronizing.

RATINGS

Nameplate data for a typical ac generator (Fig. 16-4) include manufacturer’s name, serial, and type number;
speed (rpm), number of poles, frequency of output, number of phases, and maximum supply voltage; capacity
rating in kilovoltamperes and kilowatts at a specified power factor and maximum output voltage; armature and
field current per phase; and maximum temperature rise.

Fig. 16-4 Nameplate data for typical ac generator

LOSSES AND EFFICIENCY

Losses of an ac generator are similar to those of a dc generator and include armature copper loss, field-
excitation copper loss, and mechanical losses.

Efficiency (Eff) is the ratio of the useful power output to the total power input:

Eff = output

input
(16-3)

Example 16.3 A 2-hp motor running at rated output acts as the prime mover for an alternator that has a load demand
of 1.1 kW. What is the efficiency of the alternator in percent? Neglect field excitation.

Input power = 2 hp × 746 W

hp
= 1492 W Output power = 1.1 kW = 1100 W

Eff = output

input
= 1100

1492
= 0.737 = 73.7% Ans.

Since the prime mover is supplying 1492 W but the alternator is delivering 1100 W to the load, there must be 392 W of
loss in the alternator.



 

CHAP. 16] ALTERNATING-CURRENT GENERATORS AND MOTORS 365

POLYPHASE INDUCTION MOTORS

Principle of Operation

The induction motor is the most commonly used type of ac motor because of its simple, rugged construction
and good operating characteristics. It consists of two parts: the stator (stationary part) and the rotor (rotating
part). The stator is connected to the ac supply. The rotor is not connected electrically to the ac supply. The
most important type of polyphase induction motor is the three-phase motor. (Three-phase machines have three
windings and deliver an output between several pairs of wires.) When the stator winding is energized from a
three-phase supply, a rotating magnetic field is created. As the field sweeps across the rotor conductors, an emf
is induced in these conductors which causes current to flow in them. The rotor conductors carrying current in
the stator field thus have a torque exerted upon them that spins the rotor.

Squirrel-Cage Motor and Wound-Rotor Motor

Three-phase induction motors are classified into two types: squirrel-cage (Fig. 16-5) and wound-rotor
motors (Fig. 16-6). Both motors have the same stator construction, but differ in rotor construction. The stator
core is built of slotted sheet-steel laminations. Windings are spaced in the stator slots to form the three separate
sets of poles.

Fig. 16-5 Cutaway view of a squirrel-cage induction
motor (Courtesy of General Electric Com-
pany; from E. C. Lister, Electric Circuits and
Machines, 5th ed., McGraw-Hill, New York,
1975, p. 247)

The rotor of a squirrel-cage motor has a laminated core, with conductors placed parallel to the shaft
and embedded in slots around the perimeter of the core. The rotor conductors are not insulated from the
core. At each end of the rotor, the rotor conductors are all short-circuited by continuous end rings. If the
laminations were not present, the rotor conductors and their end rings would resemble a revolving squirrel cage
(Fig. 16-7).

The rotor of a wound-rotor motor is wound with an insulated winding similar to the stator winding.
The rotor phase windings are brought out to the three slip rings mounted on the motor shaft (Fig. 16-6).
The rotor winding is not connected to the supply. The slip rings and brushes merely provide a means of
connecting an external rheostat into the rotor circuit. The purpose of the rheostat is to control the speed of
the motor.
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Fig. 16-6 Cutaway view of a wound-rotor induction motor
(Courtesy of General Electric Company; from Lister,
p. 248)

Fig. 16-7 A simple squirrel-cage
rotor with rotor conduc-
tors welded to end rings
on a shaft

Speed and Slip

The speed of the rotating magnetic field is called the synchronous speed of the motor.

n = 120f

p
(16-4)

where n = speed of rotating magnetic field, rpm
f = frequency of rotor current, Hz
p = total number of poles

It is noted that the same relation exists between the frequency, number of poles, and synchronous speed of a
motor [Eq. (16-4)] as exists between the frequency, number of poles, and speed of rotation of an ac generator
[Eq. (16-1)].
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An induction motor cannot run at synchronous speed since then the rotor would be standing still with
respect to the rotating field and no emf would be induced in the rotor. The rotor speed must be slightly less
than synchronous speed in order that current be induced in the rotor to permit rotor rotation. The difference
between rotor speed and synchronous speed is called slip and is expressed as a percent of synchronous speed.

Percent S = NS − NR

NS

100 (16-5)

where S = slip
NS = synchronous speed, rpm
NR = rotor speed, rpm

Example 16.4 A four-pole 60-Hz squirrel-cage motor has a full-load speed of 1754 rpm. What is the percent slip at
full load?

Synchronous speed NS = 120f

p
(16-4)

= 120(60)

4
= 1800 rpm

Slip = NS − NR = 1800 − 1754 = 46 rpm

Percent S = NS − NR

NS
100 (16-5)

= 46

1800
100 = 2.6% Ans.

Rotor Frequency

For any value of slip, the rotor frequency is equal to the stator frequency times the percent slip, or

fR = SfS (16-6)

where fR = rotor frequency, Hz
S = percent slip (written as a decimal)

fS = stator frequency, Hz

Example 16.5 At a slip of 2.6 percent for the induction motor in Example 16.4, what is the rotor frequency?

fS = 60 Hz given

fR = SfS (16-6)

= 0.026(60) = 1.56 Hz Ans.

Torque

The torque of an induction motor depends on the strength of the interacting rotor and stator fields and the
phase relations between them.

T = kφIR cos θR (16-7)

where T = torque, lb · ft
k = constant
φ = rotating stator flux, lines of flux

IR = rotor current, A
cos θR = rotor power factor
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Throughout the normal range of operation, k, φ, and cos θR are nearly constant so that T is directly proportional
to IR . Rotor current IR in turn increases in almost direct proportion to the motor slip. Variation of torque with
slip (Fig. 16-8) shows that as slip increases from zero to about 10 percent, the torque linearly increases with
the slip. As load and slip are increased beyond rated or full-load torque, the torque reaches a maximum value at
about 25 percent slip. This maximum value of torque is called the breakdown torque of the motor. If the load is
further increased beyond the breakdown point, the motor will quickly come to a stop. For typical squirrel-cage
motors, the breakdown torque varies from 20 to 300 percent of full-load torque. The starting torque is the
value at 100 percent slip (rotor speed is zero) and is normally 150–200 percent of full-load rating. As the rotor
accelerates, the torque increases to its maximum value and then decreases to the value required to carry the
load on the motor at a constant speed.

Fig. 16-8 Variation of torque with slip for a typical
squirrel-cage motor

SYNCHRONOUS MOTORS

Like induction motors, synchronous motors have stator windings that produce a rotating magnetic field.
But unlike the induction motor, the rotor circuit of a synchronous motor is excited by a dc source. The rotor
locks into step with the rotating magnetic field and rotates at the same speed, as given by Eq. (16-4). If the
rotor is pulled out of step with the rotating stator field, no torque is developed and the motor stops. Since a
synchronous motor develops torque only when running at synchronous speed, it is not self-starting and hence
needs some device to bring the rotor to synchronous speed.

Example 16.6 What is the slip of a synchronous motor?
Since the synchronous speed is equal to the rotor speed, NS = NR ,

Percent S = NS − NR

NS
100 (16-5)

= 0

NS
100 = 0% Ans.

An ac electric clock uses a synchronous motor to maintain the correct time (as long as the frequency of the ac supply
remains constant).

Starting Synchronous Motors

A synchronous motor may be started rotating with a dc motor on a common shaft. After the motor is
brought to synchronous speed, alternating current is applied to the stator windings. The dc starting motor now
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acts as a dc generator, which supplies dc field excitation for the rotor. The load then can be coupled to the
motor. More often synchronous motors are started by means of a squirrel-cage winding embedded in the face
of the rotor poles. The motor is then started as an induction motor and is brought to about 95 percent of
synchronous speed. At the proper time, direct current is applied and the motor pulls into synchronism. The
amount of torque needed to pull the motor into synchronism is called the pull-in torque.

Effect of Loading Synchronous Motors

In the synchronous motor, the rotor is locked into step magnetically with the rotating magnetic field
and must continue to rotate at synchronous speed for all loads. At no load the center lines of a pole of the
rotating magnetic field and a dc field pole coincide (Fig. 16-9a). When load is added to the motor, there is
a backward shift of the rotor pole relative to the stator pole (Fig. 16-9b). There is no change in speed. The
angular displacement between the rotor and stator poles is called the torque angle α.

Fig. 16-9 Relative positions of a stator pole and a dc field pole

When a synchronous motor operates at no load (torque angle practically 0◦), the counter emf Vg is equal
to the applied or terminal voltage Vt (neglecting motor losses) (Fig. 16-10a). With increasing loads and torque
angles, the phase position of Vg changes with respect to Vt which allows more stator current to flow to carry
additional load (Fig. 16-10b). Vt and Vg are no longer in direct opposition. Their resultant voltage Vr causes
a current I to flow in the stator windings. I lags Vr by nearly 90◦ because of the high inductance of the stator
windings. θ is the phase angle between Vt and I . An increase in load results in a larger torque angle, which
increases Vr and I (Fig. 16-10c).

If the mechanical load is too high, the rotor is pulled out of synchronism and comes to a stop. The
maximum value of torque that a motor can develop without losing its synchronism is called its pull-out torque.
If the synchronous motor has a squirrel-cage winding, it will continue to operate as an induction motor.

Ratings and Efficiency

Synchronous-motor nameplate data include the same items found on ac generator nameplates, with the
horsepower rating replacing the kilovoltampere rating.

The efficiency of synchronous motors is generally higher than that of induction motors of the same
horsepower and speed rating. The losses are the same as those of synchronous generators.

Synchronous motors are used for constant-speed power applications in sizes above 20 hp. A common
application is driving air or gas compressors.

Power Factor Correction with Synchronous Motors

An outstanding advantage of a synchronous motor is that it operates at unity or leading power factor (PF).
By varying the strength of the dc field, the overall power factor of a synchronous motor can be adjusted over
a considerable range. Thus the motor can be made to appear as a leading load across the line. If an electrical
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Fig. 16-10 Phasor diagrams for a synchronous motor for three different load conditions with same dc field excitation

system is operating at a lagging power factor, synchronous motors connected across the line and adjusted for
leading PF can improve (that is, raise) the system PF. Any improvement in PF increases supply capacity to the
load, raises efficiency, and in general improves the operating characteristics of the system.

Field Excitation Used to Change Power Factor of Motor

For a constant mechanical load, the PF of a synchronous motor may be varied from a leading value to
a lagging value by adjusting its dc field excitation (Fig. 16-11). Field excitation is adjusted so that PF = 1
(Fig. 16-11a). At the same load, when the field excitation is increased, the counter emf Vg increases. This results
in a change in phase between stator current I and terminal voltage Vt so that the motor operates at a leading PF
(Fig. 16-11b). If the field excitation is reduced below the value represented (Fig. 16-11a), the motor operates at

Fig. 16-11 Phasor diagrams for a synchronous motor with a constant load with different amounts of field excitation
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a lagging PF (Fig. 16-11c). An example of a V curve for a synchronous motor, obtained from a manufacturer,
shows how stator current varies at a constant load with rotor field excitation (Fig. 16-12). Power factor may
also be read when the field current is varied.

Fig. 16-12 Variation of stator current and synchronous
motor PF with varying dc field excitation
at a constant load

Example 16.7 The load of an industrial plant is 400 kVA at a PF of 75 percent lagging. What must be the PF of the
added 100-kW load of a synchronous motor if it improved the overall plant PF to 100 percent?

For PF = 1, the net reactive power of the plant must be equal to zero.

Step 1. Find the initial reactive power of the plant (Fig. 16-13a and b).

PF = cos θ = 0.75 given

θ = arccos 0.75 = 41.4◦ P = S cos θ = 400(0.75) = 300 kW

Q = S sin θ = 400 sin 41.4◦ = 264.5 kVAR lagging

Step 2. Find the PF of the synchronous motor load (Fig. 16-13c). For a net PF = 1, the reactive power of the motor must
equal the initial reactive power of the plant in the opposite direction. The Q of the plant (Step 1) is 264.5 kVAR
lagging. So the QL of the added load must be 264.5 kVAR leading.

θL = arctan
264.5

100
= arctan 2.64 = 69.3◦

PF = cos θL = cos 69.3◦ = 0.353 = 35.3% leading Ans.

The resultant power triangle (Fig. 16-13d) shows a plant load of 400 kW (300 kW + 100 kW) at a PF of unity.
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Fig. 16-13 Power-triangle relationships

SINGLE-PHASE MOTORS

Single-phase motors are so called because their field windings are connected directly to a single-phase
source. Single-phase motors are classified as commutator, induction, or synchronous motors according to the
method used to start them, as follows:

1. Commutator motor

(a) AC series motor

(b) Repulsion motor

2. Induction motor

(a) Split-phase motors

(1) Capacitor-start motor

(2) Capacitor motor

(b) Repulsion-start induction motor

(c) Shaded-pole motor

3. Synchronous motor
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Commutator Motor

AC series motor. When an ordinary dc series motor is connected to an ac supply, the current drawn by
the motor is low due to the high series-field impedance. The result is low running torque. To reduce the field
reactance to a minimum, ac series motors are built with as few turns as possible. Armature reaction is overcome
by using compensating windings in the pole pieces.

The operating characteristics are similar to those of dc series motors. The speed increases to a high value
with a decrease in load. The torque is high for high armature currents so that the motor has a good starting
torque. AC series motors operate more efficiently at low frequencies. Some of the larger sizes used in railroad
engines operate at 25 Hz or less. However, fractional horsepower sizes are designed to operate at 50 or 60 Hz.

Repulsion motor. The repulsion motor has an armature and commutator similar to that of a dc motor.
However, the brushes are not connected to the supply but are short-circuited (Fig. 16-14). The stator windings
produce a current in the rotor windings by induction. This current produces magnetic poles in the rotor. The
orientation of these poles is dependent on the position of the brushes. The interaction of the rotor field with
the stator field creates the motor torque. The repulsion motor has a high starting torque and a high speed at
light loads. It is used where heavy starting loads are expected.

Fig. 16-14 Repulsion motor

Induction Motor

A single-phase induction motor is not self-starting. The magnetic field set up in the stator by the ac power
supply stays lined up in one direction. This magnetic field, though stationary, pulsates as the voltage sine wave
does. This pulsating field induces a voltage in the rotor windings, but the rotor field can only line up with the
stator field. With these two fields in direct line, no torque is developed. It is necessary then to turn the rotor by
some auxiliary device. Once the rotor is rotating with sufficient speed, the interaction between the rotor and
stator fields will maintain rotation. The rotor will continue to increase in speed, trying to lock into synchronous
speed. It finally will reach an equilibrium speed equal to the synchronous speed minus slip.

Split-phase motor. If two stator windings of unequal impedance are spaced 90 electrical degrees apart but
connected in parallel to a single-phase source, the field produced will appear to rotate. This is the principle of
phase splitting.

In the split-phase motor, the starting winding has a higher resistance and lower reactance than the main
winding (Fig. 16-15a). When the same voltage Vt is applied to both windings, the current in the main winding
Im lags behind the current in the starting winding Is (Fig. 16-15b). The angle φ between the main and starting
windings is enough phase difference to provide a weak rotating magnetic field to produce a starting torque.
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When the motor reaches a predetermined speed, usually 70–80 percent of synchronous speed, a centrifugal
switch mounted on the motor shaft opens, thereby disconnecting the starting winding.

Fig. 16-15 Split-phase motor

Because it has a low starting torque, this motor type is widely used for easily started loads. It is seldom
used in sizes larger than 1

3 hp. Common applications include driving washing machines and woodworking
tools.

Capacitor-Start Motor. By placing a capacitor in series with the starting winding of a split-phase motor
(Fig. 16-15a), starting characteristics are improved. The current in the starting winding may be made to lead
the voltage (Fig. 16-16). φ may be made nearly 90◦, resulting in a higher starting torque. This motor also
uses a centrifugal switch to disconnect the starting winding. Thus the capacitor is in the circuit only during the
starting period.

Fig. 16-16 Phase relations
in the capacitor-
start motor

Fig. 16-17 Capacitor motor

Capacitor Motor. The capacitor motor operates with an auxiliary winding and series capacitor perma-
nently connected to the line (Fig. 16-17). The capacitance in series may be of one value for starting and another
value for running. As the motor approaches synchronous speed, the centrifugal switch disconnects one section
of the capacitor.

Repulsion-start induction motor. Like a dc motor, the rotor of the repulsion-start induction motor has
windings connected to a commutator. Starting brushes make contact with the commutator so the motor starts
as a repulsion motor. As the motor nears full speed, a centrifugal device short-circuits all the commutator
segments so that it operates as an induction motor. This type of motor is made in sizes ranging from 1

2 to 15 hp
and is used in applications requiring a high starting torque.
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Shaded-pole motor. A shaded-pole is produced by a short-circuited coil wound around a part of each pole of
a motor. The coil is usually a single band or strap of copper. The effect of the coil is to produce a small sweeping
motion of the field flux from one side of the pole piece to the other as the field pulsates (Fig. 16-18). This slight
shift in the magnetic field produces a small starting torque. Thus shaded-pole motors are self-starting. As the
field in the pole piece increases, a current is induced in the shading coil. This current causes a magnetic field
that opposes the main field. The main field therefore will concentrate on the opposite side of the pole pieces
(Fig. 16-18a). As the field begins to decrease, the shading-coil field will aid the main field. The concentration
of flux then moves to the other edge of the pole piece (Fig. 16-18b). This method of motor starting is used in
very small motors, up to about 1

25 hp, for driving small fans, small appliances, and clocks.

Fig. 16-18 Action of the magnetic field in a shaded-pole motor

Synchronous Motor

Several types exist to drive electric clocks, phonograph turntables, and other devices requiring precise
rotation. One type is called the Warren synchronous motor. It starts by the use of shading coils in the pole
piece. The motor is brought up to synchronous speed from the effects of eddy currents flowing in the rotor
iron and of hysteresis. Its principal use is in clocks and other timing devices.

Example 16.8 List the type of field excitation (dc or ac) and whether the field is usually the stator or the rotor for each
of the following: alternator, polyphase induction, synchronous motor.

The list is shown in the table below.

Field Excitation

Device Input Field Output Field

Alternator
Rotating armature DC (stator) Rotor (ac output)
Stationary armature DC (rotor) Stator (ac output)

Polyphase induction motor AC (stator)

Synchronous motor DC (rotor)
AC (stator)

Example 16.9 Fill in the appropriate word to complete each of the following sentences.

(a) The magnetic field of a single-phase motor does not appear to .

(b) Repulsion motors have starting torques.



 

376 ALTERNATING-CURRENT GENERATORS AND MOTORS [CHAP. 16

(c) Induction motors are classified by different methods.

(d) must exist so that the stator and rotor fields are not exactly lined up.

(e) Split-phase motors have separate windings.

(a) rotate (a three-phase field does appear to rotate), (b) high, (c) starting, (d) Slip, (e) two Ans.

Solved Problems

16.1 An alternator has a characteristic curve showing percentage of terminal voltage and percentage of
full-load ampere output for three types of loading (Fig. 16-19). Calculate the percent regulation for
the three types of loading.

Fig. 16-19 Effect of power factor on alternator output

When 100 percent rated current is delivered by the alternator, the full-load (FL) voltages are 85,
70, and 120 percent of the no-load (NL) values for PF = 1, 0.8 lagging, and 0.8 leading, respectively
(Fig. 16-19).

Voltage regulation = NL − FL

FL
(16-2)

When PF = 1:

Voltage regulation = 100 − 85

85
= 0.176 = 17.6% Ans.

PF = 0.8 lagging:

Voltage regulation = 100 − 70

70
= 0.429 = 42.9% Ans.

PF = 0.8 leading:

Voltage regulation = 100 − 120

120
= −0.167 = −16.7% Ans.

The negative regulation indicates that the full-load voltage is greater than the no-load voltage.
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16.2 Draw phasor diagrams of an ac generator operating when PF = 1.0, 0.8 lagging, and 0.8 leading.

Let IR and IXL be voltage drops due to resistance and inductive reactance in the armature winding,
respectively.

Vg = generated emf Vt = terminal voltage I = armature current

Vg is the phasor sum of Vt , the IR drop which is in phase with I , and the IXL drop which leads I by
90◦ (Fig. 16-20). Vg is not constant but varies with the amount of load and PF of the load. At lagging
PF, Vg is lowered. The lower the PF in the lagging direction, the less Vg . At leading PF, Vg increases
with load.

Fig. 16-20 Phasor diagrams of ac generator operating at three different load factors

16.3 A diesel-driven 60-Hz synchronous generator produces 60 Hz when operated at 200 rpm. How many
poles does it have?

f = pn

120
(16-1)

from which p = 120f

n
= 120(60)

200
= 36 poles Ans.

16.4 At what speed will a two-pole 25-Hz synchronous generator produce 25 Hz?

f = pn

120
(16-1)

from which n = 120f

p
= 120(25)

2
= 1500 rpm Ans.

16.5 An alternator has a voltage regulation of 10.0 percent. If the full-load voltage is 220 V, what is the
no-load voltage?

Voltage regulation = NL − FL

FL
(16-2)

from which NL = FL(voltage regulation + 1) = 220(0.10 + 1) = 242 V Ans.
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16.6 A four-pole 60-Hz induction motor has a full-load slip of 5 percent. What is the full-load rotor speed?

NS = 120f

p
(16-4)

= 120(60)

4
= 1800 rpm

S = NS − NR

NS

(16-5)

SNS = NS − NR

NR = NS − SNS = NS(1 − S)

Then NR = 1800(1 − 0.05) = 1800(0.95) = 1710 rpm Ans.

16.7 A squirrel-cage motor stator winding is wound for four poles. At full load, the motor operates at
170 rpm with a slip speed of 60 rpm. What is the supply frequency?

Slip = NS − NR

NS = NR + Slip = 1740 + 60 = 1800 rpm

NS = 120f

p
(16-4)

from which f = pNS

120
= 4(1800)

120
= 60 Hz Ans.

16.8 What is the rotor frequency of an eight-pole 60-Hz squirrel-cage motor operating at 850 rpm?

NS = 120f

p
= 120(60)

8
= 900 rpm

Slip = NS − NR = 900 − 850 = 50 rpm

S = NS − NR

NS

(16-5)

= 50

900
= 0.056

fR = SfS (16-6)

= 0.056(60) = 3.33 Hz Ans.

This means that a rotor conductor will have induced in it an emf with a frequency of 3.33 Hz.

16.9 How much larger is the rotor reactance of a squirrel-cage motor at start-up (with the rotor at a
standstill) than it is when the motor operates at 4 percent slip?

Rotor reactance XR = 2πfRLR

With LR constant, XR ∝ fR so

rotor reactance is directly proportional to rotor frequency.
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At start-up, the speed of the motor NR = 0 so slip = 1.00. During motor operation slip = 0.04
(given), so

fR1 = S1fS (16-6)

fR2 = S2fS

Dividing, fR1

fR2
= S1

S2

fR1 = S1

S2
× fR2 = 1.00

0.04
× fR2 = 25fR2

Since XR ∝ fR , the rotor reactance at start is 25 times greater than that at 4 percent slip. Ans.

16.10 A motor-generator set used for frequency conversion has a 10-pole 25-Hz synchronous motor and a
direct-connected 24-pole synchronous generator. What is the generator frequency?

Synchronous motor:

NS = 120f

p
= 120(25)

10
= 300 rpm

Synchronous generator:

f = pNS

120
= 24(300)

120
= 60 Hz Ans.

16.11 The load of an industrial plant is 400 kVA at a PF of 75 percent lagging. An additional motor load of
100 kW is needed. Find the new kilovoltampere load and the PF of the load, if the motor to be added
is (a) an induction motor with a PF of 90 percent lagging, and (b) a synchronous motor with a PF of
80 percent leading.

The solution is simplified by drawing and solving a series of power triangles.

Step 1. Set up a power triangle for current industrial load (IL) (Fig. 16-21a).

PIL = 400 cos θ = 400(0.75) = 300 kW

QIL = 400 sin θ = 400 sin 41.4◦ = 264.5 kVAR lagging

Fig. 16-21a
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Step 2. Add induction motor (IM) to industrial load (Fig. 16-21b).

QIM = 100 tan 25.8◦ = 48.3 kVAR lagging

Fig. 16-21b, c

The resultant power triangle is as shown in Fig. 16-21c.

P = PIL + PIM = 300 + 100 = 400 kW

Q = QIL + QIM = 264.5 + 48.3 = 312.8 kVAR lagging

θ = arctan
Q

P
= arctan

312.8

400
= 38◦

(a) PF = cos θ = cos 38◦ = 0.788 = 78.8% lagging Ans.

S = P

cos θ
= 400

cos 38◦ = 508 kVA (3 significant figures) Ans.

Step 3. Add synchronous motor (SM) to industrial load (Fig. 16-21d).

QSM = 100 tan 36.9◦ = 75.1 kVAR leading

Fig. 16-21d, e
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The resultant power triangle is as shown in Fig. 16-21e.

P = PIL + PSM = 300 + 100 = 400 kW

Q = QIL − QSM = 264.5 − 75.1 = 189.4 kVAR lagging

θ = arctan
189.4

400
= 25.3◦

(b) PF = cos θ = cos 25.3◦ = 0.904 = 90.4% lagging Ans.

S = 400

cos 25.3◦ = 442 kVA Ans.

16.12 A 220-V 50-A induction motor draws 10 kW of power (Fig. 16-22a). An 8-kVA synchronous motor
is placed in parallel with it in order to adjust the PF to unity. What must be the PF of the synchronous
motor?

Fig. 16-22a

Step 1. Set up a power triangle for the induction motor (Fig. 16-22b).

SA = VtIA = 220(50) = 11 000 VA = 11 kVA

θ = arccos
PA

SA

= arccos
10

11
= 24.6◦

QA = SA sin θ = 11 sin 24.6◦ = 4.58 kVAR lagging

Step 2. Set up a power triangle for the synchronous motor (Fig. 16-22c). For the load PF = 1,
the net number of kilovoltamperes reactive must be 0. Therefore, the reactive power of the
synchronous motor is

QB = 4.58 kVAR leading θ = arcsin
QB

SB

= arcsin
4.58

8
= 34.9◦

PF = cos θ = cos 34.9◦ = 0.820 = 82.0% leading Ans.



 

382 ALTERNATING-CURRENT GENERATORS AND MOTORS [CHAP. 16

Fig. 16-22b, c

Supplementary Problems

16.13 A 60-Hz alternator operates at 900 rpm. How many poles does it have? Ans. Eight poles

16.14 How many cycles are generated in 1 revolution of a 12-pole ac generator? How many revolutions
per second (rps) must it make to generate a frequency of 60 Hz? How many revolutions per minute?
Ans. 6 cycles; 10 rps; 600 rpm

16.15 (a) At what speed must a six-pole synchronous generator be driven to produce 25 Hz? (b) At what
speed must a four-pole 60-Hz synchronous generator be driven to produce 60 Hz?
Ans. (a) 500 rpm; (b) 1800 rpm

16.16 To produce 50 Hz with a two-pole rotating-coil alternator, what must be the prime-mover rpm?
Ans. 3000 rpm

16.17 Find the regulation of an ac generator that has a full-load voltage of 2600 V and a no-load voltage
of 3310 V at a PF of 80 percent lagging. Will the percent regulation at a PF of unity be higher than,
lower than, or the same as at a PF of 80 percent lagging? Ans. 27.3%; lower than

16.18 When the load is light, is it more efficient to use one alternator operating at its rated capacity or to
share the load between two alternators operating at less than their rated capacity?
Ans. It is more efficient to use one alternator at rated capacity.

16.19 An alternator has a voltage regulation of 10.0 percent. If the no-load voltage is 220 V, what is the
full-load voltage? Ans. 220 V

16.20 A fully loaded 10-hp electric motor is driving a 120-V ac output alternator delivering 6.5 kW to a
remote lighting system. If the transmission-line losses are 300 W, what is the approximate loss in the
alternator? What is the efficiency of the alternator? Ans. 600 W; Eff = 91.2%
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16.21 A 440-V alternator operating from a 30-hp prime mover turning at full capacity produces 20 kW into
a load. Find the efficiency of the alternator. Ans. Eff = 89.4%

16.22 A 5-kW alternator is known to be 92 percent efficient when it is at full load. What is the power
requirement in horsepower for the prime mover? Ans. 7.3 hp

16.23 Find the synchronous speed of a 60-Hz motor that has an eight-pole stator winding.
Ans. 900 rpm

16.24 Make a table showing the synchronous speeds of 2-, 4-, 6-, 8-, and 12-pole induction motors for
frequencies of 25, 50, and 60 Hz.

Ans.
n, rpm

p f = 25 Hz f = 50 Hz f = 60 Hz

2 1500 3000 3600
4 750 1500 1800
6 500 1000 1200
8 375 750 900

12 250 500 600

16.25 A six-pole 60-Hz induction motor has a full-load slip of 4 percent. Find the rotor speed at full load.
Ans. 1152 rpm

16.26 What is the rotor frequency of a six-pole 60-Hz squirrel-cage motor operating at 1130 rpm?
Ans. 3.5 Hz

16.27 The three-phase induction motors driving an aircraft carrier have stators that may be connected to
either 22 or 44 poles. The frequency of the supply may be varied from 20 to 65 Hz. What are the
maximum and minimum speeds available from the motors?
Ans. Maximum speed, 354.3 rpm; minimum speed, 54.5 rpm

16.28 How much greater is the rotor reactance of an induction motor at start-up than it is when operating
at 5 percent slip? Ans. 20 times greater

16.29 What is the speed and speed regulation of a 30-pole 60-Hz 440-V synchronous motor?
Ans. 240 rpm; 0.0%

16.30 The propulsion motors used in a naval vessel are rated 5900 hp, three-phase, 2400 V, 62.5 Hz, and
139 rpm. How many poles do they have? The speed of these motors may be changed by varying the
supply frequency between 16 and 62.5 Hz. What are the maximum and minimum speeds?
Ans. 54 poles; maximum speed, 139 rpm; minimum speed, 35.6 rpm

16.31 A transmission line delivers a load of 7500 kVA at a PF of 70 percent lagging. If a synchronous
condenser is to be located at the end of the line to improve the load power factor to 100 percent, how
many kilovoltamperes must it draw from the line? Assume the condenser is 100 percent reactive.
Ans. 5360 kVA

16.32 A 440-V line delivers 15 kVA to a load at a PF of 75 percent lagging. To what PF should a 10-kVA
synchronous motor be adjusted in order to raise the PF to unity when connected in parallel?
Ans. PF = 12.6% leading
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16.33 A 220-V 20-A induction motor draws 3 kW of power. A 4-kVA synchronous motor is placed in parallel
to adjust the PF to unity. What must be the PF of the synchronous motor?
Ans. PF = 59.3% leading

16.34 A 30-kW induction motor operates at a PF of 80 percent lagging. In parallel with it is a 50-kW
induction motor operating at a PF of 90 percent lagging. (a) Find the new kilovoltampere load and
PF of the load. (b) Find the PF adjustment which must be made on a 20-kW synchronous motor in
parallel with the two induction motors in order to raise the PF of the line to unity.
Ans. (a) 92.6 kVA, PF = 86.3% lagging; (b) PF = 39.4% leading

16.35 A synchronous motor which has an input of 500 kW is added to a system which has an existing load
of 800 kW at a PF of 80 percent lagging. What will be the new system kilowatt load, kilovoltampere
load, and PF if the new motor is operated at a PF of (a) 85 percent lagging, (b) 100 percent, and
(c) 85 percent leading?
Ans. (a) 1300 kW, 1590 kVA, 81.9% lagging; (b) 1300 kW, 1430 kW, 90.8% lagging;
(c) 1300 kW, 1320 kVA, 97.6% lagging

16.36 When is a synchronous motor said to be (a) overexcited, (b) underexcited?
Ans. (a) Operates at leading PF (field excitation greater than that for PF = 1); (b) Operates at
lagging PF (field excitation less than that for PF = 1). (See Fig. 16-12.)

16.37 For a constant field excitation, what is the effect on a synchronous motor with a lagging PF if the
load is increased? Ans. Phase angle increases in lagging direction so PF becomes less.

16.38 What is meant by (a) pull-in torque, and (b) pull-out torque for a synchronous motor?
Ans. (a) Torque value to pull the motor into synchronous speed; (b) Maximum torque developed
without losing synchronous speed (stalling).

16.39 Why is a centrifugal switch used in a split-phase motor?
Ans. Starting winding is designed only to help develop starting torque. Once the motor approaches
running speed, it is no longer needed. Starting windings are usually wound with lighter-gauge wire,
which could overheat and burn out if not disconnected.

16.40 How does a shaded-pole motor create a rotating magnetic field?
Ans. Short-circuited coil on one edge of pole piece produces a field that first weakens and then aids
the main field.



 

Chapter 17

Complex Numbers and Complex Impedance
for Series AC Circuits

INTRODUCTION

It is important to understand complex numbers because impedance, voltage, and current of ac circuits are
best expressed in terms of complex numbers. Circuit calculations are simplified when using complex numbers.
In previous chapters, ac circuits were analyzed without applying complex numbers.

DEFINITION OF A COMPLEX NUMBER

A complex number z has the form x + jy where x and y are real numbers and j is the unit imaginary
number. It is conventional to use a bold face letter symbol for all complex numbers. In complex number
x + jy, the first term x is called the real part and the second term jy is called the imaginary part.

x + jy︸︷︷︸
Real part ↑ ↑ Imaginary part

Complex numbers can be represented by perpendicular axes, one axis representing the real part and the
other axis the imaginary part (Fig. 17-1).

Fig. 17-1 Real and imaginary axes

Eight complex numbers, z1, through z8, are plotted in Fig. 17-2.
Note that for z1 = 4, so y = 0 and hence z1 is a real number 4 and corresponds to a point on the real

axis. Note that for z4 = j6, x = 0, so that z4 is a pure imaginary number j6 and corresponds to a point on
the j axis. Thus, complex numbers include all real and all pure imaginary numbers.

OPERATOR j

The unit imaginary number j is known as operator j . When operator j is multiplied by a real number a,
j × a means a 90◦ change of a in a counterclockwise direction (Fig. 17-3a). When we multiply j twice,
j × j × a = j2 × a = −a, the result is 180◦ counterclockwise change in direction shown in (b). When we
multiply j three times, j × j × j × a = j3 × a = j (j2)× a = −j × a, the change in direction is 270◦ shown
in (c). And when j is multiplied four times, j × j × j × j ×a = j4 ×a = (j2) (j2)×a = (−1) (−1)×a = a,
we go back full circle as shown in (d).

385
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Fig. 17-2 Plots of complex numbers

Fig. 17-3 j operations

Mathematically, j is defined as j = √−1

j2 = j × j = −1

j3 = j2 × j = −j

j4 = j2 × j2 = (−1) × (−1) = 1

j5 = j4 × j = 1 × j = j
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and so on. [i is used outside electrical engineering to represent j .] Figure 17-4 illustrates the operator j

principle when a = 3 for j3, −3, −j3, and 3.

Fig. 17-4 Plot of points when a = 3

RECTANGULAR AND POLAR FORMS OF COMPLEX NUMBERS

Consider the complex number

z = x + jy (17-1)

The graph of z is shown in Fig. 17-5. The quadrature (90-degree) components of z are given by the numbers
x and y. Since y is multiplied by j , it lies on the imaginary axis. The form x + jy is called the rectangular
form. Another way to indicate a complex number is the polar form expressed as

z = z �θ (17-2)

Fig. 17-5 Graph of complex number z = x + jy
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where z = magnitude of z
θ = direction of z with respect to the positive real axis

To convert from rectangular to polar form, refer to Fig. 17-5. From trigonometry

x = z cos θ

y = z sin θ

Substituting z = x + jy = z(cos θ + j sin θ)

z = √
x2 + y2

θ = arctan(y/x)

Substituting z and θ values into Eq. (17-2),

z =
√

x2 + y2
��arctan(y/x) (17-3)

Example 17.1 Convert the polar form z = 10�30◦ into the rectangular form and show graph.
Write the rectangular form:

z = x + jy (17-1)

Find x:

x = z cos θ = 10 cos 30◦ = 10(0.866) = 8.66

Find y:

y = z sin θ = 10 sin 30◦ = 10(0.500) = 5

Therefore, z = 8.66 + j5 Ans.

Graph. Ans.

Example 17.2 Convert the rectangular form z = 8.66 + j5 to the polar form.
Write the polar form:

z = z �θ (17-2)

Find z:

z =
√

x2 + y2 =
√

(8.66)2 + (5)2 = √
100 = 10
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Find θ :

θ = arctan
y

x
= arctan

5

8.66
= arctan 0.577 = 30◦

Therefore, z = 10 �30◦ Ans.

Many scientific calculators have keys that can convert between rectangular and polar forms. Some have the ability
to work with complex numbers without conversion. Refer to your calculator manual for the particular steps used.
If your calculator does not have a conversion feature, the following formulas can be used:

polar-to-rectangular, z �θ = z cos θ + jz sin θ

rectangular-to-polar, x + jy =
√

x2 + y2 ��arctan(y/x)

OPERATIONS WITH COMPLEX NUMBERS

As with ordinary numbers, complex numbers can be added, subtracted, multiplied, and divided.

Addition

Complex numbers may be added when they appear in rectangular form. To add two or more complex
numbers, add the reals, add the imaginaries, and then add the result. For example,

(2 + j4) + (3 − j1) = (2 + 3)︸ ︷︷ ︸
sum
reals

+ j (4 − 1)︸ ︷︷ ︸
sum

imaginaries

= 5 + j3︸ ︷︷ ︸
sum

result

Addition of complex numbers can be done graphically (Fig. 17-6).

Fig. 17-6 Adding complex numbers graphically

Complete the parallelogram formed by sides 2 + j4 and 3 − j1. The diagonal 5 + j3 is the resultant sum.
If complex numbers are given in the polar form, convert them first into rectangular form and then add.
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Subtraction

To subtract one complex number from another, subtract the reals, subtract the imaginaries, and then add
the result. For example,

(2 + j4) − (3 − j1) = (2 − 3)︸ ︷︷ ︸
difference

reals

+ j (4 + 1)︸ ︷︷ ︸
difference

imaginaries

= −1 + j5︸ ︷︷ ︸
add

result

Subtraction of complex numbers also can be done graphically (Fig. 17-7).

Fig. 17-7 Subtracting complex numbers graphically

Multiplication

Complex numbers may be multiplied in either the rectangular or polar form. Given two numbers in
rectangular form, follow the rule of algebra for multiplying two terms. For example,

(2 + j4) (3 − j1) = 2(3) + (j4) (3) + 2 (−j1) + (j4) (−j1)

= 6 + j12 − j2 + 4

= (6 + 4) + j (12 − 2)

= 10 + j10

When complex numbers are given in polar form, we have

(
z1 �θ1

)(
z2 �θ2

) = z1z2 �θ1 + θ2 (17-4)

Let us verify the result of the previous example by using Eq. (17-4).

First, convert to polar form:

2 + j4 = 4.48�63.4◦

3 − j1 = 3.16�−18.4◦
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Then multiply the magnitudes and add the angles algebraically:

(
4.48 �63.4◦)(3.16 �−18.4◦) = (4.48)(3.16) �63.4◦ − 18.4◦

= 14.16 �45◦

Finally, convert product to rectangular form:

x = 14.16 cos 45◦ = 14.16(0.707) = 10

y = 14.16 sin 45◦ = 14.16(0.707) = 10

Therefore,

(2 + j4)(3 − j1) = 14.16 �45◦ = 10 + j10 Check Ans.

The Conjugate Complex Number

The conjugate of a complex number is obtained when the sign of the imaginary part of the number is
changed. For example, 3 + j2 has the conjugate 3 − j2. These two complex numbers are referred to as
conjugate pair. The conjugate of z is indicated by z∗.

When we multiply zz ∗, we find

zz ∗ = (3 + j2) (3 − j2) = 32 + j6 − j6 + 22

= 9 + 4 = 13, a real number

We shall use this product property in the division of complex numbers.

Division

Complex numbers may be divided in either the rectangular or polar form. For example,

8 − j4

2 + j1
= ?

To eliminate the imaginary part from the denominator, we multiply both numerator and denominator by the
conjugate of the denominator.

8 − j4

2 + j1
× 2 − j1

2 − j1
= 16 − j8 − j8 + j24

4 + 1
= 12 − j16

5
= 12

5
− j

16

5

= 2.4 − j3.2

This process of converting the denominator to a real number without any j term is called rationalization.
When complex numbers are given in polar form, we may perform division by using the formula,

z1 �θ1

z2 �θ2
= z1

z2
�θ1 − θ2 (17-5)

Let us verify the result of the previous example by using Eq. (17-5).



 

392 COMPLEX NUMBERS AND COMPLEX IMPEDANCE FOR SERIES AC CIRCUITS [CHAP. 17

First, convert to polar form:

8 − j4 = 8.94 �−26.5◦

2 + j1 = 2.24 �26.5◦

Then divide the magnitudes and subtract the angles algebraically:

8.94 �−26.5◦

2.24 �26.5◦ = 3.99 �−53◦

Finally convert polar to rectangular form:

x = 3.99 cos(−53◦) = 3.99(0.602) = 2.4

y = 3.99 sin(−53◦) = 3.99(−0.799) = −3.2

Therefore,

8 − j4

2 + j1
= 3.99 �−53◦ = 2.4 − j3.2 Check Ans.

COMPLEX IMPEDANCE IN SERIES

Consider the impedance Z of a circuit as a phasor quantity with magnitude and direction. A series RL
circuit is shown in Fig. 17-8a.

Fig. 17-8 Series RL circuit

The impedance of a series RL circuit is

Z = R + jXL (17-6)

where Z = complex impedance of the circuit, �

R = resistance of the circuit, �

XL = inductive reactance of the circuit, � (XL = 2πfL)

Equation (17-6) defines impedance Z as the phasor sum of the real quantity R and the imaginary quantity
jXL, as shown in Fig. 17-8c. Inductive reactance is indicated as XL in (b).
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In polar form, the impedance of a series RL circuit is

Z = Z �θ (17-7)

where Z =
√

R2 + X2
L, magnitude of the impedance

θ = arctan
XL

XR

, phase angle with respect to the positive real axis

θ is the phase angle between the input voltage and its resulting current in the circuit. Although impedance Z
does not vary sinusoidally, it is considered as a phasor because it determines the phase angle between voltage
and current.

A series RC circuit is shown in Fig. 17-9a.

Fig. 17-9 Series RC circuit

The impedance of a series RC circuit is

Z = R − jXC (17-8)

where Z = impedance, �

R = resistance, �

XC = capacitive reactance, � (XC = 1/2πfC)

Equation (17-8) shows impedance as the phasor sum of R and −jXC , as indicated in the impedance triangle
of Fig. 17-9c. Capacitive reactance is shown as −XC in (b).

In polar form, the impedance of a series RC circuit is

Z = Z �θ (17-7)

where Z =
√

R2 + X2
C , magnitude of the impedance

θ = arctan(−XC/R), phase angle with respect to the positive real axis

We may generalize for a circuit which contains R, L, and C in series. The impedance of a series RLC
circuit is

Z = R + jX (17-9)

where Z = impedance, �

R = resistance, �

X = XL − XC = net reactance, �

When XL > XC , X is positive so that X is inductive; and when XC > XL, X is negative so that X is
capacitive.
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In polar form, the impedance of a series RLC circuit is

Z = Z �θ (17-7)

Z =
√

R2 + X2, magnitude of the impedance, �

θ = arctan

(
X

R

)
, phase angle with respect to the positive real axis

A series RLC circuit is shown in Fig. 17-10a and impedance triangles if XL > XC (inductive) shown
in (c) or XC > XL (capacitive) shown in (d).

Fig. 17-10 Series RLC circuit

Example 17.3 For a series RL circuit with R = 5 � and XL = 10 � (Fig. 17-11), find the complex impedance Z in
rectangular and polar form. Draw the impedance triangle.

Label inductive reactance j10.

Z = R + jXL (17-6)

Z = 5 + j10 � Ans.

Fig. 17-11
To convert to polar form, write

Z = Z �θ (17-7)

where Z =
√

R2 + X2
L

=
√

(5)2 + (10)2 = √
125 = 11.2 �

θ = arctan

(
XL

R

)
= arctan

(
10

5

)
= arctan 2

= 63.4◦

Then Z = 11.2 �63.4◦ � Ans.
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Impedance triangle: Ans.

Example 17.4 In a series RC circuit, R = 15 � and XC = 15 � (Fig. 17-12). Find Z in rectangular and polar form.
Draw the impedance triangle.

Fig. 17-12

Label capacitive reactance −j10.

Z = R − jXC (17-8)

Z = 15 − j15 � Ans.

To convert to polar form, write

Z = Z �θ (17-7)

where Z =
√

R2 + X2
C

=
√

(15)2 + (15)2 = √
450 = 21.2 �

θ = arctan

(−XC

R

)
= arctan

(−15

15

)
= arctan(−1) = −45◦

Then Z = 21.2 �−45◦ � Ans.

Impedance triangle: Ans.

Example 17.5 Find the complex impedance Z in rectangular and polar form (Fig. 17-13), and show the impedance
triangle.

Fig. 17-13

Label XL as j8 and XC as −j4.

Z = R + jX (17-9)

X = XL − XC = 8 − 4 = 4

so Z = 3 + j4 Ans.

or directly from Fig. 17-13, write, Z = 3 + j8 − j4 = 3 + j4 � Ans.

Z =
√

R2 + X2 =
√

(3)2 + (4)2 = √
25 = 5 �

θ = arctan

(
X

R

)
= arctan

4

3
= arctan 1.33 = 53.1◦

Then Z = 5 �53.1◦ � Ans.
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Impedance triangle: Ans.

Note: If XL = j4 and XC = −j8 where now XC > XL,

Z = R + jX = 3 + j4 − j8 = 3 − j4

Z =
√

R2 + X2 =
√

(3)2 + (−4)2 = √
25 = 5 �

θ = arctan

(−4

3

)
= arctan −1.33 = −53.1◦

so Z = 5 �−53.1◦

and the impedance triangle is

Solved Problems

17.1 Plot the following complex numbers: z1 = −j3, z2 = 2 − j2, z3 = 1, z4 = −3 − j2,

z5 = 2 + j3, z6 = −2 + j2.

Ans.
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17.2 Convert from rectangular form x + jy to polar form z �θ . Show the plot of z.

(a) 4 + j4 (b) 4 + j3 (c) R + jX (d) 5 − j3

(a) z =
√

x2 + y2 =
√

(4)2 + (4)2 = √
32 = 5.67

θ = arctan
y

x
= arctan

4

4
= arctan 1 = 45◦

z = z �θ = 5.67 �45◦ Ans.
Ans.

(b) z =
√

x2 + y2 =
√

(4)2 + (3)2 = √
25 = 5

θ = arctan
y

x
= arctan

3

4
= arctan 0.75 = 36.9◦

z = z �θ = 5 �36.9◦ Ans.

Ans.

(c) z =
√

R2 + X2

θ = arctan (X/R)

z = z �θ =
√

R2 + X2
�arctan(X/R) Ans.

Ans.

(d) z =
√

x2 + y2 =
√

(5)2 + (−3)2 = √
34 = 5.83

θ = arctan
y

x
= arctan

−3

5
= arctan −0.6 = −31◦

z = z �θ = 5.83 �−31◦ Ans.

Ans.

17.3 Convert from polar to rectangular form. Show the plot of z.

(a) 100 �35◦ (b) 20 �−30◦ (c) 8 �45◦ (d) 12 �240◦

(a) z = x + jy

x = 100 cos 35◦ = 100(0.819) = 81.9

y = 100 sin 35◦ = 100(0.574) = 57.4

∴ z = 81.9 + j57.4 Ans. Ans.
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(b) z = x + j4

x = 20 cos
(−30◦) = 20(0.866) = 17.3

y = 20 sin
(−30◦) = 20(−0.500) = −10.0

∴ z = 17.3 − j10.0 Ans.

Ans.

(c) z = x + jy

x = 8 cos 45◦ = 8(0.707) = 5.7

y = 8 sin 45◦ = 8(0.707) = 5.7

∴ z = 5.7 + j5.7 Ans. Ans.

(d) z = x + jy

x = 12 cos 240◦ = 12(−0.500) = −6.0

y = 12 sin 240◦ = 12(−0.866) = −10.4

∴ z = −6.0 − j10.4 Ans.

Ans.

17.4 Find the sum of complex numbers 5 + j6 and 1 − j3. Also find the sum graphically.

Add the reals and imaginaries.

(5 + j6) + (1 − j3) = (5 + 1) + j (6 − 3)

= 6 + j3 Ans.

Ans.

Plot the point (5 + j6). Draw a straight
line from the origin to that point. Follow
the same procedure to draw (1 − j3). The
two lines are the sides of a parallelogram.
Draw the dotted lines to complete the par-
allelogram. Its diagonal is the resultant sum
(6 + j3).



 

CHAP. 17] COMPLEX NUMBERS AND COMPLEX IMPEDANCE FOR SERIES AC CIRCUITS 399

17.5 What is the difference between (5 + j6) and (1 − j3)? Also find the difference graphically.

Subtract the reals and imaginaries.

(5 + j6) − (1 − j3) = (5 − 1) + j (6 + 3) = 4 + j9 Ans.

Ans.

Plot points (5 + j6) and (1 − j3). Show (1 − j3) in the opposite or 180◦ direction, which becomes
−(1 − j3) = −1 + j3. Draw straight lines from the origin to points (5 + j6) and (−1 + j3). Draw
dotted lines to complete the parallelogram. Its diagonal is the resultant difference (4 + j9).

17.6 Find the product of complex numbers 3 + j5 and 4 − j6.

Use algebraic multiplication of two terms.

(3 + j5)(4 − j6) = 3(4) + 3(−j6) + j5(4) + j5(−j6)

= 12 − j18 + j20 − j 230

= (12 + 30) + j (−18 + 20)

= 42 + j2 Ans.

17.7 Find the quotient of 6 + j2 divided by 3 − j4.

6 + j2

3 − j4
= ?
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To clear the denominator of the imaginary, multiply both numerator and denominator by the conjugate
of the denominator.

6 + j2

3 − j4
× 3 + j4

3 + j4
= 18 + j24 + j6 + j28

9 + 16

= 18 − 8 + j30

25
= 10 + j30

25

= 10

25
+ j

30

25

= 0.4 + j1.2 Ans.

17.8 Multiply the polar form of complex numbers 10 �20◦ and 7 �25◦.

Use formula
(
z1 �θ1

)(
z2 �θ2

) = z1z2 �θ1 + θ2 (17-4)

Then,
(
10 �20◦) (

7 �25◦) = (10)(7) �20◦ + 25◦

= 70 �45◦ Ans.

17.9 Divide 10 �20◦ by 7 �25◦.

Use formula z1 �θ1

z2 �θ2

= z1

z2
�θ1 − θ2 (17-5)

Then, 10 �20◦

7 �25◦ = 10

7 �20◦ − 25◦ = 1.43 �−5◦ Ans.

17.10 Evaluate

∣∣∣∣4 − j3 −j3
−j4 5 + j6

∣∣∣∣
The value of this second-order determinant equals the product of the elements on the principal

diagonal minus the product of the elements on the other diagonal, the same as for a determinant with
real elements. [Refer to Eq. (8-1).]

= (4 − j3)(5 + j6) − (−j3)(−j4)

= (20 − j15 + j24 − j218) − (j212)

= 20 + j9 + 18 + 12

= 50 + j9 Ans.

17.11 Perform the following operations:

(a) 1
j5 so that the denominator is a real number

(b) (6 + j2)(3 − j5)(2 − j3) in polar and rectangular form
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(a) Multiply numerator and denominator by j1:

1

j5
× j1

j1
= j1

5j2
= j

−5
= −0.2j Ans.

(b) Convert each complex number to polar form and then multiply:

6 + j2 = 6.32 �18.4◦

3 − j5 = 5.83 �−59.0◦

(2 − j3) = 3.61 �−56.3◦

(6 + j2)(3 − j5)(2 − j3) = (
6.32 �18.4◦)(5.83 �−59.0◦)(3.61 �−56.3◦)

= (6.32)(5.83)(3.61) �18.4◦ − 59.0◦ − 56.3◦

= 133 �−96.9◦, polar form Ans.

Convert polar form to rectangular form:

By calculator,

133 �−96.9◦ = −16 − j132 Ans.

Or by trigonometry,

x = 133 sin(−96.9◦) = 133(−0.12) = −16

y = 133 cos(−96.9◦) = 133(−0.99) = −132

Then, x + jy = −16 − j132, rectangular form Ans.

17.12 If z = z �θ , show that its conjugate z∗ = z �−θ.

Write z = z �θ = x + jy where z = √
x2 + y2 and θ = arctan

(y

x

)
.

For conjugate z∗ = x − jy, by definition
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Magnitude of z∗ = z =
√

x2 + (−y)2 = √
x2 + y2, same magnitude as z

Angle of z∗ = arctan
−y

x
= −θ , negative angle of z

∴ z∗ = z �−θ Ans.

Plotting z and z* makes this relationship clear. z and z* are symmetrical with respect to the real axis.

17.13 An interesting result is when the inductive reactance equals the capacitive reactance, XL = XC , in a
series ac current.

Z = R + jX (17-9)

= R + j (XL − XC)

= R + j0 (1)

The impedance of the circuit is equal to its resistance and thus has its lowest value. Such a circuit is
called a series resonant circuit.

Find the impedance of a series RLC circuit when R = 10 � and XL = XC = 20 �.

By Eq. (1), Z = R + j0 = 10 �0◦ Ans.

17.14 Prepare a summary table of complex impedance in series circuit with

(a) R = 5 �

(b) XL = 10 �

(c) XC = 10 �

(d) R = 5 �, XL = 15 �

(e) R = 15 �, XC = 10 �

(f ) R = 3 �, XL = 8 �, XC = 5 �

For each part show the impedance schematic, rectangular form, polar form, and impedance triangle.
It is instructive to look at the table and compare the different impedance expressions and triangles.
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Table 17-1 Summary Table of Complex Impedance

Schematic Rectangular Form
Z = R + jX

Polar Form
Z = Z �θ

Impedance Triangle

(a)

Z = 5 + 0j �

Pure resistance
Z = 5 �0◦ �

(b)

Z = 0 + j10 �

Pure inductive
reactance

Z = 10 �90◦ �

(c)

Z = 0 − j10 �

Pure capacitive
reactance

Z = 10 �−90◦ �

(d)

Z = 5 + j15 �

RL series
Z = 15.8 �71.6◦ �

(e)

Z = 15 + j10 �

RC series
Z = 18.0 �−33.7◦ �

(f)

Z = 3 + j8 − j5
= 3 + j3 �

RLC series

Z = 4.2 �45◦ �
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Supplementary Problems

17.15 Plot the following complex numbers.

(a) 3 + j4 Ans.

(b) 1 − j2 Ans.

(c) −2 − j3 Ans.

(d) −2 + j2 Ans.

17.16 Write the conjugate pair to Problem 17.15 and plot it.

(a) 3 − j4 Ans.

(b) 1 + j2 Ans.
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(c) −2 + j3 Ans.

(d) −2 − j2 Ans.

Notice that the conjugate is the reflection of the original number with respect to the real axis.

17.17 Plot the following complex numbers: z1 = 3 + j2, z2 = 1 − j3, z3 = 5, z4 = −j2, z5 = −1 + j2,
and z6 = −3 − j3.

Ans.

17.18 Evaluate and plot the following complex numbers: z1 = j5, z2 = j23, z3 = j42, z4 = −j24, and
z5 = −j53.

Ans.
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17.19 Convert each of the following complex numbers to polar form:

(a) 40 + j30 Ans. 50�36.9◦

(b) 4 − j4 Ans. 5.66�−45◦

(c) 3 + j4 Ans. 5�53.1◦

(d) 10 − j8 Ans. 12.8�−38.7◦

(e) 20 + j5 Ans. 20.6�14.0◦

(f) −30 − j30 Ans. 42.4�−135◦

(g) 5 − j15 Ans. 15.8�−71.6◦

(h) 5 + j8 Ans. 9.4�58.0◦

(i) −10 + j20 Ans. 22.4�116.6◦

(j) R − jX Ans.
√

R2 + X2
��

arctan −X
R

17.20 Convert each of the following to rectangular form:

(a) 15��30◦ Ans. 13.0 + j7.5

(b) 15��−30◦ Ans. 13.0 − j7.5

(c) 50��53.1◦ Ans. 30 + j40

(d) 30��180◦ Ans. −30 + j0

(e) 100��−120◦ Ans. −50.0 − j86.6

(f) 50��90◦ Ans. j50

(g) 8 ��40◦ Ans. 6.13 + j5.14

(h) 100 ��35◦ Ans. 81.9 + j57.4

(i) 12��250◦ Ans. −4.1 − j11.3

(j) Z�θ◦ Ans. Z cos θ + jZ sin θ

Perform the indicated operations:

17.21 (4.1 + j1.2) + (3.6 − j0.8) Ans. 7.7 + j0.4

17.22 (50 − j50) + (100 + j50) Ans. 150

17.23 (550 − j200) − (430 + j215) Ans. 120 − j415

17.24 (700 + j1000) − (−700 + j500) Ans. 1400 + j500

17.25 (3 + j5) + (12 − j3) − (6 + j10) Ans. 9 − j8

17.26 50��32◦ + 20��18◦ Ans. 61.4 + j32.7

17.27 45 ��45◦ − 200 ��−35◦ Ans. −132 + j147

17.28 (−10 + j4)(6 + j2) Ans. −68 + j4

17.29 (5 + j)(6 + j4) Ans. 26 + j26
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17.30 (4 + j2)/(3 + j4) Ans. 0.8 − j0.4

17.31 (5 − j8)/(4 + j4) Ans. −0.375 − j1.625

17.32 6 �30◦ × 2 ��22◦ Ans. 12 ��52◦

17.33 1.6 �62◦ × 3.4 ��−30◦ Ans. 5.44��32◦

17.34 324 �40◦/10 �20◦ Ans. 32.4��20◦

17.35 25 �15◦/2 �−15◦ Ans. 12.5��30◦

17.36 If Z = 3 + j2, find Z∗, ZZ∗, (Z + Z∗), and (Z − Z∗).
Ans. Z∗ = 3 − j2, complex number (conjugate)

ZZ∗ = 13, real number

Z + Z∗ = 6, real number

Z − Z∗ = j4, imaginary number

17.37 Find graphically:

(a) (3 + j2) + (2 − j4)

(b) (3 + j2) − (2 − j4)

Ans. 5 − j2 Ans. 1 + j6

Find the complex impedance Z of the following ac series circuits in rectangular and polar forms.

17.38 R = 10 � Ans. Z = 10 + j5 = 11.2�26.6◦ �

XL = 5 �
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17.39 R = 12 � Ans. Z = 12 + j5 = 13�22.6◦ �

XL = 5 �

17.40 R = 100 � Ans. Z = 100 − j250 = 269��−68.2◦ �

XC = 250 �

17.41 R = 50 � Ans. Z = 50 − j70 = 86��−54.5◦ �

XC = 70 �

17.42 R = 10 � Ans. Z = 10 + j4 = 10.8��21.8◦ �

XL = 12 �

XC = 8 �

17.43 R = 10 � Ans. Z = 10 + j0 = 10�0◦ �

XL = 40 �

XC = 40 �

17.44 R = 20 � Ans. Z = 20 − j5 = 20.6��−14.0◦ �

XL = 7 �

XC = 12 �

17.45 R = 20 � Ans. Z = 20 + j0 = 20��0◦ �

XL = 7 �

XC = 7 �

17.46 R = 12.6 � Ans. Z = 12.6 + j9.2 = 15.6��36.1◦ �

XL = 15.4 �

XC = 6.2 �

17.47 R = 76.5 � Ans. Z = 76.5 − j33.4 = 83.5��−23.6◦ �

XL = 13.2 �

XC = 46.6 �

17.48 Evaluate

(a)

∣∣∣∣3 − j4 2 + j4
2 − j4 3 + j4

∣∣∣∣ Ans. 5

Note that by multiplying two sets of conjugate pairs and then subtracting them results in a real
number.

(b)

∣∣∣∣1 − j2 3 + j4
5 − j1 6

∣∣∣∣ Ans. −13 − j29



 

Chapter 18

AC Circuit Analysis with Complex Numbers

PHASORS

A phasor is a complex number associated with a phase-shifted alternating voltage or current. If the phasor
is in polar form, the magnitude is the effective (rms) value of the voltage or current and its angle is the phase
angle of its phase-shifted alternating voltage or current. (See section on phasors, Chapter 12, Principles of
Alternating Current.)

TWO-TERMINAL NETWORK

For a two-terminal circuit with an input phasor voltage V and an input phasor current I (Fig. 18-1), the
impedance Z of the circuit is defined as the ratio of V to I.

Z = V
I

(18-1)

Then I = V
Z

(18-2)

and V = IZ (18-3)

Bold letters are used to show phasor quantities.

Fig. 18-1 Two-terminal network

Equation (18-3) is sometimes called “Ohm’s law for alternating current.” Voltage, current, and impedance
quantities are complex numbers.

SERIES AC CIRCUIT

Figure 18-2 shows a series circuit with one voltage source V and three impedances, Z1, Z2, and Z3.

Fig. 18-2 General form of dc series circuit

409
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I causes a voltage drop across each impedance: V1 across Z1, V2 across Z2, and V3 across Z3.
Kirchhoff’s voltage law states that the sum of the voltage rises is equal to the sum of the voltage drops

around any closed path. Applying this law to the series circuit (Fig. 18-2), we have

V = V1 + V2 + V3 (18-4)

Also V = IZ (18-3)

Then V1 = IZ1, V2 = IZ2, and V3 = IZ3

So V = IZ1 + IZ2 + IZ3

= I(Z1 + Z2 + Z3)

We can rewrite V = VT = IT ZT (18-5)

where VT is total voltage, IT is total current, and ZT is total impedance

where ZT = Z1 + Z2 + Z3 (18-6)

For multiple n impedances in series,

ZT = Z1 + Z2 + Z3 + · · · + Zn (18-7)

Example 18.1 In the series ac circuit (Fig. 18-3a), find ZT and IT , and draw the phasor diagram. Also verify KVL by
showing that the sum of the voltage drops is equal to the input voltage.

Fig. 18-3 RLC series circuit

Step 1. Find ZT .

ZT = Z1 + Z2 + Z3

= 3 + j8 − j4

ZT = 3 + j4 = 5 �53.1◦ � Ans.

Step 2. Find IT .

IT = VT

ZT
(18-2)

IT = 100 �0◦
5 �53.1◦ = 20 �−53.1◦ A Ans.



 

CHAP. 18] AC CIRCUIT ANALYSIS WITH COMPLEX NUMBERS 411

Step 3. Draw phasor diagram.
See Fig. 18-3(b).

Step 4. Verify KVL.
Write the impedances:

Z1 = 3 + 0j = 3 �0◦ �

Z2 = 0 + j8 = 8 �90◦ �

Z3 = 0 − j4 = 4 �−90◦ �

Find the individual voltage drops and then add them:

V1 = IT Z1 = (
20 �−53.1◦) (3 �0◦) = 60 �−53.1◦ = 36 − j48 V

V2 = IT Z2 = (20 �−53.1◦) (8 �90◦) = 160 �36.9◦ = 128 + j96 V

V3 = IT Z3 = (20 �−53.1◦) (4 �−90◦) = 80 �−143.1◦ = −64 − j48 V

VT = V1 + V2 + V3 (18-4)

= (36 − j48) + (128 + j96) + (−64 − j48)

= (36 + 128 − 64) − j (48 − 96 + 48)

VT = 100 − j0 = 100 �0◦ V, which agrees with the given input voltage. Ans.

PARALLEL AC CIRCUIT

A single voltage source is applied to an ac parallel circuit with three impedances (Fig. 18-4). We may
apply Kirchhoff’s current law that the sum of the currents entering a junction, say at A, is equal to the sum of
the currents leaving a junction, so that

IT = I1 + I2 + I3 (18-7)

where I1 = VT

Z1
, I2 = VT

Z2
, and I3 = VT

Z3
(18-2)

Then substituting, IT = VT

Z1
+ VT

Z2
+ VT

Z3

and factoring, IT = VT

(
1

Z1
+ 1

Z2
+ 1

Z3

)
= VT

ZT

A

Fig. 18-4 General form of ac parallel circuit



 

412 AC CIRCUIT ANALYSIS WITH COMPLEX NUMBERS [CHAP. 18

where the total or equivalent impedance for three parallel impedances is

1

ZT

= 1

Z1
+ 1

Z2
+ 1

Z3
(18-8)

which can also be written as

ZT = 1
1

Z1
+ 1

Z2
+ 1

Z3

(18-8a)

For two parallel impedances,

1

ZT

= 1

Z1
+ 1

Z2

ZT = Z1Z2

Z1 + Z2
(18-9)

Example 18.2 In the parallel circuit (Fig. 18-5) find IT and ZT . Also draw the phasor diagram.

Fig. 18-5 RLC parallel circuit

Step 1. Write the impedances of each branch.

Branch 1: Z1 = 20 + j0 = 20 �0◦ �

Branch 2: Z2 = 3 + j4 = 5 �53.1◦ �

Branch 3: Z3 = 8 − j6 = 10 �−36.9◦ �

Step 2. Find the branch currents.

I1 = VT

Z1
= 100 �0◦

20 �0◦ = 5 �0◦ = 5 + j0 A

I2 = VT

Z2
= 100 �0◦

5 �53.1◦ = 20 �−53.1◦ = 12 − j16 A

I3 = VT

Z3
= 100 �0◦

10 �−36.9◦ = 10 �36.9◦ = 8 + j6 A

Step 3. Find IT .

IT = I1 + I2 + I3 (18-7)



 

CHAP. 18] AC CIRCUIT ANALYSIS WITH COMPLEX NUMBERS 413

Then substituting, IT = (5 + j0) + (12 − j16) + (8 + j6)

= (5 + 12 + 8) + j (0 − 16 + 6)

= 25 − j10 = 26.9 �−21.8◦ A Ans.

Step 4. Find ZT .

ZT = VT

IT
(18-1)

ZT = 100 �0◦
26.9 �−21.8◦ = 3.72 �21.8◦ = 3.45 + j1.38 � Ans.

Step 5. Draw the phasor diagram.

Ans.

It is convenient to use VT as the reference line because its given phase angle is 0◦, as shown in (a). We also
could show the phasor diagram with IT as the reference line shown in (b). In both phasor diagrams, IT lags VT

by 21.8◦.
Generally in drawing the phasor diagram for series circuits, we use current as the reference because current

is the same in all parts of the circuit. In parallel circuits the current may be different in each part, but the voltage
is the same for every branch. Thus, the reference line in parallel circuits is often chosen as the voltage.

Example 18.3 Find the input impedance at the terminals for two complex impedances in parallel (Fig. 18-6).

Fig. 18-6

Step 1. Find the impedance of each branch.

Branch 1: Z1 = 40 + j30 = 50 �36.9◦ �

Branch 2: Z2 = 80 − j150 = 170 �−61.9◦ �
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Step 2. Find ZT .

ZT = Z1Z2

Z1 + Z2
(18-9)

Substituting, ZT =
(
50 �36.9◦)(170 �−61.9◦)
(40 + j30) + (80 − j150)

= 8500 �−25.0◦
120 − j120

= 8500 �−25.0◦
170 �−45◦ = 50.0 �20.0◦ = 47.0 + j17.1 � Ans.

Another method for finding ZT is to assume a convenient input voltage VT at the terminals and solve for I1
and I2. Here is an example showing VT cancelling out in the equation for ZT , thus allowing you to chose a
convenient value for VT .

I1 = VT

Z1
= VT

50 �36.9◦ = (
0.02 �−36.9◦)VT = (0.016 − j0.012)VT

I2 = VT

Z2
= VT

170 �−61.9◦ = (
0.00588 �61.9◦)VT = (0.00277 + j0.00518)VT

IT = I1 + I2 = (0.01877 − j0.00682)VT = 0.0200 �−20.0◦ VT

Then ZT = VT

IT
= ��VT

0.0200 �−20.0◦ ��VT

= 50.0 �20.0◦ � Ans.

SERIES–PARALLEL AC CIRCUIT

We will illustrate the solution of a series–parallel circuit by presenting an example.

Example 18.4 In the series–parallel circuit (Fig. 18-7), find ZT and IT .

Fig. 18-7 Series–parallel circuit
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Step 1. Write the impedances.

Z1 = 10 + j10 = 14.1 �45◦ �

Z2 = 20 + j60 = 63.2 �71.6◦ �

Z3 = 0 + j6 = 6 �90◦ �

Step 2. Combine the impedances.
Z2 and Z3 are in parallel so their equivalent impedance is

(18 − 9) Za = Z2Z3

Z2 + Z3
=

(
63.2 �71.6◦) 6 �90◦
(20 + j60) + j6

= 379.2 �161.6◦
20 + j66

Za = 379.2 �161.6◦
69.0 �73.1◦ = 5.50 �88.5◦ = 0.144 + j5.50 �

Za is in series with Z1 so

ZT = Z1 + Za = (10 + j10) + (0.144 + j5.50)

= 10.14 + j15.50 = 18.5 �56.8◦ � Ans.

Step 3. Find IT .

IT = VT

ZT
= 50 �0◦

18.5 �56.8◦ = 2.7 �−56.8◦ A Ans.

The circuit is inductive with input current lagging input voltage by 56.8◦.

Summary Table 18-1 for ac circuits shows the relationships between R, XL, XC , and Z.

Table 18-1 Summary Table for AC Circuit Relationships

Resistance R, �

Inductive reactance
XL, �

Capacitive reactance
XC, � Impedance Z, �

Definition Opposition to ac due
to resistance

Opposition to ac due
to inductance

Opposition to ac due
to capacitance

Opposition to ac due to
combined resistance and
reactance

Phase angle IR in phase with VR IL lags VL by 90◦ IC leads VC by 90◦ Z =
√

R2 + X2

X = XL − XC

tan θZ = X/R in series

tan θI = ±IX/IR in parallel

Single or
combined
impedance

rectangular: R + 0j 0 + jXL 0 − jXC R + jX

polar: R �0◦ XL �90◦ XC �−90◦ Z �θ

Kirchhoff’s
law for
voltage

V = IR V = I(jXL)

= IXL �90◦
V = I(−jXC)

= IXL �−90◦
V = IZ
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COMPLEX POWER

Introduction

AC power has been discussed without use of complex numbers in Chapters 13–15. Power formulas from
these chapters are repeated for quick reference.

Real power P = VI cos θ , W (13-20) (14-21) (15-15)

P = I 2R, W (13-21) (14-22) (15-16)

Reactive power Q = VI sin θ , VAR (13-22) (14-23) (15-18)

Apparent power S = VI , VA (13-23) (14-24) (15-19)

Power factor PF = cos θ (15-20)

V is input voltage, I is input current, and θ is the phase angle between V and I .
One use for complex power is to obtain the total complex power of several loads in parallel energized by

the same source. The total complex power is the sum of the individual complex powers regardless of how the
loads are connected. Therefore, total real power is the sum of the individual real powers, and total reactive
power is the sum of the individual reactive powers. The same is not true to obtain total apparent power. Another
use for complex power is in power factor correction.

Complex Power Formulas

By definition, the complex power formula is

S = P + jQ (18-10)

having components P and Q (Fig. 18-8)

where S = complex power in voltamperes, VA
S = magnitude of S = VI = apparent power in voltamperes, VA
P = real power in watts, W
Q = reactive power in voltamperes reactive, VAR; also referred to as vars for industrial applications.

We see from Fig. 18-8 that

S = S �θ = VI �θ (18-11)

P = S cos θ = VI cos θ (18-12)

Q = S sin θ = VI sin θ (18-13)

Fig. 18-8 Complex power triangle
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Complex power S is a complex quantity with magnitude S equal to the product of the input voltage V and the
input current I , both in rms or effective values, and with a phase angle θ between V and I .

Other formulas that can be used to determine components of the complex power triangle (Fig. 18-8), using
V = IZ, are

S = VI = (IZ)I = I 2Z (18-14)

P = VI cos θ = (IZ)I cos θ = I 2(Z cos θ) = I 2R (18-15)

Q = VI sin θ = (IZ)I sin θ = I 2(Z sin θ) = I 2X (18-16)

V , I , and Z represent the magnitude of voltage, current, and impendence, respectively. The magnitude of these
quantities can be shown also as V = |V|, I = |I|, and Z = |Z| by placing bars by the phasor quantity.

A third formula for complex power is

S = VI∗ (18-17)

where I∗ is the conjugate of the input current phasor I and V is the input voltage phasor.
Note from Eq. (18-15) that R = Z cos θ is the input resistance, the same as the real part of the input

impedance. R is usually not the resistance of a physical resistor, but the real part of the input impedance and
is usually dependent on inductive and capacitive reactances, as well as on resistances. It is important to note
that S is a complex number, but does not represent a sinusoidally varying quantity.

Power Factor

The term “cos θ” is called the power factor, PF. The angle θ is called the power factor angle. θ is often
also the impedance angle. The power factor of an inductive circuit is called a lagging power factor, and that
of a capacitive circuit is called a leading power factor. If a circuit has only resistance, the PF = 1; if it has
only reactance, PF = 0.

To deliver a large amount of power, a high PF, i.e., close to 1, is desirable.

We see from P = VI cos θ (18-12)

I = P

V cos θ
= P

V × PF

that by having a smaller PF, the current I to the load becomes greater. Larger than necessary currents are
undesirable due to the accompanying large IR voltage losses and I 2R power losses in power lines.

Reactive Power Q

Reactive power is often used for industrial power consideration. The sign convention for Q is positive
(+Q) for an inductive load shown above the real axis, and is minus (−Q) for a capacitive load shown below
the real axis; that is, +Q consumes reactive power and −Q produces reactive power. Reactance does not add
to the real or effective power. Stored energy is being shuttled to and from the magnetic field of an inductance
or the electric field of a capacitance.

Example 18.5 An ac voltage with a rms value of 115 V is applied to a load impedance of R = 75 � and XL = 38 �

(Fig. 18-9a). Find the value of real power P , reactive power Q, apparent power S, and complex power S. Show the phasor
diagram and the power triangle.

Step 1. Find P .

It makes no difference what angle is assigned to V, so we conveniently assign 0◦ to voltage.
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Fig. 18-9 RL series circuit

V = 115 �0◦ V

Z = 75 + j38 = 84.08 �26.9◦ �

Then I = V
Z

= 115 �0◦
84.08 �26.9◦ = 1.37 �−26.9◦ A

(18-12) P = VI cos θ = (115)(1.37)(cos 26.9◦) = 140.5 W Ans.

or P = I2R = (1.37)2(75) = 140.8 ≈ 140.5 W Ans.

Step 2. Find Q.

(18-13) Q = VI sin θ = (115)(1.37)(sin 26.9◦) = 71.3 VAR lagging Ans.

since I lags V.

Step 3. Find S.

S = VI = (115)(1.37) = 157.6 VA Ans.

Step 4. Write S.

(18-10) S = P + jQ = 140.5 + j71.3 = 157.6 �26.9◦ Ans.

The phasor diagram and power triangle are shown in Fig. 18-9(b) and (c), respectively.

An alternate way of finding S without first solving for its components, P and Q, is to use the formula

S = VI∗ (18-17)

From Step 1, I = 1.37 �−26.9◦

Then I∗ = 1.37 �26.9◦ by changing the sign of the phase angle of I

S = (
115 �0◦)(1.37 �26.9◦)

= 157.6 �26.9◦ VA Ans.

from which S = 140.5︸ ︷︷ ︸
P

+j 71.3︸︷︷︸
Q

VA in rectangular form so

P = 140.5 W and Q = 71.3 VAR lagging.
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Table 18-2 Summary of Complex Power Relationships

Complex power triangle:

Complex power S, VA Apparent power S, VA Real power P , W Reactive power Q, VAR PF

Formulas: P + jQ VI VI cos θ VI sin θ cos θ

S �θ
√

P 2 + Q2 I2R I2X P/VI

VI∗

Table 18-2 summarizes the quantities of complex power.

Example 18.6 A generator is to supply power to a welder, heater, and induction motor (Fig. 18-10). A capacitor is used
to supply reactive power for the welder and motor in order that the net load on the generator will have unity power factor.
Find the complex power and real or effective power that must be supplied by the generator, and the reactive power that
must be supplied by the capacitor. If the capacitor were not used, what apparent power would have to be supplied by the
generator?

Fig. 18-10

Step 1. Find the individual power requirements for the welder, heater, and induction motor.

Welder: I = V

Z
= 120

|4 + j3| = 120√
42 + 32

= 120

5
= 24.0 A

P = I2R = (24.0)2(4) = 2304 W ≈ 2.3 kW

Q = I2XL = (24.0)2(3) = 1728 VAR ≈ 1.7 kVAR lagging
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Heater: P = 15 kW, given Q = 0 VAR

Induction motor: PF = cos θ = 0.8, θ = arccos 0.8

P = VI cos θ

VI = P

cos θ
= 60

0.8
= 75 kVA

Q = VI sin θ = 75 sin(arccos 0.8) = 75(0.6) = 45 kVAR lagging

Step 2. Find S, P , and Q.

S equals the sum of the individual complex power. Arrange a table for P and Q:

Item P (kW) Q (kVAR)

Welder 2.3 1.7
Heater 15 0
Motor 60 45

Total power requirements 77.3 kW 46.7 kVAR, lagging

S = P + jQ (18-10)

S = 77.3 + j46.7 = 90.3 �31.1◦ kVA Ans.

P = 77.3 kW, real power from the generator. Ans.

Q = 46.7 kVAR leading is the reactive power produced by the capacitor
to offset the inductive reactive power of 46.7 kVAR so that
the net reactive power Q = 0 and the PF = 1. Ans.

Step 3. Find apparent power of circuit without the capacitor.

We found S = 90.3 �31.1◦ kVA = VI �θ , so that apparent power VI is 90.3 kVA. Ans.

In practice, a capacitor would not be used because it would be cheaper to increase the size of the generator
to supply 90.3 kVA than to buy a capacitor to supply 46.7 kVAR.

Example 18.7 Adding sufficient capacitance to increase power factor to 1 may not be economical in the circuit shown
in Fig. 18-10, Example 18.6. What must be the capacitive reactance to achieve a power factor less than 1, say 0.90 lagging,
and what is the new apparent power?

Step 1. Draw the power triangle from the values solved in Example 18.6, where

S = 90.3 �31.1◦ = 77.3 + j46.7 kVA

Without the capacitor, PF of the circuit = cos 31.1◦ = 0.856 lagging.
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Step 2. Draw the desired power triangle where PF = 0.90 lagging.

PF1 = cos θ1 = 0.90 lagging

θ1 = arccos 0.90 = 25.8◦

Q1 = 77.3 tan 25.8◦ = 37.4 kVAR

The new value of apparent power S1 = 77.3

cos θ1
= 77.3

0.90

= 85.9 kVA Ans.

Step 3. Draw the combined power triangle.

Q − Q1 is the reduction of Q lagging by adding a capacitor.
The capacitive reactance QC required to improve the PF is

Qc = Q − Q1 = 46.7 − 37.4 = 9.3 kVAR leading Ans.

Note that the addition of Q1 has improved the PF from 0.856 to 0.90. The decrease of apparent power from
90.3 kVA to 85.9 kVA, 4.4 kVA, is 4.9%. The transformers, the distribution system, and the utility company
attenuators are all noted in kVA or MVA. Thus an improvement in PF, with corresponding less kVA, releases
some of the generation and transmission capability that can serve other customers.

DETERMINANT SOLUTION FOR AC CIRCUITS

When reactances are present in networks which cannot be resolved into simple series–parallel circuits, we
can use the same determinant solution technique for ac networks as in dc networks.

Recall from Chapter 8 that in a two-mesh dc network, the resistance determinant � is

� =
∣∣∣∣ R11 −R12
−R21 R22

∣∣∣∣ (8-11)
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and for a three-mesh dc network,

� =
∣∣∣∣∣∣

R11 −R12 −R13
−R21 R22 −R23
−R31 −R32 R33

∣∣∣∣∣∣ (8-14)

For an ac network of two meshes and three meshes, we can similarly write the impedance determinant �.

� =
∣∣∣∣ Z11 −Z12
−Z21 Z22

∣∣∣∣ (18-18)

and

� =
∣∣∣∣∣∣

Z11 −Z12 −Z13
−Z21 Z22 −Z23
−Z31 −Z32 Z33

∣∣∣∣∣∣ (18-19)

To find the mesh current I , we solve

I1 = NI1

�
(18-20)

where NI1 =
∣∣∣∣∣∣
V1 −Z12 −Z13
V2 Z22 −Z23
V3 −Z32 Z33

∣∣∣∣∣∣ (18-21)

The 1st column of net voltages, V1 in mesh 1, V2 in mesh 2, and V3 in mesh 3, replaces the 1st column of the
impedance determinant. NI2 and NI3 are similarly found by replacing the 2nd and 3nd column respectively by
the net voltages.

Example 18.8 Find I1 by use of determinants for the circuit shown in Fig. 18-11.

Fig. 18-11

Step 1. Find the impedance determinant �.

� =
∣∣∣∣ Z11 −Z12
−Z21 Z22

∣∣∣∣ (18-18)
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where Z11 = total impedance of mesh 1

= R1 + 0j = 3.0 + 0j = 3.0 �0◦ �

Z22 = total impedance of mesh 2

= (R1 + R2) + jX2 = 4.5 + j2.0 = 4.92 �24.0◦ �

Z12 = mutual impedance between mesh 1 and 2

= R1 + j0 = 3.0 + j0 = 3 �0◦ �

Z21 = mutual impedance between mesh 2 and mesh 1

= R1 + j0 = 3.0 + j0 = 3 �0◦ �

Substituting,

� =

� = (
3.0 �0◦)(4.92 �24.0◦) − (−3.0 �0◦)(−3.0 �0◦)

� = 14.76 �24.0◦ − 9.0 �0◦

= (13.48 + j6.0) − 9.0 = 4.48 + j6.0 = 7.49 �53.3

Step 2. Find NI1 .

NI1 =
∣∣∣∣∣V1 −Z12

V2 Z22

∣∣∣∣∣ (18-21)

=
∣∣∣∣∣∣
10 �0◦ −3.0 �0◦

0 �0◦ 4.92 �24.0◦

∣∣∣∣∣∣
= 49.2 �24.0◦

Step 3. Solve for I1.

I1 = NI1

�
(18-20)

I1 = 49.2 �24.0◦
7.49 �53.3◦ = 6.57 �−29.3◦ A Ans.

Note: This example illustrates the use of determinants.
I1 could be solved more simply by noting that

current through R1 = IR1 = V1

R1
= 10 �0◦

3
= 3.33 �0◦ A, and

current through Z2 = IZ2 = V1

Z2
= 10 �0◦

1.5 + j2.0
= 10 �0◦

2.5 �53.1◦ = 4 �−53.1◦ A

Then I1 = IR1 + IZ2 = 3.33 �0◦ + 4 �−53.1◦ = 3.33 + 2.4 − j3.2

= 5.73 − j3.20 = 6.57 �−29.2◦ A, which agrees with the previous answer.

Nevertheless, determinant solutions for current values are useful in a 2-mesh circuit, and particularly in a 3- or higher mesh
circuit. See Solved Problem 18.15.
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AC �-Y AND Y-� CONVERSIONS

Chapter 9 presents the �-Y and Y-� conversion formulas for resistances. The only difference for
impedances is in the use of Z’s instead of R’s. Specifically for the �-Y arrangement shown in Fig. 18-12,
the �-Y conversion formulas are

Za = Z1Z3

Z1 + Z2 + Z3
(from Eq. 9-1) (18-22)

Zb = Z1Z2

Z1 + Z2 + Z3
(from Eq. 9-2) (18-23)

Zc = Z2Z3

Z1 + Z2 + Z3
(from Eq. 9-3) (18-24)

Fig. 18-12

and the Y-� conversion formulas are

Z1 = ZaZb + ZbZc + ZcZa

Zc

(from Eq. 9-4) (18-25)

Z2 = ZaZb + ZbZc + ZcZa

Za

(from Eq. 9-5) (18-26)

Z3 = ZaZb + ZbZc + ZcZa

Zb

(from Eq. 9-6) (18-27)

Example 18.9 Using �-Y conversion, find IT for the circuit shown in Fig. 18-13(a).

Step 1. Convert � configuration at abc terminals to Y configuration (Fig. 18-13b). Use Eqs. (18-22)–(18-24). The
denominator is the same for all the formulas.

ZD = Z1 + Z2 + Z3 = 3 + 4 − j4 = 8.062 �−29.7◦ �

(18-23) Za = Z1Z3

ZD
= (3)(−j4)

ZD
= 12 �−90◦

8.062 �−29.7◦ = 1.49 �−60.3◦ �

= 0.74 − j1.29 �
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Fig. 18-13

(18-23) Zb = Z1Z2

ZD
= (3)(4)

ZD
= 12

8.062 �−29.7◦ = 1.49 �29.7◦ �

= 1.29 + j0.74 �

(18-24) Zc = Z2Z3

ZD
= (4)(−j4)

ZD
= 16 �−90◦

8.062 �−29.7◦ = 1.98 �−60.3◦ �

= 0.98 − j1.72 �

The circuit with the �-Y conversion is shown in Fig. 18-13(c).
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Step 2. Find ZT by circuit reduction.

First, find the equivalent impedance of the two parallel branches:

Branch 1: Zb − j2 = (1.29 + j0.74) − j2 = 1.29 − j1.26 = 1.80 �−44.3◦

Branch 2: Zc + j1 = 0.98 − j1.72 + j1 = 0.98 − j0.72 = 1.22 �−36.3◦

Zeq =
(
1.80 �−44.3◦)(1.22 �−36.3◦)(
1.29 − j1.26

) + (
0.98 − j0.72

) = 2.20 �−80.6◦
2.27 − j1.98

= 2.20 �−80.6◦
3.01 �−41.1◦ = 0.73 �−39.5◦ = 0.56 − j0.46 �

Zeq is in series with 2 + j1.5 and Za .

Then ZT = (2 + j1.5) + Za + Zeq

= (2 + j1.5) + (0.74 − j1.29) + (0.56 − j0.46)

ZT = 3.30 − j0.25 = 3.31 �−4.3 � Ans.

Step 3. Find IT .

IT = VT

ZT
= 220 �0◦

3.31 �−4.3◦ = 66.5 �4.3◦ A Ans.

Example 18.10 An ac bridge circuit (Fig. 18-14) can be used to measure inductance or capacitance in the same way that
a Wheatstone bridge can be used to measure resistance, as explained in Chapter 9. For measurement, two of the resistances
are varied until the galvanometer G in the center arm reads zero when the switch is closed. The bridge is then balanced,
and the unknown impedance ZX can be found by the bridge balance equation:

ZX = Z1Z3

Z2

Fig. 18-14 Wheatstone bridge

This equation is the same as that for the Wheatstone bridge except for having Z’s instead of R’s. [Though no further
problems will be offered, the reason for presenting the �-Y and Y-� conversion formulas is to inform the student that
complex number techniques can be applied to solve for networks with � or Y configurations.]
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Solved Problems

18.1 The resistance of a coil is 1.5 � and its inductive reactance is 2 � (Fig. 18-15). When the current is
4 A, find the voltage V and draw the phasor diagram.

Fig. 18-15 RL series circuit

Z = R + jX = 1.5 + j2 = 2.5 �53.1◦ �

Choose I as the reference phasor at 0◦.

(18-3) V = IZ = (
4 �0◦)(2.5 �53.1◦) = 10 �53.1◦ V Ans.

V leads I by 53.1◦ or equivalently I lags V by 53.1◦. Phasor diagram is shown in (b). Ans.

18.2 For RLC series circuit (Fig. 18-16), find the impedance ZT , current IT , and the voltage drops around
the current. Draw the voltage phasor diagram. Check the solution by use of Kirchhoff’s voltage law.

Fig. 18-16 RLC series circuit

Step 1. Find ZT .

By inspection, ZT = R + jX = R + j4 − j8 = 3 − j4 = 5 �−53.1◦ � Ans.

Step 2. Find IT .

(18-2) IT = VT

ZT

= 20 �0◦

5 �−53.1◦ = 4 �53.1◦ A Ans.

VT is the reference phasor at 0◦ angle.
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Step 3. Find the voltage drops.

VR = IT R = (
4 �53.1◦)(3 �0◦) = 12 �53.1◦ V Ans.

VL = IT XL = (
4 �53.1◦)(4 �90◦) = 16 �143.1◦ V Ans.

VC = IT XC = (
4 �53.1◦)(8 �−90◦) = 32 �−36.9◦ V Ans.

Step 4. Draw the voltage phasor diagram.

Ans.

Step 5. Check solution.

Convert voltage drops from polar form to rectangular and then add.

VR = 12 �53.1◦ = 7.2 + j9.6 V

VL = 16 �143.1◦ = −12.8 + j9.6 V

VC = 32 �−36.9◦ = 25.6 − j19.2 V

KVL states that the applied voltage of a series circuit equals the total voltage drops.

VT = VR + VL + VC

= (7.2 + j9.6) + (−12.8 + j9.6) + (25.6 − j19.2)

= 20 + 0j = 20 �0◦ V Check

18.3 Figure 18-17 shows a parallel two-branch circuit. (a) Show that I1 = (ZT /Z1)IT and
I2 = (ZT /Z2)IT . These equations are current division formulas between two parallel branches.
(b) Also show that I1 = [Z2/(Z1 + Z3)] IT and I2 = [Z1/(Z1 + Z2)] IT .

(a) Write: VT = IT ZT = I1Z1 = I2Z2, VT is the common voltage

Solve for I1: I1 = ZT

Z1
IT Ans.

Solve for I2: I2 = ZT

Z2
IT Ans.

The general formula to find individual currents for the nth branch if we know total current IT

and equivalent or total impedance ZT is In = (ZT /Zn)IT . For example, if there were n = 3
parallel branches, the current in the 3rd branch would be I3 = (ZT /Z3)IT .
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Fig. 18-17 Current division between 2 parallel branches

(b) Write: ZT = Z1Z2

Z1 + Z2
(18-9)

Substituting ZT , I1 = ZT

Z1
IT =

(
�Z1Z2

Z1 + Z2

) (
1

�Z1

)
IT =

(
Z2

Z1 + Z2

)
IT Ans.

I2 = ZT

Z2
IT =

(
Z1�Z2

Z1 + Z2

) (
1

�Z2

)
IT =

(
Z1

Z1 + Z2

)
IT Ans.

18.4 Connect a resistor of 3.0 � in parallel with a coil having a resistance of 1.5 � and inductance of 2.0 �

(Fig. 18-18). The applied voltage is 10 �0◦ V. Find the total current and draw the current-phasor
diagram.

Fig. 18-18

Step 1. Write the impedances of the two branches.

Branch 1: Z1 = R1 + 0j = 3.0 + 0j = 3 �0◦ �

Branch 2: Z2 = R2 + jX2 = 1.5 + j2.0 = 2.5 �53.1◦ �

Step 2. Find I1 and I2.

I1 = VT

Z1
= 10 �0◦

3 �0◦ = 3.33 �0◦ = 3.33 + j0 A

I2 = VT

Z2
= 10 �0◦

2.5 �53.1◦ = 4.00 �−53.1◦ = 2.40 − j3.20 A

Step 3. Find IT by adding I1 and I2.

IT = I1 + I2 = (3.33 + j0) + (2.40 − j3.20)

= 5.73 − j3.20 = 6.56 �−29.2◦ A Ans.
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Step 4. Draw the current-phasor diagram.

Ans.

18.5 In the series circuit (Fig. 18-19), the effective value of the current indicated by the ammeter is 10 A.
What are the readings on a voltmeter placed across the entire circuit and then across each element?

Fig. 18-19

Step 1. Find ZT .

ZT = 2 + j6 − j4 = 2 + j2 = 2.83 �45◦ �

Step 2. Find the voltmeter readings.

Since we are interested in finding the effective values of voltage, we need only multiply
magnitudes of current and of impedance to find voltage. Then

VT = IT ZT = (10)(2.83) = 28.3 V Ans.

V1 = IT R = (10)(2) = 20 V Ans.

V2 = IT XL = (10)(6) = 60 V Ans.

V3 = IT XC = (10)(4) = 40 V Ans.

18.6 In a two branch parallel circuit, the voltmeter reads 50 V across the 5 �-resistor (Fig. 18-20). What is
the reading of the ammeter?

Step 1. Find magnitude of I2.

I2 = 50

5
= 10 A

Assume I2 has a phase angle of 0◦. Then

I2 = 10 �0◦ A
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Fig. 18-20

Step 2. Write Z2 and find VT .

Z2 = 5 − j5 = 7.07 �−45◦ �

VT = I2Z2 = (
10 �0◦)(7.07 �−45◦)

= 70.7 �−45◦ V

Step 3. Write Z1 and find I1.

Z1 = 10 + j4 = 10.8 �21.8◦ �

I1 = VT

Z1
= 70.7 �−45◦

10.8 �21.8◦ = 6.55 �−66.8◦ = 2.58 − j6.02 A

Step 4. Find IT .

IT = I1 + I2 = (2.58 − j6.02) + (10 + j0) = 12.58 − j6.02

= 13.9 �−25.6 A

The ammeter reads 13.9 A. Ans.

18.7 Find the input impedance of the series–parallel circuit (Fig. 18-21).

Fig. 18-21
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Step 1. Find the equivalent impedance ZA to the three parallel impedances, Z2, Z3, and Z4.

1

ZA

= 1

Z2
+ 1

Z3
+ 1

Z4
(18-8)

= Z3Z4 + Z2Z4 + Z2Z3

Z2Z3Z4

Then ZA = Z2Z3Z4

Z3Z4 + Z2Z4 + Z2Z3
(18-8a)

Z2 = 2 + j0 = 2 �0◦ �

Z3 = 0 + j2 = 2 �90◦ �

Z4 = 3 − j5 = 5.83 �−59.0◦ �

Substitute these impedances into Eq. (18-8a),

ZA =
(
2 �0◦)(2 �90◦)(5.83 �−59.0◦)(

2 �90◦)(5.83 �−59.0◦) + (
2 �0◦)(5.83 �−59.0◦) + (

2 �0◦)(2 �90◦)
= 23.32 �31.0◦

11.66 �31.0◦ + 11.66 �−59.0◦ + 4 �90◦

= 23.32 �31.0◦

(9.99 + j6.01) + (6.01 − j9.99) + (0 + j4)

ZA = 23.32 �31.0◦

16 + j0.02
= 23.32 �31.0◦

16.00 �0.07◦

ZA = 1.46 �30.9◦ = 1.25 + j0.75 �

Step 2. Find ZT .

Z1 is in series with ZA.

ZT = Z1 + ZA

= (5 + j2) + (1.25 + j0.75)

ZT = 6.25 + j2.75 = 6.83 �23.7◦ � Ans.

An alternate way to find ZA, and simpler in this case, is to write Eq. (18-8) and rationalize
the denominator in each term.

1

ZA

= 1

Z2
+ 1

Z3
+ 1

Z4

Substitute:
1

ZA

= 1

2
+ 1

j2
+ 1

3 − j5
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Rationalize:
1

ZA

= 0.5 +
(

1

j2

) (
j

j

)
+

(
1

3 − j5

) (
3 + j5

3 + j5

)

= 0.5 − j0.5 + 3 + j5

34

= 0.5 − j0.5 + 0.088 + j0.148

1

ZA

= 0.588 − j0.352 = 0.685 �−30.9◦

Take the reciprocal: ZA = 1

0.685 �−30.9◦ = 1.46 �30.9◦ � Check

When all three complex impedances have components of resistance and reactance, it is
recommended that formula (18-8a) be used.

18.8 Determine the total impedance ZT as seen from terminals A and B in the bridge circuit (Fig. 18-22).

Fig. 18-22

Given:

Z1 = 100 �0◦ = 100 + j0 �

Z2 = 150 �30◦ = 130 + j75 �

Z3 = 250 �0◦ = 250 + j0 �

Z4 = 100 �−30◦ = 86.6 − j50 �

Step 1. Write the formula for ZT between terminals A and B. The parallel combination of Z1
and Z2 is in series with the parallel combination of Z3 and Z4. Therefore,

ZT = Z1Z2

Z1 + Z2
+ Z3Z4

Z3 + Z4
(1) from Eq. (18-9)

Step 2. Solve for ZT by substituting the given impedance values into Eq. (18-9) (1) and simplifying.

ZT =
(
100 �0◦)(150 �30◦)

(100 + j0) + (130 + j75)
+

(
250 �0◦)(100 �−30◦)

(250 + j0) + (86.6 − j50)

= 15 000 �30◦

230 + j75
+ 25 000 �−30◦

336.6 − j50
= 15 000 �30◦

241.9 �18.1◦ + 25 000 �−30◦

340.3 �−8.4◦

= 62.0 �11.9◦ + 73.5 �−21.6◦ = 60.7 + j12.8 + (68.3 − j27.1)

ZT = 129.0 − j14.3 = 129.8 �−6.3◦ � Ans.
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18.9 The total current entering the parallel circuit is IT = 20 �45◦ A (Fig. 18-23). Find the potential
difference between points A and B.

Fig. 18-23

Step 1. Find I1 and I2 by the parallel current division formula. See Solved Problem 18.3(b) for
formulas.

I1 =
(

Z2

Z1 + Z2

)
IT

=
(

10 �90◦

30 + j10

) (
20 �45◦)

= 200 �135◦

30 + j10
= 200 �135◦

31.6 �18.4◦

I1 = 6.33 �116.6◦ A

Similarly, I2 =
(

Z1

Z1 + Z2

)
IT

=
(

30 �0◦

30 + j10

) (
20 �45◦)

= 600 �45◦

31.6 �18.4◦

I2 = 19.0 �26.6◦ A

Step 2. Calculate the voltage drop across the 20-� resistance and the j6-� reactance.

V20� = I1
(
20 �0◦) = (

6.33 �116.6◦)(20 �0◦) = 126.6 �116.6◦ = −56.7 + j113.2 V

Vj6� = I2
(
6 �90◦) = (

19.0 �26.6◦)(6 �90◦) = 114 �116.6◦ = −51.0 + j101.9 V

Step 3. Find the voltage difference between A and B, VAB.
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The sketch shows the correct polarity. So VAB is the difference between V20� and Vj6�.

VAB = V20� − Vj6� = (−56.7 + j113.2) − (−51.0 + j101.9)

VAB = −5.7 + j11.3 = 12.7 �116.8◦

A voltmeter placed between points A and B would read 12.7 V. Ans.

18.10 An ac power line of 110 V operates a parallel bank of lamps and a small induction motor (Fig. 18-24).
Find (a) the total effective power PT , (b) the total apparent power ST , (c) the total reactive power QT ,
(d) the total PF, and (e) the total current IT .

Fig. 18-24

Apparent power in branch A, SA, is not in phase with the apparent power in branch B, SB , since
they have different power factors. Thus, we must find the complex power for branch A, SA, and for
branch B, SB , and then add them to obtain total power of the circuit, ST .

Step 1. Find SA.

SA = VAIA = (110)(10) = 1100 VA

PA = SA cos θA = SA cos 0◦ = (1100)(1) = 1100 W (18-12)

QA = SA sin θA = 1100 sin 0◦ = 1100 × 0 = 0 vars (18-13)

SA = PA + jQA = 1100 + j0 (18-10)

Step 2. Find SB .

Similarly, SB = VBIB = (110)(5) = 550 VA

PB = SB cos θB = (550)(0.8) = 440 W

QB = SB sin θB = (550)(sin 36.9◦) = 330 vars, lagging

SB = PB + jQB = 440 + j330

Step 3. Find ST .

ST = SA + SB

= (1100 + j0) + (440 + j330)

ST = 1540︸︷︷︸
PT

+ j330︸︷︷︸
QT

= 1575︸︷︷︸
ST

�12.1◦︸ ︷︷ ︸
PFT angle
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Interpreting ST as complex power, we have

(a) PT = 1540 W Ans.

(b) ST = 1575 VA Ans.

(c) QT = 330 vars, lagging Ans.

(d) PFT = cos 12.1◦ = 0.978 lagging Ans.

Step 4. Find IT .

ST = VT IT

IT = ST

VT

= 1575 �12.1◦

110 �0◦ = 14.3 �12.1◦ A Ans.

18.11 A generator is in series with a fixed impedance ZG and a load impedance ZL (Fig. 18-25). Maximum
power is transferred from the generator to the load by making the load resistance RL equal to the
generator resistance RG, RL = RG, and the load reactance XL (not to be confused with inductive
reactance) equal and opposite to the generator reactance XG, XL = −XG. In other words, make ZL

equal to the conjugate of ZG,

ZL = Z∗
G (1)

Fig. 18-25 Maximum power transfer

In an actual circuit, ZG is the internal impedance of the generator plus the impedance of connecting
lines and any other elements in the circuit. If ZG were a pure resistance, ZL would be an equal
resistance in order to receive maximum power. If ZG were inductive, ZL would need to be capacitive.
It is clear that a load can be adjusted to receive maximum power only if its resistance and reactance
can both be varied independently. Impedance matching to obtain maximum power to the load is
important in practically all communication engineering. Though the conjugate match is the ideal,
in practice both generator impedance and load impedance are likely to be mainly resistive, and often
it is adequate to make their impedance equal in magnitude,

|ZL| = |ZG| (2)

If a 120-V generator has an internal resistance of ZG = 4 + j3, find (a) the load impedance ZL

for the maximum power to be transferred to the load, (b) the power PL delivered to the load, (c) the
power factor, and (d) the power efficiency of the circuit.
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Step 1. Find ZL.

(a) For maximum transfer of power, ZL = Z∗
G = 4 − j3 Ans.

Step 2. Find IT .

ZT = ZG + ZL = (4 + j3) + (4 − j3)

= 8 + 0j = 8 �0◦ �

Let VT = 120 �0◦ V be the reference.

IT = VT

ZT

= 120 �0◦

8 �0◦ = 15 �0◦ A, VT and IT are in phase at 0◦.

Step 3. Find PL and PF.

(b) PL = I 2
T RL = (15)2 (4) = 900 W Ans.

(c) PF = cos θ = cos 0◦ = 1 Ans.

Step 4. Find the power efficiency.

Power efficiency = Power output at load

Power input
= PL

PIN

PIN = VT IT = (120)(15) = 1800 W Ans.

(d) Power efficiency = 900

1800
= 0.50 = 50% Ans.

A matched load is always 50% efficient, meaning that the load receives half the output from
the generator source, the other half dissipated by the generator resistance. This also means
that the terminal voltage drops to half when maximum load is applied. Neither of these
conditions is tolerable on a power system.

18.12 Two motors on the same line (Fig. 18-26) use 33 kW at 0.96 PF leading. The motor in branch B

draws 25 kW at 0.86 PF lagging. What is the real power, reactive power, apparent power, and PF of
motor A?

Fig. 18-26
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Step 1. Find the power relations of the total circuit, ST .

ST = PT

PFT

= 33

0.96
= 34.4 kVA

PFT = cos θ = 0.96

θ = arccos 0.96 = 16.3◦

QT = ST sin θ = 34.4 sin 16.3◦ = (34.4)(0.281)

= 9.65 kvars leading

Then ST = PT − jQT = 33 − j9.65 kVA

Step 2. Find the power relations of motor B, SB .

SB = PB

PFB

= 25

0.86
= 29.1 kVA

PFB = cos θB = 0.86

θB = arccos 0.86 = 30.7◦

QB = SB sin θ = 29.1 sin 30.7◦ = (29.1)(0.511)

= 14.9 kvars lagging

Then SB = 25 + j14.86 kVA

Step 3. Find the power relations of motor A, SA.

ST = SA + SB, total complex power equals the sum of the complex
power of branch A and branch B.

Then SA = ST − SB
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Total circuit: ST = 33 − j9.65

Motor B: SB = 25 + j14.86

Motor A: SA = ST − SB = 8︸︷︷︸
PA

− j 24.51︸ ︷︷ ︸
QA

= 25.8︸︷︷︸
VIA

�−71.9◦ kVA

Thus, PA = 8 kW Ans.

QA = 24.5 kvars leading Ans.

SA = VIA = 25.8 kVA Ans.

PFA = cos θA = cos(−71.9◦) = 0.31 leading Ans.

Note that total PFT does not equal the sum of the individual branches, PFA + PFB . That is

PFT �= PFA + PFB

0.96 leading �= 0.31 leading + 0.86 lagging

18.13 Find currents I1 and I2 in a series–parallel circuit (Fig. 18-27).

Fig. 18-27

Step 1. Find total or equivalent impedance ZT .

10 �-resistor is in series with parallel impedances in branch A and branch B.

Z1 = 5 + j0 = 5 �0◦

Z2 = 0 + j10 = 10 �90◦

ZT = 10 + Z1Z2

Z1 + Z2

Z1Z2

Z1 + Z2
=

(
5 �0◦)(10 �90◦)

(5 + j0) + (0 + j10)
= 50 �90◦

5 + j10
= 50 �90◦

11.18 �63.43◦

= 4.47 �26.57◦ = 4.00 + j2.00

So ZT = 10 + (4.00 + j2.00) = 14.00 + j2.00 = 14.14 �8.13◦ �

Step 2. Solve for IT .

IT = VT

ZT

= 110 �0◦

14.14 �8.13◦ = 7.78 �−8.13◦ = 7.70 − j1.10 A
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Step 3. Find nodal voltage at A, VA.

VA = VT − V10�, the difference between the input voltage and the voltage
drop across the 10-� series resistor.

V10� = IT R = (7.70 − j1.10)(10) = 77.0 − j11.0 V

VA = (110 + j0) − (77.0 − j11.0) = 33 + j11 = 34.79 �18.43◦ V

Step 4. Solve for I1 and I2.

I1 = VA

Z1
= 34.79 �18.43◦

5 �0◦ = 6.96 �18.4◦ A Ans.

I2 = VA

Z2
= 34.79 �18.43◦

10 �90◦ = 3.48 �−71.6◦ A Ans.

18.14 Find I2 in Fig. 18-27 by the determinant method of solution.

Step 1. Find the impedance determinant �.

By inspection,

Z11 = 10 + 5 = 15 + j0 = 15 �0◦ �

Z12 = Z21 = 5 + j0 = 5 �0◦ �

Z22 = 5 + j10 = 11.18 �63.43◦ �

� =
∣∣∣∣ Z11 −Z12
−Z21 Z22

∣∣∣∣ = (18-18)

= (
15 �0◦)(11.18 �63.43◦) − ( − 5 �0◦)( − 5 �0◦)

= 167.70 �63.43◦ − 25 �0◦

= 75.01 + j149.99 − 25 = 50.01 + j149.99 = 158.11 �71.56◦

Step 2. Find NI2 by replacing column 2 of Eq. 18-18 by the net mesh voltages, V1 and V2.

NI2 =
∣∣∣∣ Z11 V1
−Z12 V2

∣∣∣∣ =
∣∣∣∣∣15 �0◦ 110 �0◦

−5 �0◦ 0

∣∣∣∣∣
= (15 �0◦) (0) − (110 �0◦) (−5 �0◦) = 550 �0◦

Step 3. Solve for I2.

I2 = NI2

�
= 550 �0◦

158.11 �71.56◦ = 3.48 �71.6◦ A Ans.

Value of I2 agrees with that found in Solved Problem 18.13.
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18.15 Find by mesh analysis the total current IT through the generator and the impedance seen by the
generator if its voltage is 120 V (Fig. 18-28). For simplification, assume 1-V service even though
the source voltage is 120 V. Resulting current values can then be multiplied by any given voltage to
determine the corresponding current produced by the given voltage.

Fig. 18-28 Reactances in a 3-mesh network

Step 1. Find the impedance determinant �.

� =
∣∣∣∣∣∣

Z11 −Z12 −Z13
−Z21 Z22 −Z23
−Z31 −Z32 Z33

∣∣∣∣∣∣ (18-19)

Z11 = (R1 + R2) + jXL1 − jXC1 = 2 + j2 − j2 = 2 �

Z12 = Z21 = R2 = 1 �

Z13 = Z31 = −jXC1 = −j2 �

Z22 = (R2 + R3) + jXL2 − jXC2 = 2 + j2 − j1 = 2 + j1 �

Z23 = Z32 = −jXC2 = −j1 �

Z33 = −jXC1 − jXC2 = −j1 − j2 = −j3 �

Substitute impedance values in Eq. 18-19.

� =
∣∣∣∣∣∣

2 −1 j2
−1 2 + j1 j1
j2 j1 −j3

∣∣∣∣∣∣
Expand the first column into second-order determinants.

� = 2

∣∣∣∣2 + j1 j1
j1 −j3

∣∣∣∣ − (−1)

∣∣∣∣−1 j2
j1 −j3

∣∣∣∣ + j2

∣∣∣∣ −1 j2
2 + j1 j1

∣∣∣∣
= 2

[
(2 + j1)(−j3) − (j1)(j1)

] + [
(−1)(−j3) − (j1)(j2)

] + j2
[ − j − j2(2 + j1)

]
= (−j12 + 8) + (j3 + 2) + (10 + j4)

= 20 − j5
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Step 2. Find NIT
and then IT .

Since IT is the current in Mesh 3, we replace the 3rd column in � by the net voltages of
each mesh to find NIT

. Assume V3 = 1 V; V1 = V2 = 0 V.

NI3 = NIT
=

∣∣∣∣∣∣
Z11 −Z12 V1

−Z21 Z22 V2
−Z31 −Z32 V3

∣∣∣∣∣∣ (from Eq. 18-21)

=
∣∣∣∣∣∣

2 −1 0
−1 2 + j1 0
j2 j1 1

∣∣∣∣∣∣
= 2

∣∣∣∣2 + j1 0
j 1

∣∣∣∣ − (−1)

∣∣∣∣−1 0
j1 1

∣∣∣∣ + j2

∣∣∣∣ −1 0
2 + j1 0

∣∣∣∣
= 2(2 + j1) + (−1) + 0

= 3 + j2

IT = NIT

�

= 3 + 2j

20 − j5

Rationalizing, IT = 3 + 2j

20 − j5
· 20 + j5

20 + j5
= 50 + j55

425
= 0.118 + j0.129

= 0.175 �47.6◦ A

At VT = 120 V, the current will be 120 times greater at the same phase angle, so

IT = (120)
(
0.175 �47.6◦) = 21.0 �47.6◦ A Ans.

Step 3. Find the total impedance.

ZT = VT

IT

= 120 �0◦

21.0 �47.6◦ = 5.71 �−47.6◦ � Ans.

18.16 Show for parallel-connected networks that the total real power PT and the total reactive power QT are
the sum of the individual real power and the individual reactive power, respectively, in each branch.

Write S = VI∗ (18-17)

ST = VI∗
T = V

(
I∗

1 + I∗
2 + I∗

3 + · · · + I∗
n

)
for n-branches

= VI∗
1 + VI∗

2 + VI∗
3 + · · · + VI∗

n

Therefore ST = S1 + S2 + S3 + · · · + Sn

But ST = PT + jQT , S1 = P1 + jQ1, S2 = P2 + jQ2,

S3 = P3 + jQ3, Sn = Pn + jQn

So PT + jQT = (P1 + jQ1) + (P2 + jQ2) + (P3 + jQ3) + · · · + (Pn + jQn)

from which PT = P1 + P2 + P3 + · · · + Pn Ans.

QT = Q1 + Q2 + Q3 + · · · + Qn Ans.
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Supplementary Problems

18.17 Refer to Solved Problem 17.14. An applied voltage of V = 110 �0◦ V is applied to each series circuit
pictured, (a)–(f ). For each circuit find the current I, voltage drops across each element, and draw
the phasor diagram.

Ans.

(a) I = 22 �0◦ A

VR = 110 �0◦ V

(b) I = 11 �−90◦ A

VL = 110 �0◦ V

(c) I = 11 �90◦ A

VC = 110 �0◦ V

(d) I = 6.96 �−71.6◦ A

VR = 34.8 �−71.6◦ V

VL = 104.4 �18.4◦ V

(e) I = 6.11 �33.7◦ A

VR = 91.6 �33.7◦ V

VC = 61.1 �−56.3◦ V
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(f ) I = 25.9 �−45◦ A

VR = 77.7 �−45◦ V

VL = 207.2 �45◦ V

VC = 129.5 �−135◦ V

18.18 120 V is applied to a series RLC circuit (Fig. 18-29). Find the total impedance, resultant current, and
the voltage drops across each element in both polar and rectangular forms. Draw the phasor diagram.
Check your solution by equating the given applied voltage to the sum of the voltage drops.

Fig. 18-29

Ans. ZT = 8.0 − j15.0 � = 17.0 �−61.9◦ �

IT = 7.06 �61.9◦ A

VR = 56.48 �61.9◦ V = 26.61 + j49.82 V

VL = 52.95 �151.9◦ V = −46.71 + j24.91 V

VC = 158.85 �−28.1◦ V = 140.13 − j74.82 V
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18.19 Find the branch currents I1 and I2 by the current division formula found in Solved Problem 18.3
(Fig. 18-30).

Fig. 18-30

Ans. I1 = 2.8 �−26.6◦ A

I2 = 2.8 �26.6◦ A

18.20 If IT = 5 �30◦ A and I1 = 3 �−30◦ A, find Z2 (Fig. 18-31).

Fig. 18-31

Ans. Z2 = 0.79 − j6.84 �

Because the resistance is so small, the impedance Z2 for practical purposes is a capacitor.

18.21 Find the equivalent impedance of the parallel circuit (Fig. 18-32).

Fig. 18-32

Ans. ZT = 2.87 �27◦ �
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18.22 In the series ac circuit (Fig. 18-33), find ZT and IT . Is the circuit a lagging or leading one?

Fig. 18-33

Ans. ZT = 20 − j40 = 44.7 �−63.4◦ �

IT = 2.68 �63.4◦ A

The circuit is leading because XC > XL, resulting in IT leading VT by 63.4◦.

18.23 For the circuit in Fig. 18-33, find the phasor voltages across each element and verify your answers
by showing that VT equals the sum of the voltage drops.

Ans. VR = 53.6 �63.4◦ = 24 + j48 V

VXL
= 26.8 �153.4◦ = −24 + j12 V

VXC
= 134 �−26.6◦ = 120 − j60 V

18.24 For the parallel circuit (Fig. 18-34), find branch currents I1 and I2, and total current IT . Draw the
current-phasor diagram with VT as the reference.

Fig. 18-34

Ans. I1 = 12 �53.1◦ = 7.2 + j9.6 A

I2 = 10 �0◦ = 10 + j10 A

IT = 17.2 + j9.6 = 19.7 �29.2◦ A
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18.25 Figure 18-35 shows a coil with negligible resistance, a capacitor, and a resistor connected in parallel
to a source voltage of 120 V. What will be the reading of ammeter A? Draw the current-phasor
diagram.

Fig. 18-35

Ans. IT = 12 + j2 = 12.2 �9.46◦ A. Ammeter will read effective value of 12.2 A.

18.26 A voltmeter placed across the 5-� resistor (Fig. 18-36) reads 30 V. What does the ammeter read?

Fig. 18-36

Ans. 25.8 A
(I1 = 6 �0◦ A, I2 = 21.2 �−45◦ A)

18.27 A voltmeter placed across the 5-� resistor (Fig. 18-37) indicates 45 V. What is the ammeter reading?
What is the voltage reading between points A and B?

Ans. 18.0 A
(I1 = 9 �0◦ A, I2 = 9.7 �−31.3◦ A)

VAB = 25.2 V
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Fig. 18-37

18.28 For the circuit shown in Fig. 18-38 solve for

(a) equivalent series impedance ZT

(b) total current IT , and

(c) effective power drawn by the circuit.

Fig. 18-38

Ans. (a) 21.2 �16.5◦ �

(b) 4.7 �−16.5◦ A

(c) 451 W

18.29 In the parallel circuit (Fig. 18-39), find (a) all the branch currents, (b) total current, (c) total impedance,
and (d) power drawn.

Ans. (a) I1 = 10 �0◦ = 10 + j0 A

I2 = 4 �−73.7◦ = 1.12 − j3.84 A

I3 = 5 �53.1◦ = 3 + j4 A

(b) IT = 14.1 + j0.16 = 14.1 �1◦ A

(c) ZT = 7.09 �−1◦ �

(d) P = 1410 W
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Fig. 18-39

18.30 In the series–parallel circuit (Fig. 18-40), (a) write the impedances of each branch and then find
(b) the total impedance and (c) total current.

Fig. 18-40

Ans. (a) Z1 = 10 + j10 = 14.14 �45◦ �

Z2 = 20 = 20 �0◦ �

Z3 = 40 + j19 = 44.2 �25.4◦ �

Z4 = 7 − j24 = 25 �−73.7◦ �

(b) ZT = 20.9 + j6.16 = 21.8 �16.4◦ �

(c) IT = 4.59 �−16.4◦ �

18.31 For the circuit shown (Fig. 18-40), find the voltage drop across the parallel branch VAB . Then
find the branch currents I2, I3, and I4. Finally, draw the current-phasor diagram with VT as
reference.

Ans. VAB = 43 − j31 = 53.0 �−35.8◦ V

I2 = 2.65 �−35.8◦ A

I3 = 1.20 �−61.2◦ A

I4 = 2.12 �−37.9◦ A
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Ans.

18.32 For the circuit shown (Fig. 18-41), find the total effective power PT , the total reactive power QT ,
the total apparent power ST , and the total power factor, PFT .

Fig. 18-41

Ans. PT = 80 kW

QT = 46.7 kvars lagging

ST = 92.6 kVA

PFT = 0.863 lagging

18.33 A 3-kW lamp load is in parallel with a motor operating at a PF of 0.6 lagging and drawing 4 kW (Fig.
18-42). Find the power relations of the total circuit and the total current.

Ans. ST = 7 + j5.33 = 8.80 �37.3◦ kVA

from which PT = 7 kW

QT = 5.33 kvars lagging

ST = 8.80 kVA

PFT = 0.795 lagging

IT = 80 �−37.3◦ A
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Fig. 18-42

Find the power relations of the following circuits.

18.34

Fig. 18-43

Ans. ST = 1265 − j547 = 1378 �−23.4◦ VA

PT = 1265 W

QT = 547 vars leading

ST = 1378 VA

PFT = 0.918 leading

18.35

Fig. 18-44

Ans. ST = 2376 + j1760 = 2957 �36.5◦ VA

PT = 2376 W

QT = 1760 VAR lagging

ST = 2957 VA

PFT = 0.804 lagging
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18.36

Fig. 18-45

Ans. ST = 588 + j181 = 615 �17.1◦ VA

PT = 588 W

QT = 181 vars lagging

ST = 615 VA

PFT = 0.956 lagging

18.37 Find the mesh currents I1 and I2 by the determinant method (Fig. 18-46). What is the voltage across
the 20-� resistor?

Fig. 18-46

Ans. I1 = 7.93 �45.8◦ A

I2 = 4.06 �6.04◦ A

V20� = 81.2 �6.04◦ V

(Hint: Impedance determinant � = 1800 + j800)

18.38 (a) Find the current IT by solving first for the total impedance ZT (Fig. 18-47).

(b) Confirm the IT value by use of determinants.

Ans. (a) ZT = 43.1 �48.6◦ �

IT = 2.32 �−28.6◦ A

(b) (Hint: Impedance determinant � = 750 + j200)
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Fig. 18-47

18.39 Solve by determinants in a generator-bridge circuit (Fig. 18-48).

(a) impedance determinant �

(b) mesh currents I1, I2, I3

(c) total impedance seen by the generator ZT

(d) voltage drop across the 1-� resistor in the center branch

Fig. 18-48

Ans. (a) � = 4 �0◦ = 4 + j0

(b) I1 = 0.791 �−71.65◦ = 0.2490 − j0.7508 A

I2 = 0.354 �−45◦ = 0.2500 − j0.2500 A

I3 = 0.500 �0◦ = 0.5000 − j0 A

(c) ZT = 2 �0◦ = 2 + 0j �

(d) 0 − j0.5 = 0.5 �−90◦ V

18.40 How much capacitance must be provided by the capacitor bank (Fig. 18-49) to improve the power
factor of the circuit to 0.95 lagging? What is the resulting decrease in apparent power?
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Fig. 18-49

Ans. 1725 vars leading. Decrease in apparent power 636 VA.

18.41 A load of P = 1200 kW with PF = 0.5 lagging is fed by a 5-kV generator. A capacitor is added in
parallel to improve the PF to 0.85 lagging. Find the reduction in current drawn from the generator.

Ans. With the same amount of real power, the current is reduced to 198 A (480 A − 282 A),
representing a 41.3% current reduction.

18.42 A 24-V generator with impedance 600 + j150 � feeds a load impedance. Find the load impedance
to obtain maximum power, the power received, and the power efficiency.

Ans. ZL = 600 − j150 �

PL = 240 mW

Efficiency = 50%



 

Chapter 19

Transformers

IDEAL TRANSFORMER CHARACTERISTICS

The basic transformer consists of two coils electrically insulated from each other and wound upon a
common core (Fig. 19-1). Magnetic coupling is used to transfer electric energy from one coil to another. The
coil which receives energy from an ac source is called the primary. The coil which delivers energy to an ac
load is called the secondary. The core of transformers used at low frequencies is generally made of magnetic
material, usually sheet steel. Cores of transformers used at higher frequencies are made of powdered iron
and ceramics, or nonmagnetic materials. Some coils are simply wound on nonmagnetic hollow forms such as
cardboard or plastic so that the core material is actually air.

Fig. 19-1 Simple diagram of a transformer

If a transformer is assumed to be operating under an ideal or perfect condition, the transfer of energy from
one voltage to another is accompanied by no losses.

Voltage Ratio

The voltage on the coils of a transformer is directly proportional to the number of turns on the coils. This
relationship is expressed by the formula

Vp

Vs

= Np

Ns

(19-1)

where Vp = voltage on primary coil, V
Vs = voltage on secondary coil, V
Np = number of turns on primary coil
Ns = number of turns on secondary coil

The ratio Vp/Vs is called the voltage ratio (VR). The ratio Np/Ns is called the turns ratio (TR). By substituting
these terms into Eq. (19-1), we obtain an equivalent formula

VR = TR (19-2)

455
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A voltage ratio of 1 : 4 (read as 1 to 4) means that for each volt on the transformer primary, there is 4 V
on the secondary. When the secondary voltage is greater than the primary voltage, the transformer is called a
step-up transformer. A voltage ratio of 4 : 1 means that for each 4 V on the primary, there is only 1 V on the
secondary. When the secondary voltage is less than the primary voltage, the transformer is called a step-down
transformer.

Example 19.1 A filament transformer (Fig. 19-2) reduces the 120 V in the primary to 8 V on the secondary. If there are
150 turns on the primary and 10 turns on the secondary, find the voltage ratio and turns ratio.

VR = Vp

Vs
= 120

8
= 15

1
= 15 :1 Ans.

TR = Np

Ns
= 150

15
= 15

1
= 15 :1 Ans.

Note that VR = TR [Eq. (19-2)].

Fig. 19-2 Filament transformer

Example 19.2 An iron-core transformer operating from a 120-V line has 500 turns in the primary and 100 turns in the
secondary. Find the secondary voltage.

Vp

Vs
= Np

Ns
(19-1)

Solve for Vs and substitute known values.

Vs = Ns

Np
Vp = 100

500
120 = 24 V Ans.

Example 19.3 A power transformer has a turns ratio of 1 : 5. If the secondary coil has 1000 turns and the secondary
voltage is 30 V, find the voltage ratio, the primary voltage, and the number of primary turns.

VR = TR (19-2)

= 1 :5 Ans.

Vp

Vs
= VR = 1 :5 = 1

5

Vp = 1

5
Vs = 30

5
= 6 V Ans.

TR = Np

Ns
= 1

5

Np = 1

5
Ns = 1000

5
= 200 turns Ans.
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Current Ratio

The current in the coils of a transformer is inversely proportional to the voltage in the coils. This relationship
is expressed by the equation

Vp

Vs

= Is

Ip

(19-3)

where Ip = current in primary coil, A
Is = current in secondary coil, A

From Eq. (19-1) we may substitute Np/Ns for Vp/Vs , so we have

Np

Ns

= Is

Ip

(19-4)

Example 19.4 Derive the current-ratio equation Vp/Vs = Is/Ip .
For an ideal transformer, the power input to the primary is equal to the power output of the secondary. Thus, an ideal

transformer is assumed to operate at an efficiency of 100 percent. Therefore,

Power input = power output

Pp = Ps

Power input = Pp = VpIp

Power output = Ps = VsIs

Substituting for Pp and Ps , VpIp = VsIs

from which Vp

Vs
= Is

Ip
Ans.

Example 19.5 When the primary winding of an iron-core transformer is operated at 120 V, the current in the winding
is 2 A. Find the current in the secondary winding load if the voltage is stepped up to 600 V.

Vp

Vs
= Is

Ip
(19-3)

Solve for Is and substitute known values.

Is = Vp

Vs
Ip = 120

600
2 = 0.4 A Ans.

Example 19.6 A bell transformer with 240 turns on the primary and 30 turns on the secondary draws 0.3 A from a
120-V line. Find the secondary current.

Np

Ns
= Is

Ip
(19-4)

Solve for Is and substitute known values.

Is = Np

Ns
Ip = 240

30
(0.3) = 2.4 A Ans.
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Efficiency

The efficiency of a transformer is equal to the ratio of the power output of the secondary winding to the
power input of the primary winding. An ideal transformer is 100 percent efficient because it delivers all the
energy it receives. Because of core and copper losses, the efficiency of even the best practical transformer is
less than 100 percent. Expressed as an equation,

Eff = power output

power input
= Ps

Pp

(19-5)

where Eff = efficiency
Ps = power output from secondary, W
Pp = power input to primary, W

Example 19.7 What is the efficiency of a transformer if it draws 900 W and delivers 600 W?

Eff = Ps

Pp
(19-5)

= 600

900
= 0.667 = 66.7% Ans.

Example 19.8 A transformer is 90 percent efficient. If it delivers 198 W from a 110-V line, find the power input and
the primary current.

Eff = Ps

Pp
(19-5)

Solve for power input Pp .

Pp = Ps

Eff
= 198

0.90
= 220 W Ans.

Write the power input formula.

Pp = VpIp

Solve for Ip .

Ip = Pp

Vp
= 220

110
= 2 A Ans.

Example 19.9 A transformer draws 160 W from a 120-V line and delivers 24 V at 5 A. Find its efficiency.

Pp = 160 W, given

Ps = VsIs = 24(5) = 120 W

Then Eff = Ps

Pp
= 120

160
= 0.75 = 75% Ans.

TRANSFORMER RATINGS

Transformer capacity is rated in kilovoltamperes. Since power in an ac circuit depends on the power factor
of the load and the current in the load, an output rating in kilowatts must specify the power factor.
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Example 19.10 What is the kilowatt output of a 5-kVA 2400/120-V transformer serving loads with the following power
factors: (a) 100 percent, (b) 80 percent, and (c) 40 percent? What is the rated output current of the transformer?

Power output:

(a) Ps = kVA × PF = 5(1.0) = 5 kW Ans.

(b) Ps = 5(0.8) = 4 kW Ans.

(c) Ps = 5(0.4) = 2 kW Ans.

Current output:

Ps = IsVs

Solving for Is ,

Is = Ps

Vs
= 5000

120
= 41.7 A Ans.

Since rated current is determined by the rated kilovoltamperage, the full-load current of 41.7 A is supplied by the transformer
at the three different PFs even though the kilowatt output is different for each case.

IMPEDANCE RATIO

A maximum amount of power is transferred from one circuit to another when the impedances of the two
circuits are equal or matched. If the two circuits have unequal impedances, a coupling transformer may be
used as an impedance-matching device between the two circuits. By constructing the transformer’s winding
so that it has a definite turns ratio, the transformer can perform any impedance-matching function. The turns
ratio establishes the proper relationship between the ratio of the primary and secondary winding impedances.
This relationship is expressed by the equation (

Np

Ns

)2

= Zp

Zs

(19-6)

Taking the square root of both sides, we obtain

Np

Ns

=
√

Zp

Zs

(19-7)

where Np = number of turns on primary
Ns = number of turns on secondary
Zp = impedance of primary, �

Zs = impedance of secondary, �

Example 19.11 Find the turns ratio of a transformer used to match a 14 400-� load to a 400-� load.

Np

Ns
=

√
Zp

Zs
(19-7)

=
√

14 400

400
= √

36 = 6

1
= 6 :1 Ans.

Example 19.12 Find the turns ratio of a transformer to match a 20-� load to a 72 000-� load.
Use Eq. (19-7).

Np

Ns
=

√
Zp

Zs
=

√
20

72 000
=

√
1

3600
= 1

60
= 1 :60 Ans.
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Example 19.13 The secondary load of a step-down transformer with a turns ratio of 5 : 1 is 900 �. Find the impedance
of the primary.

Zp

Zs
=

(
Np

Ns

)2
(19-6)

Solve for Zp and substitute given values.

Zp =
(

Np

Ns

)2
Zs =

(
5

1

)2
(900) = 22 500 � Ans.

AUTOTRANSFORMER

An autotransformer is a special type of power transformer. It consists of only one winding. By tapping, or
connecting, at points along the length of the winding, different voltages may be obtained. The autotransformer
(Fig. 19-3) has a single winding between terminals A and C. The winding is tapped and a wire brought out
as terminal B. Winding AC is the primary while winding BC is the secondary. The simplicity of the auto-
transformer makes it economical and space-saving. However, it does not provide electrical isolation between
primary and secondary circuits.

Fig. 19-3 Autotransformer schematic diagram

Example 19.14 An autotransformer having 200 turns is connected to a 120-V line (Fig. 19-3). To obtain a 24-V output,
find the number of turns of the secondary and the turn number at which the transformer should be tapped, counting from
terminal A.

Vp

Vs
= Np

Ns
(19-1)

Ns = Vs

Vp
Np = 24

120
200 = 40 turns Ans.

Since the secondary turns include primary, the B tap should be where the turn number is 160 (160 = 200 − 40). If
tap B is made movable, the autotransformer becomes a variable transformer. As the tap is moved downward toward C, the
secondary voltage decreases.

TRANSFORMER LOSSES AND EFFICIENCY

Actual transformers have copper losses and core losses. Copper loss is the power lost in the primary
and secondary windings due to the ohmic resistance of the windings. Copper loss in watts is obtained by the
formula

Copper loss = I 2
pRp + I 2

s Rs (19-8)
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where Ip = primary current, A
Is = secondary current, A

Rp = resistance of the primary winding, �

Rs = resistance of the secondary winding, �

Core loss is caused by two factors: hysteresis loss and eddy-current loss. Hysteresis loss is the energy lost
by reversing the magnetic field in the core as the magnetizing alternating current rises and falls and reverses
direction. Eddy-current loss is the result of induced currents circulating in the core material.

Copper loss in both windings may be measured by means of a wattmeter. The wattmeter is placed in the
primary circuit of the transformer while the secondary is short-circuited. The voltage applied to the primary
is then increased until the rated full-load current is flowing in the short-circuited secondary. At that point the
wattmeter will read the total copper loss. Core loss may be determined also by a wattmeter in the primary
circuit by applying the rated voltage to the primary with the secondary circuit open.

The efficiency of an actual transformer is expressed as follows:

Eff = power output

power input
= Ps

Pp

(19-5)

= power output

power output + copper loss + core loss

and Eff = VsIs × PF

(VsIs × PF) + copper loss + core loss
(19-9)

where PF = power factor of the load

Example 19.15 A 10 : 1 step-down 5-kVA transformer has a full-load secondary current rating of 50 A. A short-circuit
test for copper loss at a full load gives a wattmeter reading of 100 W. If the resistance of the primary winding is 0.6 �,
find the resistance of the secondary winding and the power loss in the secondary.

Use Eq. (19-8).

Copper loss = I2
pRp + I2

s Rs = 100 W

To find Ip at full load, write Eq. (19-4).

Np

Ns
= Is

Ip
(19-4)

from which Ip = Ns

Np
Is = 1

10
50 = 5 A

Solve for Rs from the copper-loss equation above.

I2
s Rs = 100 − I2

pRp

Rs = 100 − I2
pRp

I2
s

= 100 − 52(0.6)

502
= 0.034 � Ans.

Power loss in secondary = I2
s Rs = 502(0.034) = 85 W Ans.

or Power loss in secondary = 100 − I2
pRp = 100 − 52(0.6) = 85 W Ans.
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Example 19.16 An open-circuit test for core loss in the 5-kVA transformer of Example 19.15 gives a reading of 70 W.
If the PF of the load is 85 percent, find the efficiency of the transformer at full load.

Eff = VsIs × PF

(VsIs × PF) + copper loss + core loss
(19-9)

VsIs = transformer rating = 5 kVA = 5000 VA

PF = 0.85 Copper loss = 100 W Core loss = 70 W

Substitute known values and solve.

Eff = 5000(0.85)

5000(0.85) + 100 + 70
= 4250

4420
= 0.962 = 96.2% Ans.

NO-LOAD CONDITION

If the secondary winding of a transformer is left open-circuited (Fig. 19-4a), the primary current is very
low and is referred to as the no-load current. The no-load current produces the magnetic flux and supplies the
hysteresis and eddy-current losses in the core. Therefore, the no-load current IE consists of two components:
the magnetizing-current component IM and the core-loss component IH . The magnetizing current IM lags the
applied primary voltage Vp by 90◦, while the core-loss component IH is always in phase with Vp (Fig. 19-4b).
Note also that the primary applied voltage Vp and the induced secondary voltage Vs are shown 180◦ out of
phase with each other. Since in practice IH is small in comparison with IM , the magnetizing current IM is
very nearly equal to the total no-load current IE . IE is also called the exciting current.

Fig. 19-4 Iron-core transformer with the secondary open-circuited

Example 19.17 When the secondary of a 120/240-V transformer is open, the primary current is 0.3 A at a PF of 20
percent. The transformer is rated at 4 kVA. Find (a) the full-load current Ip , (b) the no-load exciting current IE , (c) the
core-loss current IH , and (d) the magnetizing current IM . (e) Determine the percentages of each current with respect to
full-load current. (f ) Draw the phasor diagram.

(a)
Full-load current = transformer kVA rating

primary voltage

Ip = 4000

120
= 33.3 A Ans.
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(b) The primary current measured at no load (secondary open) is the exciting current IE . Thus,

IE = 0.3 A Ans.

(c) From Fig. 19-4b,

IH = IE cos θ = IE × PF = 0.3(0.2) = 0.06 A Ans.

(d) From Fig. 19-4b,

IM = IE sin θ

θ = arccos 0.2 = 78.5◦

Then IM = 0.3 sin 78.5◦ = 0.3(0.980) = 0.294 A Ans.

(e) Percent no-load primary current (exciting current) to full-load primary current:

0.3

33.3
= 0.0090 = 0.90% Ans.

Percent core-loss current to full-load current:

0.06

33.3
= 0.0018 = 0.18% Ans.

Percent magnetizing current to full-load current:

0.294

33.3
= 0.0088 = 0.88% Ans.

Notice that the magnetizing current (0.294 A) has nearly the same values as the no-load primary current (0.3 A).

(f ) Phasor diagram: See Fig. 19-5.

Fig. 19-5 Phasor diagram

COIL POLARITY

The symbol for a transformer gives no indication of the phase of the voltage across the secondary since the
phase of that voltage actually depends on the direction of the windings around the core. To solve this problem,
polarity dots are used to indicate the phase of primary and secondary signals. The voltages are either in phase
(Fig. 19-6a) or 180◦ out of phase with respect to the primary voltage (Fig. 19-6b).
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Fig. 19-6 Polarity notation of transformer coils

Solved Problems

19.1 A power transformer is used to couple electric energy from a power-supply line to one or more
components of the system. In one type of power transformer (Fig. 19-7), there are three separate
secondary windings, each designed for a different voltage output. The primary of the transformer is
connected to a 120-V source of supply and has 100 turns. Find the number of turns on each secondary.

Fig. 19-7 Power transformer schematic diagram

Find Ns by using Eq. (19-1).

Vp

Vs

= Np

Ns

from which Ns = Vs

Vp

Np

For the 600-V secondary: Ns = 600

120
100 = 500 turns Ans.



 

CHAP. 19] TRANSFORMERS 465

For the 6.3-V secondary: Ns = 6.3

120
100 ≈ 5 turns Ans.

For the 2.5-V secondary: Ns = 2.5

120
100 ≈ 2 turns Ans.

19.2 A transformer whose primary is connected to a 110-V source delivers 11 V. If the number of turns on
the secondary is 20 turns, find the number of turns on the primary. How many extra turns must be
added to the secondary if it must deliver 33 V?

Find Np by using Eq. (19-1).

Vp

Vs

= Np

Ns

from which Np = Vp

Vs

Ns = 110

11
(20) = 200 turns Ans.

For Vs = 33 V, Ns = Vs

Vp

Np = 33

110
200 = 60 turns

Hence 40 turns (60 − 20) must be added. Ans.

19.3 A step-down transformer with a turns ratio of 50 000 : 500 has its primary connected to a 20 000-V
transmission line. If the secondary is connected to a 25-� load, find (a) the secondary voltage,
(b) the secondary current, (c) the primary current, and (d) the power output.

TR = Np

Ns

= 50 000

500
= 100

1

(a)
Np

Ns

= Vp

Vs

(19-1)

Then Vs = Ns

Np

Vp = 1

100
(20 000) = 200 V Ans.

(b) By Ohm’s law,

Is = Vs

RL

= 200

25
= 8 A Ans.

(c)
Vp

Vs

= Is

Ip

(19-3)

Then Ip = 200

20 000
8 = 0.08 A Ans.

(d) Ps = VsIs = 200(8) = 1600 W Ans.

19.4 A 7 : 5 step-down transformer draws 2 A. Find the secondary current.

TR = Np

Ns

= 7

5

Np

Ns

= Is

Ip

(19-4)

Then Is

Np

Ns

Ip = 7

5
2 = 2.8 A Ans.
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19.5 A transformer draws 2.5 A at 110 V and delivers 7.5 A at 24 V to a load with a PF of 100 percent.
Find the efficiency of the transformer.

Power in = Pp = VpIp = 110(2.5) = 275 W

Power out = Ps = VsIs = 24(7.5) = 180 W

Eff = Ps

Pp

(19-5)

= 180

275
= 0.655 = 65.5% Ans.

19.6 A transformer delivers 550 V at 80 mA at an efficiency of 90 percent. If the primary current is 0.8 A,
find the power input in voltamperes and the primary voltage.

Power out = Ps = VsIs = 550(80 × 10−3) = 44 VA

Eff = Ps

Pp

(19-5)

Then Power in = Pp = Ps

Eff
= 44

0.9
= 48.9 VA Ans.

Since the PF of the load is not specified, power is expressed in voltamperes. Also

Pp = VpIp so Vp = Pp

Ip

= 48.9

0.8
= 61.1 V Ans.

19.7 The rating of a power-supply transformer that is to be operated from a 60-Hz 120-V power line may
read as follows: 600 V CT (center tap) at 90 mA, 6.3 V at 3 A, 5 V at 2 A. Find the wattage rating of
this transformer.

The wattage rating is the total power delivered at 100 percent PF. It is found by adding the power
ratings of the individual secondary windings. The general formula to use is Ps = VsIs .

At 600 V tap: Ps = 600(90 × 10−3) = 54 W
At 6.3 V tap: Ps = 6.3(3) = 18.9 W

At 5 V tap: Ps = 5(2) = 10 W

Total power PT = 82.9 W Ans.

19.8 The step-down autotransformer at a power factor of unity is designed to deliver 240 V to a load of
5 kW (Fig. 19-8). The autotransformer’s primary winding is connected to a 600-V source. Find the
current in (a) the load, (b) the primary winding, and (c) the secondary winding.

Fig. 19-8 Step-down autotransformer
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(a) Write Ps = VsIs (Is in this case is the load current). So

Is = Ps

Vs

= 5000

240
= 20.8 A Ans.

(b) At unity PF and 100 percent efficiency, VpIp = VsIs . So

Ip = VsIs

Vp

= 5000

600
= 8.33 A Ans.

(c) The current in the secondary winding is Is − Ip by Kirchhoff’s current law.

Is − Ip = 20.8 − 8.3 = 12.5 A Ans.

19.9 A 60 : 1 output transformer is used to match an output transistor to a 4-� voice coil. Find the impedance
of the output circuit.

Zp

Zs

=
(

Np

Ns

)2

(19-6)

In this case the output transistor is in the primary circuit and the voice coil is in the secondary circuit.

Zp =
(

Np

Ns

)2

Zs =
(

60

1

)2

(4) = 14 400 � Ans.

19.10 A 1 : 10 step-up transformer is used to match a 500-� line to a circuit. Find the impedance of the
circuit.

Zp

Zs

=
(

Np

Ns

)2

(19-6)

In this case the circuit is in the secondary.

Zs =
(

Ns

Np

)2

Zp =
(

10

1

)2

(500) = 50 000 � = 50 k� Ans.

19.11 A 240/720-V 5-kVA transformer undergoes a short-circuit test for copper loss. At the start of the
test, the primary voltage is varied until the ammeter across the secondary indicates rated full-load
secondary current. The measured resistance of the primary winding is 0.05 � and that of the secondary
winding is 1.5 �. Calculate the total copper loss.

Step 1. Calculate the copper loss in the secondary.

Full-load secondary current Is = 5000

720
= 6.94 A

So I 2
s Rs = (6.94)2 (1.5) = 72.2 W
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Step 2. Calculate the copper loss in the primary.

Full-load primary current Ip = 5000

240
= 20.8 A

So I 2
pRp = (20.8)2 (0.05) = 21.6 W

Step 3. Calculate total copper loss. The total copper loss is the sum of the losses in both windings.

Total copper loss = I 2
pRp + I 2

s Rs (19-8)

= 21.6 + 72.2 = 93.8 W Ans.

The wattmeter in the primary circuit should read 93.8 W.

19.12 On an open-circuit test for core loss in the 5-kVA transformer of Problem 19.11, when the primary
voltage is set at the rated voltage of 240 V, the wattmeter in the primary circuit indicates 80 W. If the
power factor of the load is 0.8, find the efficiency of the transformer at full load.

Use the efficiency formula:

Eff = VsIs × PF

(VsIs × PF) + copper loss + core loss
(19-9)

= 5000(0.8)

5000(0.8) + 93.8 + 80
= 4000

4174
= 0.958 = 95.8% Ans.

19.13 When the secondary of a power transformer is open, the no-load current in the primary is 0.4 A.
If the power factor of the input primary circuit is 0.10, find the exciting current IE , the core-loss
current IH , and the magnetizing current IM .

The exciting current is the same as the no-load primary current.

So IE = 0.4 A Ans.

From the right-triangle relationships (see Fig. 19-9),

IH = IE cos θ = 0.4(0.10) = 0.04 A Ans.

PF = cos θ = 0.10 θ = arccos 0.10 = 84.3◦

Then IM = IE sin θ = 0.4 sin 84.3◦ = 0.4 A Ans. Fig. 19-9

19.14 The no-load current taken by a 110/220-V transformer is 0.7 A. The transformer is rated at 2.2 kVA.
If the power factors of the primary and secondary circuits are equal, find the primary current when
the secondary is supplying its rated 2.2 kVA to the load.

Full-load secondary current Is = 2200

220
= 10 A



 

CHAP. 19] TRANSFORMERS 469

Since the PFs for primary and secondary are equal at full load, the main component of load current
in the primary is

I ′
p = Vs

Vp

Is = 220

110
10 = 2(10) = 20 A

To I ′
p we add directly the 0.7-A no-load current. So

Ip = 20 + 0.7 = 20.7 A Ans.

Because the no-load components IH and IM of the primary current are much less than the load-
current component I ′

p, the no-load current can be added arithmetically instead of vectorially to the
total load-current.

19.15 Indicate the correct polarity dots for the secondary circuit (Fig. 19-10a).

Fig. 19-10a Coil polarity

For diagram (1) (Fig. 19-10a), the voltage at point B with respect to ground has the same phase
as the voltage at point A with respect to ground (Fig. 19-10b). For diagram (2) (Fig. 19-10a), the
secondary windings are now reversed so that the output voltage at B is now 180◦ out of phase with
the input voltage at A (Fig. 19-10c).

Fig. 19-10b, c
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Supplementary Problems

19.16 A bell transformer reduces the voltage from 110 to 11 V. If there are 20 turns in the secondary, find
the number of turns on the primary and the turns ratio. Ans. Np = 200 turns; TR = 10 :1

19.17 Find the voltage at the spark plugs connected to the secondary of a coil with 60 turns on the primary
and 36 000 turns on the secondary, if the primary is connected to a 12-V alternator.
Ans. Vs = 7200 V

19.18 A coil with a primary winding of 80 turns must supply 4800 V. If the primary is connected to an 8-V
source, find the number of turns on the secondary. Ans. Ns = 48 000 turns

19.19 The 110-V primary of a power transformer has 220 turns. Three secondaries are to deliver (a) 600 V,
(b) 35 V, and (c) 12.5 V. Find the number of turns needed on each secondary.
Ans. (a) Ns = 1200 turns; (b) Ns = 70 turns; (c) Ns = 25 turns

19.20 The secondary coil of a transformer has 100 turns and the secondary voltage is 10 V. If the turns
ratio is 18:1, find (a) the voltage ratio, (b) the primary voltage, and (c) the number of primary turns.
Ans. (a) VR = 18 :1; (b) Vp = 180 V; (c) Np = 1800 turns

19.21 A step-down autotransformer with 55 turns is connected to a 110-V ac line. If a 28-V output is desired,
find the secondary turns and the turn number to be tapped.
Ans. Ns = 14 turns; tap at turn 31

19.22 A 220/110-V step-down transformer in a stage-lighting circuit draws 12 A from the line. Find the
current delivered. Ans. Is = 24 A

19.23 An ideal transformer with 2400 turns on the primary and 600 turns on the secondary draws 9.5 A at
100 percent PF from a 220-V line. Find Is , Vs , and Ps .
Ans. Is = 38 A; Vs = 55 V; Ps = 2090 W

19.24 A transformer with 96 percent efficiency is connected to a 2000-V line. If it delivers 10 000 VA, find
the power input Pp in voltamperes and the primary current Ip.
Ans. Pp = 10 417 VA; Ip = 5.21 A

19.25 A transformer with an efficiency of 85 percent delivers 650 V and 120 mA at 100 percent PF to a
secondary load. The primary current is 0.6 A. Find the power input and the primary voltage.
Ans. Pp = 91.8 W; Vp = 153 V

19.26 The three secondary coils of a power-supply transformer deliver 84 mA at 300 V, 1.4 A at 12.6 V,
and 1.9 A at 2.5 V. Find the power delivered to the secondary loads. Find also the efficiency if
the transformer draws 55 W from a 110-V line. (Assume unity PF in both primary and secondary.)
Ans. Ps = 47.9 W; Eff = 87.1%

19.27 Find the current rating of each winding of a 100-kVA 2400/120-V 60-Hz transformer.
Ans. Primary winding, 41.7 A; secondary winding, 833.3 A

19.28 Find the turns ratio of a transformer used to match a 50-� load to a 450-� line. Ans. TR = 3 :1

19.29 Find the turns ratio of a transformer used to match a 30-� load to a 48 000-� load.
Ans. TR = 1 :40



 

CHAP. 19] TRANSFORMERS 471

19.30 Find the turns ratio of the transformer needed to match a load of 4000 � to three 12-� speakers in
parallel. Ans. TR = 31.6 :1 ≈ 32 :1

19.31 A 1:18 step-up output transformer is used to match a microphone with a grid circuit impedance of
35 k�. Find the impedance of the microphone. Ans. Zp = 108 �

19.32 A 6 :1 step-down transformer matches an input load to a secondary load of 800 �. Find the impedance
of the input. Ans. Zp = 28.8 k�

19.33 A step-up autotransformer requires 100 turns for its 120-V primary. To obtain an output of 300 V, find
the number of turns that must be added to the primary. Ans. 150 turns (Ns = 250 turns)

19.34 A load of 12 kW at 480 V and 100 percent PF is to be supplied by a step-down autotransformer
whose high-voltage winding is connected to a 1200-V source. Find the current in (a) the load, (b) the
primary winding, and (c) the secondary winding.
Ans. (a) Is = 25 A; (b) Ip = 10 A; (c) Is − Ip = 15 A

19.35 An autotransformer starter used to start an induction motor on a 440-V line applies 70 percent of line
voltage to the motor during the starting period. If the motor current is 140 A at start-up, what is the
current drawn from the line? Ans. 98 A

19.36 A step-down 600/480-V autotransformer supplies a 10-kVA load. Find the primary and secondary line
currents and the current in the winding common to both primary and secondary circuits.
Ans. Ip = 16.7 A; Is = 20.8 A; Is − Ip = 4.1 A

19.37 A 5-kVA 480/120-V transformer is equipped with high-voltage taps so that it may be operated at 480,
456, or 432 V depending on the tap setting. Find the current in the high-voltage winding for each tap
setting. The transformer supplies the rated kVA load at 120 V in each case.
Ans. 10.4 A at 480 V; 11.0 A at 456 V; 11.6 A at 432 V

19.38 A transformer with 800 turns in its primary and 160 turns in its secondary is rated 10 kVA at 480 V.
Find (a) the VR, (b) the primary voltage, (c) the rated full-load secondary current, and (d) the rated
full-load primary current, disregarding the no-load current.
Ans. (a) 5:1; (b) 2400 V; (c) 20.8 A; (d) 4.16 A

19.39 A 250-kVA 2400/480-V transformer has copper losses of 3760 W and core losses of 1060 W. What is
the efficiency when the transformer is fully loaded at 0.8 PF? Ans. Eff = 97.6%

19.40 An open-circuit test for core loss in a 240/720-V 10-kVA transformer gives a reading of 60 W.
The measured resistance of the low side winding is 0.03 � and that of the high side winding is
1.3 �. Find (a) the total copper loss and (b) the transformer efficiency when the power factor of the
load is 0.85. Ans. (a) Total copper loss = 303 W; (b) Eff = 95.9%

19.41 A short-circuit test for copper loss at full load gives a wattmeter reading of 175 W. The transformer
undergoing the test is a 240/24-V step-down transformer that has a full-load secondary current rating
of 60 A. If the resistance of the primary is 0.7 �, find the resistance of the secondary.
Ans. Rs = 0.042 �

19.42 On an open-circuit test for core loss, the transformer of Problem 19.41 takes 1.5 A from a 240-V ac
source. The wattmeter reads 95 W. Determine (a) the copper loss at no-load condition and (b) the
core loss.
Ans. (a) 1.58 W; (b) 93.4 W (In this case, the wattmeter reading of 95 W indicates core loss plus
copper loss at no load.)
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19.43 A 10-kVA 2400/240-V 60-Hz transformer has a primary winding resistance of 6 � and a secondary
winding resistance of 0.06 �. The core loss is 60 W. Find (a) the full-load copper loss and (b) the effi-
ciency of the transformer when it is fully loaded at 0.9 PF. Ans. (a) 208 W; (b) Eff = 97.1%

19.44 If the transformer of Problem 19.43 had operated at 0.6 PF with the same kilovoltampere loading,
what would be its efficiency? Ans. Eff = 95.7%

19.45 A 10-kVA 7200/120-V transformer has a resistance in the primary winding of 12 � and in the
secondary winding of 0.0033 �. Find the copper loss (a) at full load, (b) at half load (5 kVA),
and (c) at a load of 2 kVA. Ans. (a) 46.0 W; (b) 11.5 W; (c) 1.84 W

19.46 A 5-kVA 480/240-V transformer has its secondary open-circuited. Under this no-load condition,
the primary current is 0.15 A at a PF of 0.6. Find (a) the full-load current Ip, (b) the core-loss
component IH , (c) the magnetizing current IM , and (d) the percentage of each current with respect
to full-load current; and (e) draw the phasor diagram.
Ans. (a) Ip = 10.4 A; (b) IH = 0.09 A; (c) IM = 0.12 A; (d) percent exciting current
= 1.44%; percent core-loss current = 0.87%; percent magnetizing current = 1.15%; (e) see
Fig. 19-11

Fig. 19-11 Phasor diagram

19.47 If a transformer circuit has a polarity (Fig. 19-12) where the output is 180◦ out of phase with the input,
show the correct polarity dots when the leads to the load are reversed. Ans. See Fig. 19-13

Fig. 19-12 Transformer polarity

19.48 A secondary center-tapped transformer is shown in Fig. 19-14. Indicate the correct output waveforms
at points A and B. Ans. See Fig. 19-15

19.49 Two transformers can be connected together to obtain a higher voltage by connecting the primaries
together in parallel and connecting their secondaries in series. If the secondaries are properly phased,
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Fig. 19-13

Fig. 19-14 Center-tap secondary Fig. 19-15

the output will be the sum of the secondary voltages. If the output is the difference of the secondary
voltages, the connection to one of the secondaries may be reversed, or one of the primary windings
may be reversed. For a series connection of two transformers, each with a secondary output of 4 V
(Fig. 19-16), find the output voltage.
Ans. (a) Output = 8 V; (b) output = 0 V (secondaries “bucking”)

Fig. 19-16 Connection of two transformers



 

Chapter 20

Three-Phase Systems

CHARACTERISTICS OF THREE-PHASE SYSTEMS

A three-phase (3-φ) system is a combination of three single-phase (1-φ) systems. In a 3-φ balanced system,
the power comes from an ac generator that produces three separate but equal voltages, each of which is out of
phase with the other voltages by 120◦ (Fig. 20-1). Although 1-φ circuits are widely used in electrical systems,
most generation and distribution of alternating current is 3-φ. Three-phase circuits require less weight of con-
ductors than 1-φ circuits of the same power rating; they permit flexibility in the choice of voltages; and they
can be used for single-phase loads. Also, 3-φ equipment is smaller in size, lighter in weight, and more efficient
than 1-φ machinery of the same rated capacity. The three phases of a 3-φ system may be connected in two
ways. If the three common ends of each phase are connected together at a common terminal marked N for
neutral, and the other three ends are connected to the 3-φ line, the system is wye- or Y-connected (Fig. 20-2a).
If the three phases are connected in series to form a closed loop, the system is delta- or ∆-connected
(Fig. 20-2b).

Fig. 20-1 Three-phase alternating voltages with 120◦ between each phase

Fig. 20-2 Connections for 3-φ ac power

474
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THREE-PHASE TRANSFORMER CONNECTIONS

Three-phase transformers may consist of three separate but identical 1-φ transformers or a single 3-φ unit
containing three-phase windings. The transformer’s windings (three in the primary and three in the secondary)
may be connected to form a 3-φ bank in any one of four common ways (Fig. 20-3). Each primary winding is
matched to the secondary winding drawn parallel to it.

Fig. 20-3 Common 3-φ transformer connections. The transformer windings are indicated by the heavy lines. a = N1/N2

Shown are the voltages and currents in terms of the applied primary line-to-line voltage V and line
current I , where a = N1/N2, the ratio of the number of primary to secondary turns. A line voltage is a
voltage between two lines, while a phase voltage is a voltage across a transformer winding. A line current
is a current in one of the lines, while a phase current is a current in the transformer winding. Voltage and
current ratings of the individual transformers depend on the connections shown (Fig. 20-3) and are indicated in
tabular form (Table 20-1) for convenience in calculations. Ideal transformers are assumed. The kilovoltampere
rating of each transformer is one-third of the kilovoltampere rating of the bank, regardless of the transformer
connections used.

Example 20.1 If the line voltage V is 2200 V to a 3-φ transformer bank, find the voltage across each transformer
primary winding for all four types of transformer connection. Refer to Fig. 20-3 and Table 20-1.

∆-∆: Primary winding voltage = V = 2200 V Ans.

Y-Y: Primary winding voltage = V√
3

= 2200

1.73
= 1270 V Ans.
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Table 20-1 Voltage and Current Relationships for Common 3-φ Transformer Connections

Transformer
Connection
(Primary to
Secondary)

Primary Secondary

Line Phase Line Phase

Voltage Current Voltage Current Voltage* Current Voltage Current

∆-∆ V I V
I√
3

V

a
aI

V

a

aI√
3

Y-Y V I
V√

3
I

V

a
aI

V√
3a

aI

Y-∆ V I
V√

3
I

V√
3a

√
3aI

V√
3a

aI

∆-Y V I V
I√
3

√
3V

a

aI√
3

V

a

aI√
3

∗a = N1/N2; √
3 = 1.73

Y-∆: Primary winding voltage = V√
3

= 2200

1.73
= 1270 V Ans.

∆-Y: Primary winding voltage = V = 2200 V Ans.

It is clear that in any ∆ connection the total voltage across any winding in the primary or secondary equals the line voltage
in the primary or secondary, respectively, because each winding is directly across the line. The voltage in each winding
will be out of phase by 120◦ with the voltages in the other windings.

Example 20.2 If the line current I is 20.8 A to a 3-φ transformer connection, find the current through each primary
winding for all four transformer configurations. Refer to Fig. 20-3 and Table 20-1.

∆-∆: Primary winding current = I√
3

= 20.8

1.73
= 12 A Ans.

Y-Y: Primary winding current = I = 20.8 A Ans.

Y-∆: Primary winding current = I = 20.8 A Ans.

∆-Y: Primary winding current = I√
3

= 20.8

1.73
= 12 A Ans.

The current in each winding will be out of phase by 120◦ with the currents in the other windings.

Example 20.3 For each type of transformer connection, find the secondary line current and secondary phase current
if the primary line current I is 10.4 A and the turns ratio is 2:1. Refer to Fig. 20-3 and Table 20-1.

∆-∆: Secondary line current = aI = 2(10.4) = 20.8 A Ans.

Secondary phase current = aI√
3

= 2(10.4)

1.73
= 12 A Ans.

Y-Y: Secondary line current = aI = 2(10.4) = 20.8 A Ans.

Secondary phase current = aI = 2(10.4) = 20.8 A Ans.
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Y-∆: Secondary line current = √
3aI = 1.73(2)(10.4) = 36 A Ans.

Secondary phase current = aI = 2(10.4) = 20.8 A Ans.

Y-∆: Secondary line current = aI√
3

= 2(10.4)

1.73
= 12 A Ans.

Secondary phase current = aI√
3

= 2(10.4)

1.73
= 12 A Ans.

The current in each secondary line will be out of phase by 120◦ with the currents in the other secondary lines. Likewise,
the current in each secondary winding will be out of phase by 120◦ with the currents in the other secondary windings.

POWER IN BALANCED THREE-PHASE LOADS

A balanced load has identical impedance in each secondary winding (Fig. 20-4). The impedance of each
winding in the ∆ load is shown equal to Z∆ (Fig. 20-4a), and in the Y load equal to ZY (Fig. 20-4b). For
either connection, the lines A, B, and C provide a three-phase system of voltages. The neutral point N in the
Y-connection is the fourth conductor of the three-phase four-wire system.

Fig. 20-4 Three-phase balanced load types

In a balanced ∆-connected load (Fig. 20-4a), as well as in the windings of a transformer, the line voltage
VL and the winding or phase voltages Vp are equal, and the line current IL is

√
3 times the phase current Ip.

That is,

∆-load: VL = Vp (20-1)

IL = √
3Ip (20-2)

For a balanced Y-connected load (Fig. 20-4b), the line current IL and the winding or phase current Ip are
equal, the neutral current IN is zero, and the line voltage VL is

√
3 times the phase voltage Vp. That is,
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Y load: IL = Ip (20-3)

IN = 0 (20-4)

VL = √
3Vp (20-5)

(These relationships are also observed in Fig. 20-3 and Table 20-1.)
Since the phase impedance of balanced Y or ∆ loads have equal currents, the phase power or power of

one phase is one-third the total power. Phase power Pp is

Pp = VpIp cos θ (20-6)

and total power PT is

PT = 3VpIp cos θ (20-7)

Since VL = Vp [Eq. (20-1)] and Ip = √
3IL/3 from Eq. (20-2), for a balanced ∆ load,

∆ load: PT = √
3VLIL cos θ (20-8)

Since IL = Ip [Eq. (20-3)] and Vp = √
3VL/3 from Eq. (20-5), for balanced Y loads, substitution in

Eq. (20-7) gives

Y load: PT = √
3VLIL cos θ (20-8)

Thus the total-power formulas for ∆ and Y loads are identical. θ is the phase angle between the voltage and
current of the load impedance, so cos θ is the power factor of the load.

The total apparent power ST in voltamperes and the total reactive power QT in voltamperes reactive are
related to total real power PT in watts (Fig. 20-5). Therefore, a balanced three-phase load has the real power,
apparent power, and reactive power given by the equations

PT = √
3VLIL cos θ (20-8)

ST = √
3VLIL (20-9)

QT = √
3VLIL sin θ (20-10)

Fig. 20-5 Power-triangle relationships for 3-φ circuit with net inductive or net
capacitive loads
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where PT = total real power, W
ST = total apparent power, VA
QT = total reactive power, VAR
VL = line voltage, V
IL = line current, A
θ = load phase angle√
3 = 1.73, a constant

Transformer ratings are specified generally in kilovoltamperes. The relationships of voltage, current, and power
expressed in Eqs. (20-1)–(20-10) are applicable to all balanced 3-φ circuits.

Example 20.4 How much power is delivered by a balanced 3-φ system if each wire carries 20 A and the voltage between
the wires is 220 V at a PF of unity?

Using Eq. (20-8),

PT = √
3VLIL cos θ = 1.73(220)(20)(1) = 7612 W Ans.

Example 20.5 Each phase of a 3-φ ∆-connected generator supplies a full-load current of 100 A at a voltage of 240 V
and at a PF of 0.6 lagging (Fig. 20-6). Find the (a) line voltage, (b) line current, (c) 3-φ power in kilovoltamperes, and
(d) 3-φ power in kilowatts.

Fig. 20-6 Three-phase ∆-connected generator

(a) Use Eq. (20-1).

VL = Vp = 240 V Ans.

(b) Use Eq. (20-2).

IL = 1.73Ip = 1.73(100) = 173 A Ans.

(c) Use Eq. (20-9).

ST = √
3VLIL = 1.73(240)(173) = 71 800 VA = 71.8 kVA Ans.

(d) PT = ST cos θ = 71.8(0.6) = 43.1 kW Ans.

Example 20.6 Three resistances of 20 � each are Y-connected to a 240-V 3-φ line operating at a PF of unity (Fig. 20-7).
Find the (a) current through each resistance, (b) line current, and (c) power taken by the three resistances.

(a) VL = √
3Vp (20-5)



 

480 THREE-PHASE SYSTEMS [CHAP. 20

Fig. 20-7 Y-connected load Fig. 20-8 ∆-connected load

Vp = VL√
3

= 240

1.73
= 138.7 V

Ip = Vp

Zp
= Vp

Rp
= 138.7

20
= 6.94 A Ans.

(b) Use Eq. (20-3).

IL = Ip = 6.94 A Ans.

(c) Use Eq. (20-6).

PT = 3Pp = 3VpIp cos θ = 3(138.7)(6.94)(1) = 2890 W Ans.

Example 20.7 Repeat Example 20.6 if the three resistances are reconnected in delta (Fig. 20-8).

(a) Use Eq. (20-1).

Vp = VL = 240 V

Ip = Vp

Zp
= Vp

Rp
= 240

20
= 12 A Ans.

(b) Use Eq. (20-2).

IL = √
3Ip = 1.73(12) = 20.8 A Ans.

(c) Use Eq. (20-6).

PT = 3VpIp cos θ = 3(240)(12)(1) = 8640 W Ans.

Or use Eq. (20-8).

PT = √
3VLIL cos θ = 1.73(240)(20.8)(1) = 8640 W Ans.

Example 20.8 A 3-φ Y-connected transformer secondary has a four-wire 208-V ABC system (Fig. 20-9). Thirty lamps,
each rated at 120 V and 2 A, are to be connected across each phase. Show the connection of the lamp load if the load is
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Fig. 20-9 Load connections for a balanced 3-φ circuit

to be balanced, and determine the power assumed by each phase and the power consumed by the system. (Assume lamps
are resistive.)

The line voltage is given as VL = 208 V. The line-to-neutral voltage or the phase voltage is Vp . Using Eq. (20-5),

VL = √
3Vp so Vp = VL√

3
= 208

1.73
= 120 V

In order to have a balanced load, 30 lamps must be distributed equally across three 120-V phases. Thus, 10 lamps are
connected across each 120-V phase (Fig. 20-9). The power per phase Pp is found by using Eq. (20-6):

Pp = VpIp cos θ = 120

(
10 lamps × 2 A

lamp

)
(1) = 120(20)(1) = 2400 W Ans.

and the total power is three times the phase power.

PT = 3Pp = 3(2400) = 7200 W Ans.

Example 20.9 A 3-φ three-wire system has a line current of 25 A and a line voltage of 1000 V. The power factor of the
load is 86.6 percent lagging. Find (a) the real power delivered, (b) the reactive power, and (c) the apparent power, and
(d) draw the power triangle.

(a) Use Eq. (20-8).

PT = √
3VLIL cos θ = 1.73(1000)(25)(0.866) = 37 500 W = 37.5 kW Ans.

(b) θ = arccos 0.866 = 30◦

sin θ = 0.5

QT = √
3VLIL sin θ = 1.73(1000)(25)(0.5) = 21 600 VAR = 21.6 kVAR lagging Ans.

(c) ST = √
3VLIL = 1.73(1000)(25) = 43 250 VA = 43.3 kVA Ans.

(d) See Fig. 20-10.
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Fig. 20-10 Power triangle

UNBALANCED THREE-PHASE LOADS

A very important property of a 3-φ balanced system is that the phasor sum of the three line (or phase)
voltages is zero and the phasor sum of the three line (or phase) currents is zero. When the three load impedances
are not equal to each other, the phasor sum and the neutral current IN are not zero, and we have an unbalanced
load. An imbalance occurs when an open or short circuit appears at the load.

If a 3-φ system has an unbalanced power source and an unbalanced load, the methods for solving them
are complex. We will consider an unbalanced load only with a balanced source.

Example 20.10 Consider a balanced 3-φ system (Fig. 20-11a) with a Y load. The line-to-line voltage is 173 V and
the resistance in each branch is 10 �. Find the line current and neutral current under the following three load conditions:
(a) balanced load, (b) open circuit in line A (Fig. 20-11b), and (c) short circuit in line A (Fig. 20-11c).

Fig. 20-11 Three-phase unbalanced load conditions

(a) Balanced 3-φ load (Fig. 20-11a):

Vp = VL√
3

= 173

1.73
= 100 V Ip = Vp

Rp
= 100

10
= 10 A

IL = Ip = 10 A IN = 0 A Ans.
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(b) Open Y circuit (Fig. 20-11b): Line voltage VL = 173 V remains fixed. But current in lines B and C now becomes
(two 10-� resistors are in series)

IB = IC = 173

2(10)
= 8.66 A Ans.

which is less than the line current under balanced conditions.

IN = IB + IC = 8.66 + 8.66 = 17.3 A Ans.

(c) Short Y circuit (Fig. 20-11c): Line voltage VL = 173 V remains fixed. But current in lines B and C now becomes

IB = IC = 173

10
= 17.3 A Ans.

which is
√

3 times the value of the line current under balanced conditions. The current in line A is equal to the neutral
line current, IA = IN . IN is the phasor sum of IB and IC , which are 120◦ out of phase, so that

IN = √
3IB = 1.73 (17.3) = 30 A Ans.

which is three times its value under balanced conditions. Under a fault condition the neutral connector in the
Y-connected load carries more current than the line or winding under a balanced load.

Solved Problems

20.1 Each phase of a Y-connected generator delivers a current of 30 A at a phase voltage of 254 V and a
PF of 80 percent lagging (Fig. 20-12). What is the generator terminal voltage? What is the power
developed in each phase? What is the 3-φ power developed?

VL = √
3Vp (20-5)

= 1.73(254) = 439 V Ans.

Pp = VpIp cos θ (20-6)

= 254(30)(0.8) = 6096 W Ans.

PT = 3VpIp cos θ = 3Pp (20-7)

= 3(6096) = 18 288 W Ans.
Fig. 20-12 Y-connected generator

20.2 Identify the three-phase transformer connections (Fig. 20-13a and b).

If you follow the wiring sequence for the primary winding connection and the secondary winding
connection, you obtain the equivalent connections shown in Fig. 20-13c. So (1) is a ∆-∆ connection
and (2) is a Y-∆ connection.

20.3 In a three-phase Y-∆ connection, each transformer has a voltage ratio of 4 : 1. If the primary line
voltage is 660 V, find (a) the secondary line voltage, (b) the voltage across each primary winding,
and (c) the voltage across each secondary winding.
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Fig. 20-13

From Fig. 20-3c, the Y-∆ connection is as shown in Fig. 20-14.

(a) Given are V = 660 V and VR = 4 = TR = a. Then

Secondary line voltage = V√
3a

= 660

1.73(4)
= 95.4 V Ans.

(b) Primary winding voltage = V√
3

= 660

1.73
= 382 V Ans.

(c) Voltage across the secondary winding = voltage of secondary line = 95.4 V Ans.

20.4 The secondary line voltage of a ∆-Y transformer bank is 411 V. The transformers have a turns ratio
of 3 : 1. Find (a) the primary line voltage, (b) the current in each secondary winding or coil if the
current in each secondary line is 60 A, and (c) the primary line current.
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Fig. 20-14 Y-∆ transformer connection Fig. 20-15 ∆-Y transformer connection

From Fig. 20-3d, the ∆-Y connection is as shown in Fig. 20-15.

(a) Secondary line voltage =
√

3V

a
= 411 V so

Primary line voltage V = 411a√
3

= 411(3)

1.73
= 713 V Ans.

(b) When the secondaries are connected in Y, the current in each secondary coil equals the line
current, or 60 A.

(c) Secondary line current = aI√
3

= 60 A so

Primary line current I = 60
√

3

a
= 60(3)

3
= 34.6 A Ans.

20.5 What are the primary and secondary current ratings of a 500-kVA 3-φ transformer stepping down from
a 480-V delta to 120/208-V wye (Fig. 20-16)? The 120/208-V wye four-wire transformer secondary
is used in building electrical systems when both single-phase loads and three-phase motors are to be
supplied.

Fig. 20-16 ∆-Y connection for a 3-φ step-down transformer
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There are two secondary voltages in the Y transformer four-wire system: the phase voltage Vp

of 120 V and the line voltage VL of 208 V (120 × √
3 = 208). On the primary side:

Transformer rating = apparent power = √
3VLIL (20-9)

So IL = transformer rating√
3VL

= 500 000

1.73(480)
= 602 A Ans.

On the secondary side:

Transformer rating = apparent power = √
3VLIL (20-9)

So IL = transformer rating√
3VL

= 500 000

1.73(480)
= 1390 A Ans.

20.6 Delta-connected secondaries are generally used for three-phase three-wire loads. Show how a ∆

connection can be used to supply single-phase loads at two terminal voltages as well as three-phase
loads.

A four-wire system is obtained by adding a fourth wire from the midpoint of one of the three
∆ transformer windings (Fig. 20-17). The normal voltage is 240 V from phase to phase and 120 V
from the neutral (or midphase) wire to each of the phasor conductors connected to the winding ends.
With this system, single-phase loads are fed from 120-V terminals; and three-phase loads as well as
single-phase loads are fed from the 240-V phase terminals A, B, and C.

Fig. 20-17 ∆ connections to four-wire line with neutral

20.7 A distribution transformer bank of three single-phase transformers is connected ∆-Y (Fig. 20-18a).
The transformer turns ratio is 100 : 1. The secondaries of the bank supply power to a 208-V, 3-φ,
four-wire system. The load in the system consists of a 72-kW 3-φ motor, PF = 1, terminal voltage
208 V; three 12-kW 1-φ lighting circuits, terminal voltage 120 V; and three 1-φ 10-kVA motors,
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Fig. 20-18

PF = 0.8 lagging, terminal voltage 208 V. Find (a) the total kilovoltampere load of the circuit; (b) the
kilovoltampere rating of the transformer bank if ratings only of 100 kVA, 112.5 kVA, and 150 kVA are
available; (c) the kilovoltampere rating of the individual transformers; (d) the secondary line current;
(e) the primary line voltage; and (f ) the primary line current.

Step 1. Find the phase-to-neutral voltage Vp in the Y secondary.

Vp = VL√
3

= 208√
3

= 120 V

Step 2. Find the total kilovoltampere load and then the required kilovoltampere rating of the
transformer bank.

Lighting load: P = 3 × 12 kW = 36 kW

PF = 1, motor load: P = 72 kW

PF = 0.8, motor load: S = 3 × 10 kVA = 30 kVA

In order to find the P and Q components of the motor load with PF = 0.8, we use
relationships of the power triangle (Fig. 20-18b).

P = S cos θ = 30(0.8) = 24 kW Q = S sin θ = 30(0.6) = 18 kVAR lagging

The total kilowatt load is

PT = 36 + 72 + 24 = 132 kW
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The total kilovoltampere-reactive load QT is

QT = 18 kVAR

So the total kilovoltampere load ST (Fig. 20-18c) is

ST =
√

1322 + 182

(a) Kilovoltampere load ST = 133 kVA Ans.

(b) The next larger rating available is the 150-kVA transformer bank. Ans.

(c) Therefore, this bank requires three 50-kVA single-phase transformers. Ans.

Step 3. Find IL in the secondary.

Kilovoltampere load = √
3VLIL = 133 kVA (20-9)

(d) Then IL = 133(1000)√
3VL

= 133 000

1.73(208)
= 370 A Ans.

Step 4. Find VL in the primary.

(e) Primary VL = (TR)(secondary Vp) = 100(120) = 12 000 V Ans.

Step 5. Find IL in the primary.

Kilovoltampere load = √
3VLIL = 133 kVA

(f ) Then IL = 133(1000)√
3VL

= 133 000

1.73(12 000)
= 6.41 A Ans.

20.8 If the transformer bank of Problem 20.7 is rated at 150 kVA, find the full-load current on the high
side and on the low side.

The low-side (secondary) voltage is given as 208 V.

Kilovoltampere load = √
3VLIL = 150 kVA (20-9)

Low side: IL = 150(1000)√
3VL

= 150 000

1.73(208)
= 417 A Ans.

The high-side (primary) voltage is the product of the turns ratio and the corresponding winding voltage
on the low side (secondary), which is the phase voltage Vp. So

VL = 100(120) = 12 000 V

and, assuming ideal transformers without losses, on the high side

Kilovoltampere load = √
3VLIL = 150 kVA (20-9)

High side: IL = 150(1000)√
3VL

= 150 000

1.73(12 000)
= 7.23 A Ans.

Since maximum currents are present under full-load conditions, the cables connected to the high- and
low-voltage windings of the transformers would be sized according to these currents.
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20.9 A ∆-connected load (Fig. 20-19) is drawing 600 kW from a 5000-V line at a lagging power factor.
If each wire carries 75 A, what is the power factor and angle of lag?

PF = cos θ

PT = √
3VLIL cos θ (20-8)

Solve for cos θ :

cos θ = PT√
3VLIL

Substitute known values:

PF = cos θ = 600(1000)

1.73(5000)(75)
= 0.925 lagging Ans.

Then θ = arccos 0.925 = 22.4◦ Ans.

Fig. 20-19 ∆-connected load Fig. 20-20 ∆-connected generator

20.10 A Y-connected generator (Fig. 20-20) supplies 100 kW at a PF of 0.90. If the line voltage is 250 V,
find the line current.

PF = cos θ = 0.90

PT = √
3VLIL cos θ (20-8)

Solve for IL:

IL = PT√
3VL cos θ

= 100(1000)

1.73(250)(0.90)
= 257 A Ans.

20.11 Three loads, each having a resistance of 16 � and an inductive reactance of 12 �, are ∆-connected
to a 240-V 3-φ supply (Fig. 20-21). Find the (a) impedance per phase, (b) current per phase, (c) the
3-φ kilovoltamperage, (d) PF, and (e) the 3-φ power in kilowatts.

(a) Zp =
√

R2
p + X2

p = √
162 + 122 = 20 � Ans.

θ of load = arctan
Xp

Rp

= arctan
12

16
= arctan 0.75 = 36.9◦
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Fig. 20-21 Impedance in ∆-connected load

(b) Vp = VL = 240 V

Ip = Vp

Zp

= 240

20
= 12 A Ans.

(c) ST = 3VpIp = 3(240)(12) = 8640 VA = 8.64 kVA Ans.

(d) PF = cos θ = cos 36.9◦ = 0.80 lagging Ans.

(e) PT = ST cos θ = 8.64(0.8) = 6.91 kW Ans.

20.12 Find the indicated quantities (Fig. 20-22a), which show the connected loads for a balanced 3-φ ∆

transformer bank.

Fig. 20-22
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Step 1. Find the power relationships for each load.

(a) 3-φ motor (Fig. 20-22b):

S = motor load = hp × 746

PF × Eff
= 10(746)

0.8(0.8)
= 11 656 = 11.7 kVA (1hp = 746 W)

θ = arccos 0.8 = 36.9◦

P = 11.7 cos 36.9◦ = 11.7(0.8) = 9.36 kW

Q = 11.7 sin 36.9◦ = 11.7(0.6) = 7.02 kVAR lagging

(b) Three 1-φ motors (Fig. 20-22c):

P = 13.5 kW given θ = arccos 0.9 = 25.8◦

Q = 13.5 tan 25.8◦ = 13.5(0.483) = 6.52 kVAR lagging

S =
√

P 2 + Q2 =
√

(13.5)2 + (6.52)2 = √
182 + 42.5 = √

224.5 = 15 kVA

Step 2. Find the power relationships for the total load.

Total kW load PT = 9.36 + 13.5 = 22.9 kW Ans.

Total kVAR load QT = 7.02 + 6.52 = 13.5 kVAR lagging Ans.

From the power-triangle relationships (Fig. 20-22d),

ST =
√

P 2
T + Q2

T =
√

(22.9)2 + (13.5)2 = √
524 + 182 = √

706 = 26.6 kVA Ans.

PF = cos θ = PT

ST

= 22.9

26.6
= 0.861 lagging Ans.

Step 3. Find the current relationships.

ST = √
3VLIL (20-9)

from which IL = ST√
3VL

= 26.5(1000)

1.73(120)
= 128 A Ans.

IL = √
3Ip (20-2)

from which Ip = IL√
3

= 128

1.73
= 74 A Ans.

20.13 On a 120/208-V four-wire Y system, two lamps are connected from phase A to neutral, five lamps
from phase B to neutral, and four lamps from phase C to neutral (Fig. 20-23a). If all the lamps have
the same rating and each draws 2 A, find the current in each phase and the neutral current.

Since each lamp draws 2 A,

IA = 2 lamps × 2 A = 4 A Ans.

IB = 5 lamps × 2 A = 10 A Ans.

IC = 4 lamps × 2 A = 8 A Ans.
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Fig. 20-23a Unbalanced loading on four-wire, 3-φ Y circuit

Since the values of the load or phase currents are different, the load is unbalanced and current will
flow in the neutral wire. The magnitude of IN is the phasor sum of the three phase currents IA, IB ,
and IC .

IN =
√

I 2
x + I 2

y

where Ix is the sum of the phasor currents along the x axis and Iy is the sum of the phasor currents
along the y axis. We draw the phasor diagram of currents, calculate their component values along the
x and y axes, add these components, and then solve for IN .

Step 1. Draw the current-phasor diagram (Fig. 20-23b).

We show IA as the reference phasor and then show each load current 120◦ out of phase
from the others.

Fig. 20-23b, c
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Step 2. Find the component values of the three load currents and add them. Refer to Fig. 20-23b.

Along the x axis: IA = 4 A IB = −10 cos 60◦ = −5 A IC = −8 cos 60◦ = −4 A

Along the y axis: IA = 0 A IB = 10 sin 60◦ = 8.66 A IC = −8 sin 60◦ = −6.93 A

Then Ix = 4 − 5 − 4 = −5 A Iy = 0 + 8.66 − 6.93 = 1.73 A

Step 3. Calculate IN (Fig. 20-23c).

IN =
√

I 2
x + I 2

y =
√

(−5)2 + (1.73)2 = 5.29 A Ans.

Supplementary Problems

20.14 If the winding or phase voltage in the secondary is 120 V, find the secondary line voltage for Y and
∆ connections. Ans. Y-connection: VL = 208 V; ∆-connection: VL = 120 V

20.15 A ∆-connected generator supplies 100 V as line voltage and 25 A as line current. What is the voltage
and current for each winding or phase? Ans. Vp = 100 V; Ip = 14.5 A

20.16 A Y-connected generator supplies 40 A to each line and has a phase voltage of 50 V. Find the current
through each phase and the line voltage. Ans. Ip = 40 A; VL = 86.5 V

20.17 In a Y-∆ transformer bank, each transformer has a voltage ratio of 3 : 1. If the primary line voltage is
625 V, find (a) the voltage across each primary winding, (b) the secondary line voltage, and (c) the
voltage across each secondary winding. Ans. (a) 361 V; (b) 120 V; (c) 120 V

20.18 The secondary line voltage of a ∆-∆ transformer bank is 405 V and the secondary line current is
35 A. If each transformer has a turns ratio of 5 : 1, find (a) the primary line voltage, (b) the secondary
winding or phase current, (c) the primary line current, and (d) the primary winding or phase current.
Ans. (a) 2025 V; (b) 20.2 A; (c) 7 A; (d) 4.05 A

20.19 Identify the three-phase transformer connections (Fig. 20-24a and b).
Ans. (a) ∆-Y connection; (b) Y-Y connection

20.20 A 3-φ system with balanced load carries 30 A at 0.75 power factor. If the line voltage is 220 V, find
the power delivered. Ans. P = 8.56 kW

20.21 Find the kW and kVA drawn from a 3-φ generator when it is delivering 25 A at 240 V to a motor
with 86 percent power factor. Ans. P = 8.93 kW; S = 10.4 kVA

20.22 Find the full-load line and phase currents for both ∆- and Y-connected 3-φ alternators with ratings
of 75 kVA at 480 V.
Ans. ∆-connected: IL = 90.3 A; Ip = 52.2 A; Y-connected: IL = 90.3 A; Ip = 90.3 A

20.23 Of the four possible ways to connect transformers in three-phase systems, which one will give the
highest secondary voltage for a given primary voltage? Ans. ∆-Y

20.24 Find the line current in a balanced 3-φ system which delivers 36 kW at 0.95 power factor and
225 V. Ans. IL = 97.4 A
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Fig. 20-24

20.25 A 3-φ system supplies 34.2 A at a line voltage of 208 V for a balanced load at 89 percent power factor.
Find the kilovoltampere rating of the transformer. Ans. S = 12.3 kVA

20.26 A balanced 3-φ line carries 14 A in each line at 1100 V. If the power delivered is 22 kW, find the
power factor of the load. Ans. PF = 0.826 lagging

20.27 A three-phase system delivers a line current of 50 A at a line voltage of 220 V and 86.6 percent power
factor. Find (a) the real power, (b) the reactive power, and (c) the apparent power.
Ans. (a) P = 16.5 kW; (b) Q = 9.53 kVAR; (c) S = 19.1 kVA

20.28 How many 60-W 110-V lamps can be connected to a balanced 3-φ system if the line current is
28.4 A and the line voltage is 110 V on the load side? Ans. 90 lamps

20.29 At full load, each of the three phases of a Y-connected generator delivers 150 A and 1329 V at a PF
of 75 percent lagging. Find (a) the terminal voltage rating, (b) the kilovoltampere rating, and (c) the
kilowatt rating. Ans. (a) 2300 V; (b) 598 kVA; (c) 448 kW

20.30 It is desired that a 10 000-kVA 3-φ 60-Hz generator have a rated terminal voltage of 13 800 V when
it is Y-connected. (a) What must be the voltage rating of each phase? Find (b) the kilovoltampere
rating per phase and (c) the rated line current. Ans. (a) 7977 V; (b) 3333 kVA; (c) 419 A

20.31 A 3-φ transformer bank is designed to supply a 240-V industrial distribution system. The connected
balanced 3-φ loads are as follows: 50-kW motor at PF = 0.80, 40-kW motor at PF = 0.85, fluorescent
lighting load of 10 kW at PF = 0.90, and an incandescent lighting load of 15 kW at PF = 1.0. Find
the total real power, total apparent power, total reactive power, and total PF of the load.
Ans. PT = 115 kW; QT = 67.1 kVAR lagging; ST = 133 kVA; PF = 86.5% lagging

20.32 Find the total line current drawn by the connected loads of Problem 20.31, assuming balanced
conditions. Ans. IL = 320 A
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20.33 For the distribution transformer bank (Fig. 20-25), find the total kilovoltampere load and the power
factor of the load.
Ans. ST = 170 kVA (PT = 148 kW, QT = 84.5 kVAR lagging); PF = 0.868 lagging

Fig. 20-25

20.34 From Fig. 20-26, find PT , QT , ST , PF, and IL.
Ans. PT = 27.8 kW; QT = 6.18 kVAR lagging; ST = 28.5 kVA; PF = 0.975 lagging; IL = 150 A

Fig. 20-26

20.35 From Fig. 20-27, find PT , QT , ST , PF, IL, and Ip.
Ans. PT = 20.1 kW; QT = 15.9 kVAR lagging; ST = 25.6 kVA; PF = 0.785 lagging; IL =
67.3 A; Ip = 38.9 A

20.36 From Fig. 20-28, find PT , QT , ST , PF, and IL.
Ans. PT = 13.1 kW; QT = 6.24 kVAR lagging; ST = 14.5 kVA; PF = 0.903 lagging; IL = 43.9 A

20.37 A 6-hp 3-φ ∆-connected motor operates at a power factor of 0.85 with an efficiency of 80 percent. If
the line voltage is 220 V, find the line current. Ans. IL = 17.3 A



 

496 THREE-PHASE SYSTEMS [CHAP. 20

Fig. 20-27

Fig. 20-28

20.38 A Y-connected load of three 10-� resistors is connected to a 208-V 3-φ supply. Find the (a) voltage
supplied to each resistor, (b) line current, and (c) total power used.
Ans. (a) 120 V; (b) IL = 12 A; (c) 4320 W

20.39 Three loads, each having a resistance of 16 � in series with an inductance of 12 �, are Y-connected to
a 240-V 3-φ supply. Find the (a) impedance per phase, (b) current per phase, (c) 3-φ kilvoltamperage,
(d) PF, and (e) the 3-φ power in kilowatts.
Ans. (a) Zp = 20 �; (b) Ip = 6.94 A; (c) 2.89 kVA; (d) 0.80 lagging; (e) 2.31 kW

20.40 A ∆-connected load draws 28.8 kVA from a 3-φ supply. The line current is 69.2 A and the PF of the
load is 80 percent lagging. Find the resistance and reactance of each phase (the kilovoltamperage of
one phase is one-third of the total). Ans. 4.8 � resistance; 3.6 � reactance
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20.41 Find the following indicated quantities:

Three-Phase Connection

Line
Voltage
VL, V

Line
Current
IL, A

Phase
Voltage
Vp, V

Phase
Current
Ip, A

(a) ∆ 90 14 ? ?

(b) Y ? ? 50 10

Ans. Three-Phase Connection VL, V IL, A Vp, V Ip, A

(a) ∆ . . . . . . . . 90 8.09

(b) Y 86.5 10 . . . . . . . .

20.42 Find the following indicated quantities for a ∆-connected load:

VL, V IL, A Vp, V Ip, A PF Lagging PT , kW

(a) 110 ? ? 18 0.9 ?

(b) ? 32 120 ? 0.8 ?

(c) ? ? 220 27 ? 16

Ans. VL, V IL, A Vp, V Ip, A PF Lagging PT , kW

(a) . . . . 31.1 110 . . . . . . . . 5.33

(b) 120 . . . . . . . . 18.5 . . . . 5.31

(c) 220 46.7 . . . . . . . . 0.9 . . . .

20.43 For the ∆-connected transformer secondary (Fig. 20-29), find the total line current.
Ans. IL = 75.1 A

Fig. 20-29
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20.44 For the ∆-connected loads (Fig. 20-30), find the total line current. Ans. IL = 57.7 A

Fig. 20-30

20.45 Individual loads on separate feeders of a large power system are often unbalanced. The loads of
a Y-connected generator, consisting of electric heaters, draw 150, 100, and 50 A. Find the neutral
current. Ans. IN = 86.6 A

20.46 An unbalanced four-wire Y load has load currents of 3, 5, and 10 A. Calculate the value of the neutral
current. Ans. IN = 6.24 A



 

Chapter 21

Series and Parallel Resonance

We have observed that in many circuits inductors and capacitors are connected in series or in parallel.
Such circuits are often referred to as RLC circuits. One of the most important characteristics of an RLC circuit
is that it can be made to respond most effectively to a single given frequency. When operated in this condition,
the circuit is said to be in resonance with or resonant to the operating frequency.

A series or a parallel RLC circuit that is operated at resonance has certain properties that allow it to
respond selectively to certain frequencies while rejecting others. A circuit operated to provide frequency
selectivity is called a tuned circuit. Tuned circuits are used in impedance matching, bandpass filters, and
oscillators.

SERIES RESONANCE

The RLC series circuit (Fig. 21-1a) has an impedance Z = √
R2 + (XL − XC)2. The circuit is at resonance

when the inductive reactance XL is equal to the capacitive reactance XC (Fig. 21-1b).

XL = XC

where XL = 2π f L

XC = 1

2π f C

Then at resonance, 2π f L = 1

2π f C

Solving for f , f 2 = 1

(2π)2LC

f = fr = 1

2π
√

LC
= 0.159√

LC
(21-1)

Fig. 21-1 Series resonance for RLC circuit at resonant frequency fr
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where fr = resonant frequency, Hz
L = inductance, H
C = capacitance, F

For any LC product [Eq. (21-1)] there is only one resonant frequency. Thus, various combinations of
L and C may be used to achieve resonance if the LC product remains the same. Equation (21-1) may be
solved for L or C to find the inductance or capacitance needed to form a series resonant circuit at a given
frequency.

L = 1

4π2f 2
r C

= 0.0254

f 2
r C

(21-2)

C = 1

4π2f 2
r L

= 0.0254

f 2
r L

(21-3)

Since XL = XC , XL − XC = 0 so that

Z =
√

R2 + (XL − XC)2 =
√

R2 = R

Since the impedance at resonance Z equals the resistance R, the impedance is a minimum. With minimum
impedance, the circuit has maximum current determined by I = V/R. The resonant circuit has a phase angle
equal to 0◦ so that the power factor is unity.

At frequencies below the resonant frequency (Fig. 21-2a), XC is greater than XL so the circuit consists of
resistance and capacitive reactance. However, at frequencies above the resonant frequency (Fig. 21-2a), XL is
greater than XC so the circuit consists of resistance and inductive reactance. At resonance, maximum current
is produced for different values of resistance (Fig. 21-2b). With a low resistance, the current increases sharply
toward and decreases sharply from its maximum current as the circuit is tuned to and away from the resonant
frequency. This condition where the curve is narrow at the resonant frequency provides good selectivity. With
an increase of resistance, the curve broadens so that selectivity is less.

Fig. 21-2 Characteristics of series RLC circuit at resonance
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Example 21.1 Find the resonant frequency of a simple radio receiver tuning circuit (Fig. 21-3) if the inductance is
200 µH and the capacitor is set at 200 pF.

L = 200 µH = 200 × 10−6 H = 2 × 10−4 H C = 200 pF = 200 × 10−12 F = 2 × 10−10 F

fr = 0.159√
LC

(21-1)

= 0.159√(
2 × 10−4

) (
2 × 10−10

) = 795 000 Hz = 795 kHz Ans.

Notice that the voltage applied to this circuit is the voltage induced across the secondary winding, which is in series
with the capacitor. Thus, while the circuit looks like a parallel circuit, it is a series circuit because of the series voltage
input.

Fig. 21-3 Radio receiver tuning circuit

Example 21.2 Find the value in picofarads of a tuning capacitor placed in series with a 400-µH inductance in order to
provide resonance for a 500-kHz signal.

L = 400 µH = 400 × 10−6 H = 4 × 10−4 H fr = 500 kHz = 500 × 103 Hz = 5 × 105 Hz

C = 0.0254

f 2
r L

(21-3)

= 0.0254(
5 × 105

)2 (
4 × 10−4

) = 2.54 × 10−10 F = 254 × 10−12 F = 254 pF Ans.

Example 21.3 A voltage of 15-V ac is applied to a 150-µH coil connected in series with a 169-pF capacitor (Fig. 21-4).
The total series resistance is 7.5 �, which includes the coil winding resistance, the resistance of the connecting leads, and
the leakage resistance of the capacitor. This circuit is resonant at 1000 kHz. Find the magnitude of the current and of the
voltage drops across each element. Describe the circuit when the frequency of the applied voltage is 800 kHz, 1000 kHz,
and 1200 kHz.

Step 1. Find the current at resonance.

At resonance, Z = R = 7.5 �

By Ohm’s law, I = VT

R
= 15

7.5
= 2 A Ans.

Step 2. Find the voltage drops at resonance.

XL = XC = 2πfrL = 6.28
(
106)(

150 × 10−6) = 942 �
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Fig. 21-4 Series RLC circuit

Then VR = IR = 2(7.5) = 15 V Ans.

VL = IXL = 2(942) = 1884 V Ans.

VC = IXC = 2(942) = 1884 V Ans.

Thus we see that the voltage drops across both the inductance and the capacitance are 125 times greater than the
applied voltage. Since at resonance the high reactive voltages VL and VC cancel each other, they have no effect
on the load. However, the insulation of the coil connectors and the dielectric of the capacitor must be designed
to withstand a voltage about 125 times greater than the applied voltage.

Step 3. Describe the behavior of the circuit as a function of frequency. At frequency f = 800 kHz, which is below the
resonant frequency:

XL = 6.28fL = 6.28
(
8 × 105)(

150 × 10−6) = 754 �

XC = 1

6.28fC
= 1

6.28
(
8 × 105

)(
169 × 10−12

) = 1178 �

Since XC > XL, the circuit is capacitive below the resonant frequency. Ans.
At the resonant frequency fr = 1000 kHz:

XL = XC = 942 �

Therefore, at resonance the circuit is purely resistive. Ans.
At a frequency f = 1200 kHz, which is above the resonant frequency:

XL = 6.28fL = 6.28
(
12 × 105)(

150 × 10−6) = 1130 �

XC = 1

6.28fC
= 1

6.28
(
12 × 105

)(
169 × 10−12

) = 785 �

Since XL > XC , the circuit is inductive above the resonant frequency. Ans.

Refer to Fig. 21-2a, which confirms the nature of this circuit as a function of frequency.
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Q OF SERIES CIRCUIT

The degree to which a series-tuned circuit is selective is proportional to the ratio of its inductive reactance
to its resistance. This ratio XL/R is known as the Q of the circuit and is expressed as follows:

Q = XL

R
(21-4)

where Q = quality factor or figure of merit
XL = inductive reactance, �

R = resistance, �

The lower the reactance, the higher the value of Q. The higher the Q, the sharper and more selective is the
resonant curve. Q has the same value if calculated with XC instead of XL since they are equal at resonance.
Q = 150 is a high Q. Typical values are 50 to 250. Less than 10 is a low Q; more than 300 is a very high Q.
See Fig. 21-2b.

The Q of the circuit is generally considered in terms of XL since the coil has the series resistance of the
circuit. In this case, the Q of the coil and the Q of the series resonant circuit are the same. If extra resistance
is added, the Q of the circuit will be less than the Q of the coil. The highest possible Q for the circuit is the
Q of the coil.

The Q of the resonant circuit can be considered a magnification factor that determines how much the
voltage across L or C is increased by the resonant rise of current in a series circuit.

VL = VC = QVT (21-5)

Example 21.4 Find the Q for the series resonant circuit and the rise of voltage across L or C due to resonance
(Fig. 21-4).

Use Eq. (21-4) to find Q.

Q = XL

R
= 942

7.5
= 125.6 Ans.

Use Eq. (21-5) to find VL or VC .

VL = VC = QVT = 125.6(15) = 1884 V Ans.

This is the same value calculated for VL or VC at resonance in Example 21.3.

PARALLEL RESONANCE

Pure Parallel LC Circuit

In the pure LC parallel-tuned circuit (that is, one in which there is no resistance), the coil and capacitor
are placed in parallel and the applied voltage VT appears across these circuit components (Fig. 21-5a). In this
parallel-tuned circuit, as in the series-tuned circuit, resonance occurs when the inductive reactance is equal to
the capacitive reactance.

XL = XC

Because the applied voltage is common to both branches,

VL = VC

so that VL

XL

= VC

XC

, IL = IC
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The current in the inductive branch IL equals the current in the capacitive branch IC . IL lags the applied voltage
VT by 90◦, while IC leads the voltage by 90◦ (Fig. 21-5b). Since the phasor currents IL and IC are equal and
out of phase by 180◦, their vector sum is zero so that the total current IT is zero. Under this condition, the
impedance of the circuit at the resonant frequency must be infinite in value.

Fig. 21-5 Pure LC parallel circuit

The formula for the resonant frequency of a pure LC parallel-tuned circuit is the same as that for a series
tuned circuit.

fr = 1

2π
√

LC
= 0.159√

LC
(21-1)

If the resonant frequency is known, then the inductance or capacitance for a parallel resonant LC circuit can
be found by formulas.

L = 0.0254

f 2
r C

(21-2)

C = 0.0254

f 2
r L

(21-3)

Example 21.5 A parallel resonant circuit appears as an infinite impedance (or open circuit) at the resonant frequency.
This makes it possible to reject or “trap” a wave of a definite frequency in antenna circuits. A 400-µH coil and a 25-pF
capacitor are placed in parallel to form a “wave trap” in an antenna. Find the resonant frequency that the circuit will reject.

The resistance of the circuit is negligible.

L = 400 µH = 4 × 10−4 H C = 25 pF = 25 × 10−12 F

fr = 0.159√
LC

(21-1)

= 0.159√(
4 × 10−4

)(
25 × 10−12

) = 1590 kHz Ans.

Example 21.6 The capacitance of a parallel resonant circuit used as a wave trap in an antenna circuit is 400 pF. Find
the value of the parallel inductance in order to reject an 800-kHz wave.

f = 800 kHz = 8 × 105 Hz C = 400 pF = 400 × 10−12 F

L = 0.0254

f 2
r C

(21-2)

= 0.0254(
8 × 105

)(
400 × 10−12

) = 9.92 × 10−5 = 99.2 µH Ans.
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Practical Parallel LC Circuit

In a practical LC parallel-tuned circuit (Fig. 21-6a), there is some resistance, most of which is due to the
resistance of the inductor wire. The resonant frequency of a parallel circuit also is defined as that frequency
at which the parallel circuit acts as a pure resistance. Therefore, the line current IT must be in phase with
the applied voltage VT (unity power factor) (Fig. 21-6b). This means that the out-of-phase or quadrature
component of the current through the inductive branch IL must be equal to the current through the capacitive
branch IC ; and the total line current IT equals the in-phase component of the current through the inductive
branch, or IT = IR (Fig. 21-6b). Since the impedance is maximum, IT is minimum.

Fig. 21-6 Practical parallel LC circuit

The resonant frequency for the circuit (Fig. 21-6a) is

fr = 1

2π

√
1

LC
− R2

L2
(21-6)

where fr = resonant frequency, Hz
L = inductance, H
C = capacitance, F
R = resistance, �

If the Q of the coil is high, say greater than 10, or the term 1/LC � R2/L2, then, for practical purposes,
the term R2/L2 can be disregarded. The result is that Eq. (21-6) becomes Eq. (21-1), the resonant-frequency
formula for series resonance.

fr = 1

2π
√

LC
(21-1)

The total impedance at resonance of the practical LC parallel circuit is

ZT = L

RC
(21-7)

In terms of quality factor Q, ZT at resonance can also be found by

ZT = XLQ = 2πfrLQ (21-8)
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or ZT = Q

2πfrC
(21-9)

The impedance ZT of a practical parallel circuit is maximum at the resonant frequency and decreases
at frequencies below and above the resonant frequency (Fig. 21-7a). An increase in resistance decreases the
impedance and causes the impedance to vary less “sharply” as the circuit is tuned over a band of frequencies
below and above the resonant frequency (Fig. 21-7b). At frequencies below resonance, XC > XL and IL > IC

so that the parallel-tuned circuit is inductive (Figs. 21-7a and c). At frequencies above resonance, the reverse
condition is true, XL > XC and IC > IL, so that now the circuit is capacitive (Figs. 21-7a and c). Since the
impedance ZT is maximum at parallel resonance, IT is minimum (Fig. 21-7c).

Fig. 21-7 Impedance and current response curves of practical parallel LC circuit at resonance

Q OF PARALLEL CIRCUIT

For a parallel resonant circuit in which R is very low compared with XL,

Q = XL

R
(21-4)

where R is the resistance of the coil in series with XL (Fig. 21-6a). If the resistance of the source supply
is very high and there is no other resistance branch shunting the tuned circuit, the Q of the parallel resonant
circuit is the same as the Q of the coil.

Example 21.7 In the circuit shown (Fig. 21-8a) find (a) the resonant frequency of the circuit, (b) the impedance of the
circuit, and (c) the total current at resonance; and (d) draw the phasor diagram.

(a) Find fr .

fr = 1

2π

√
1

LC
− R2

L2
(21-6)
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Compare 1/LC with R2/L2.

1

LC
= 1(

203 × 10−6
)(

500 × 10−12
) = 9.85 × 1012

R2

L2
=

(
6.7

)2(
203 × 10−6

)2
= 44.9

(4.12 × 10−8)
= 10.9 × 108

Because 9.85 × 1012 � 10.9 × 108 or 1/LC � R2/L2, the R2/L2 term can be disregarded and Eq. (21-1) can
be used.

fr = 1

2π

√
1

LC
= 1

6.28

√
9.85 × 1012 = 500 000 Hz = 500 kHz Ans.

Fig. 21-8

(b) Find ZT . Use Eq. (21-7).

ZT = L

RC
= 203 × 10−6

6.7
(
500 × 10−12

) = 60 600 � = 60.6 k� Ans.

(c) Find IT by Ohm’s law.

IT = VT

ZT
= 100

60.6 × 103
= 1.65 mA Ans.

(d) Draw the phasor diagram (see Fig. 21-8b).

Example 21.8 A coil with a Q of 71.6 is connected in parallel with a capacitor to produce resonance at 356 kHz. The
impedance at resonance is found to be 64 k�. Find the value of the capacitor. Assume the Q of the resonant circuit is the
same as the Q of the coil.

ZT = Q

2πfrC
(21-9)

from which C = Q

2πfrZT
= 71.6

6.28
(
356 × 103

)(
64 × 103

) = 5 × 10−10 F = 500 pF Ans.
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BANDWIDTH AND POWER OF RESONANT CIRCUIT

The width of the resonant band of frequencies centered around fr is called the bandwidth of the tuned
circuit. In Fig. 21-9a, the group of frequencies with a response equal to 70.7 percent or more of maximum is
considered the bandwidth of the tuned circuit. For a series resonant circuit, the bandwidth is measured between
the two edge frequencies f1 and f2, producing 70.7 percent of the maximum current at fr (Fig. 21-9b). For
a parallel resonant circuit, the bandwidth is measured between the two frequencies, allowing 70.7 percent of
the maximum total impedance at fr (Fig. 21-9c).

Fig. 21-9 Bandwidth of a tuned LC circuit

At each frequency f1 and f2, the net capacitive or net inductive reactance equals the resistance. Then ZT

of the series RLC resonant circuit is
√

2 or 1.4 times greater than R. The current then is I/
√

2 = 0.707 I.
Since power is I2R or V 2/R and (0.707)2 = 0.50, the bandwidth at 70.7 percent response in current or voltage
is also the bandwidth of half-power points.

Bandwidth (BW) in terms of Q is

BW = f2 − f1 = �f = fr

Q
(21-10)

High Q means narrow bandwidth, whereas low Q yields greater bandwidth (Fig. 21-10).
Either f1 or f2 is separated from fr by one-half of the total bandwidth (Fig. 21-9), so these edge frequencies

can be calculated.

f1 = fr − �f

2
(21-11)

f2 = fr + �f

2
(21-12)

Example 21.9 An LC circuit resonant at 1000 kHz has a Q of 100. Find the total bandwidth �f and the edge
frequencies f1 and f2.

�f = fr

Q
(21-10)

= 1000 × 103

100
= 10 × 103 = 10 kHz Ans.
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Fig. 21-10 Resonant response curves: higher Q provides
sharper resonance, lower Q provides broader
response

Since f1 and f2 have the same frequency spacing on each side of the resonant frequency, bandwidth can also be expressed as

�f = ±5 kHz Ans.

Use Eq. (21-11) to find f1.

f1 = fr − �f

2
= 1000 × 103 − (

5 × 103) = 995 × 103 = 995 kHz Ans.

Use Eq. (21-12) to find f2.

f2 = fr + �f

2
= 1000 × 103 + (

5 × 103) = 1005 × 103 = 1005 kHz Ans.

Example 21.10 For a series resonant circuit (Fig. 21-11), what is the real power consumed at resonance and at an edge
frequency?

Fig. 21-11 Series resonant circuit
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At resonance:
I = VT

R
= 100

20
= 5 A

Power at resonance: Pr = I2R = 52(20) = 500 W Ans.

or Pr = VT I = 100(5) = 500 W Ans.

Power at f1 or f2: Pf 1 =
(

I√
2

)2
R = I2R

2
= 52(20)

2
= 250 W Ans.

or, since f1 and f2 are at the half-power points,

Pf 1 = Pf 2 = Pr

2
= 500

2
= 250 W Ans.

SUMMARY

Series and parallel resonance are compared in Table 21-1.

Table 21-1 Comparison of Series and Parallel Resonance

Series Resonance Parallel Resonance (Q > 10)

fr = 1

2π
√

LC
fr = 1

2π
√

LC

I maximum at fr with θ = 0◦ IT minimum at fr with θ = 0◦

Impedance Z minimum at fr Impedance ZT maximum at fr

Q = XL

R
Q = XL

R

Q rise in voltage = QVT Q rise in impedance = QXL

Bandwidth �f = fr

Q
Bandwidth �f = fr

Q

Capacitive below fr , but Inductive below fr , but
inductive above fr capacitive above fr

Solved Problems

21.1 What value of inductance must be connected in series with a 300-pF capacitor in order that the circuit
be resonant to a frequency of 500 kHz?

C = 300 pF = 300 × 10−12 F = 3 × 10−10 F f = 500 kHz = 500 × 103 Hz = 5 × 105 Hz

L = 0.0254

f 2
r C

(21-2)

= 0.0254(
5 × 105

)2(3 × 10−10
) = 339 µH Ans.
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21.2 Prepare a table of various combinations of L and C required to produce resonance in a series RLC
circuit at a frequency of 600 kHz.

Find the LC product for fr = 600 kHz.

L = 0.0254

f 2
r C

(21-2)

LC = 0.0254

f 2
r

= 0.0254(
6 × 105

)2
= 7 × 10−14

If L is to be specified in microhenrys and C in microfarads, then

LC = 7 × 10−14

10−12
= 0.07

Assume various values of L and solve for resulting values of C by Eq. (21-3). The result is the
following table.

Ans.
Resonant

Frequency, LC
kHz L, µH C, µF Product

600 100 0.0007 0.07

600 50 0.0014 0.07

600 10 0.007 0.07

600 1 0.07 0.07

600 0.2 0.35 0.07

600 0.05 1.4 0.07

600 0.005 14 0.07

600 0.0005 140 0.07

21.3 A 4-mH coil and a 50-pF capacitor form the secondary side of a transformer (Fig. 21-12). Find the
resonant frequency.

Fig. 21-12 Resonance in transformer secondary

L = 4 mH = 4 × 10−3 H C = 50 pF = 50 × 10−12 F
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Using Eq. (21-1),

fr = 0.159√
LC

= 0.159√(
4 × 10−3

)(
50 × 10−12

) = 356 kHz Ans.

21.4 A series circuit has R = 40 �, L = 0.5 H, and C = 0.2 µF. Find (a) the impedance and Q of the
circuit to a frequency of 400 Hz, (b) the capacitance that must be added in parallel with the 0.2 µF
to produce resonance at this frequency, and (c) impedance and Q of the coil at resonance.

(a) Find Z at f = 400 Hz.

XL = 6.28 fL = 6.28(400)(0.5) = 1256 �

XC = 1

2π fC
= 1

6.28(400)(0.2 × 10−6)
= 1990 �

Z =
√

R2 + (XL − XC)2 =
√

402 + (1256 − 1990)2 =
√

402 + (−734)2 = 735 � Ans.

At nonresonance, Q = XL − XC

R
= 734

40
= 18.4 Ans.

(b) Find the C that will produce resonance.

f = 400 Hz L = 0.5 H

C = 0.0254

f 2
r L

(21-3)

= 0.0254

4002(0.5)
= 0.3175 µF ∼= 0.318 µF

Since 0.318 µF is needed for resonance and we have only 0.2 µF, we must add 0.118 µF
(0.318 µF – 0.2 µF) in parallel with 0.2 µF, so

C = 0.118 µF Ans.

(c) Find Z and Q at resonance.

Z = R = 40 � Ans.

Find XC at resonance.

XC = 1

2πfrC
= 1

6.28(400)
(
0.3175 × 10−6

) = 1254 � ∼= 1256 �

Due to rounding off, XC is not exactly equal to XL (1256 �). XL = XC at resonance, so

Q = XL

R
= XC

R
= 1256

40
= 31.4 Ans.

21.5 An RLC series circuit with R = 5 �, C = 10 µF, and a variable inductance L has an applied
voltage VT = 110 V with a frequency of 60 Hz. L is adjusted until the voltage across the resistor is
a maximum. Find the current and voltage across each element.
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The maximum voltage across the resistor occurs at resonance. At resonance,

XC = 1

2πf C
= 1

6.28(60)
(
10 × 10−6

) = 265 �

XL = XC = 265 � and Z = R = 5 �

Then I = VT

Z
= 110

5
= 22 A Ans.

and VR = IR = 22(5) = 110 V Ans.

VL = IXL = 22(265) = 5830 V Ans.

VC = IXC = 22(265) = 5830 V Ans.

21.6 Find the minimum and maximum values of the capacitor needed to obtain resonance with a 300-µH
coil to frequencies between 500 and 1500 kHz.

For a minimum C, fr is equal to its maximum value of 1500 kHz.

Cmin = 0.0254

f 2
r,maxL

= 0.0254(
1.5 × 106

)2(300 × 10−6
) = 3.76 × 10−11 F = 37.6 pF Ans.

For a maximum C, fr is equal to its minimum value of 500 kHz.

Cmax = 0.0254

f 2
r,minL

= 0.0254(
5 × 105

)2(300 × 10−6
) = 3.39 × 10−10 F = 339 pF Ans.

21.7 A series RLC circuit with R = 25 � and L = 0.6 H has a leading phase angle of 60◦ at a frequency
of 40 Hz. Find the frequency at which this circuit will be resonant.

Step 1. Draw the impedance triangle (Fig. 21-13) and solve for the net reactance X.

X = XC − XL = 25 tan 60◦ = 25(1.73) = 43.3 �

Fig. 21-13 Impedance triangle

Step 2. Find XL and then XC .

XL = 6.28 f L = 6.28(40)(0.6) = 151 �

XC − XL = 43.3 from Step 1

Then XC = 43.3 + XL = 43.3 + 151 = 194 �
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Step 3. Find C.

C = 1

2π f XC

= 1

6.28(40)(194)
= 20.5 µF

Step 4. Knowing L and C, find fr , using Eq. (21-1).

fr = 0.159√
LC

= 0.159√
0.6(20.5 × 10−6)

= 45.3 Hz Ans.

Step 5. As a check, determine whether XL = XC at fr = 45.3 Hz.

XL = 6.28frL = 6.28(45.3)(0.6) = 171 �

XC = 1

2πfrC
= 1

6.28(45.3)(20.5 × 10−6)
= 171 �

Therefore, XL = XC = 171 �.

21.8 A common application of resonant circuits is tuning a receiver to the carrier frequency of a desired
radio station. The tuning is done by the air capacitor C, which can be varied with the plates completely
in mesh (maximum capacitance) to out of mesh (minimum capacitance). Calculate the capacitance of
the variable capacitor to tune for radio stations broadcasting at 500, 707, 1000, 1410, and 2000 kHz
(Fig. 21-14).

C = 0.0254

f 2
r L

(21-3)

At fr = 500 kHz: C = 0.0254

(5 × 105)2(239 × 10−6)
= 4.25 × 10−10 = 425 pF Ans.

Fig. 21-14 Tuning LC circuit through the AM radio
band of 500 to 2000 kHz
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Since
C ∝ 1

f 2
r

Cn = Co

(
fr,o

fr,n

)2

Let Co = 425 pF, fr,o = 500 kHz.

At fr = 707 kHz: C = 425

(
500

707

)2

= 213 pF Ans.

At fr = 1000 kHz: C = 425

(
500

1000

)2

= 106 pF Ans.

At fr = 1410 kHz: C = 425

(
500

1410

)2

= 53.4 pF Ans.

At fr = 2000 kHz: C = 425

(
500

2000

)2

= 26.6 pF Ans.

21.9 The Q of a coil in a series resonant circuit can be determined experimentally by measuring the Q

rise in voltage across L or C and comparing this voltage with the generator or input voltage. As a
formula

Q = Vout

Vin
= VL

Vin
= VC

Vin

This method is better than the XL/R formula for determining Q because R is the ac resistance of
the coil, which is not easily measured. A series circuit resonant at 400 kHz develops 100 mV across
a 250-µH coil with a 2-mV input. Calculate the Q and ac resistance of the coil.

Q = Vout

Vin
= 100 mV

2 mV
= 50 Ans.

XL = 2πfrL = 6.28
(
4 × 105)(250 × 10−6) = 628 �

Q = XL

R
(21-4)

R = XL

Q
= 628

50
= 12.6 � Ans.

21.10 A 0.1-mH coil and a 1200-pF capacitor are connected in parallel to form the primary of an IF
transformer (Fig. 21-15). What is the resonant frequency?

Fig. 21-15 LC tuning on the primary side of an IF transformer
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Since this is a case of a pure LC parallel tuned circuit,

fr = 0.159√
LC

(21-1)

L = 0.1 mH = 0.1 × 10−3 H C = 1200 pF = 1200 × 10−12 F = 1.2 × 10−9 F

fr = 0.159√(
0.1 × 10−3

)(
1.2 × 10−9

) = 459 kHz Ans.

21.11 The parallel tank circuit of an oscillator contains a coil of 320 µH. Find the value of the capacitance
at the resonant frequency of 1 MHz. Resistance is negligible.

Use Eq. (21-3).

C = 0.0254

f 2
r L

= 0.0254(
1 × 106

)2(320 × 10−6
) = 7.9 × 10−11 F = 79 pF Ans.

21.12 For the practical LC parallel circuit (Fig. 21-16), the formula for the equivalent or total impedance
ZT is

ZT = 1

R2 + X2

√
(RXLXC − RXCX)2 + (R2XC + XLXCX)2 where X = XL − XC

Find the total impedance ZT when f = 1000 kHz, R = 4 �, L = 100 µH, and C = 200 pF. Round
off ZT to three significant figures.

Fig. 21-16 Equivalent impedance of an
LC parallel circuit

Step 1. Calculate XL, XC , and X.

XL = 2π fL = 6.28
(
1 × 106)(100 × 10−6) = 628 �

XC = 1

2π fC
= 1

6.28
(
1 × 106

)(
200 × 10−12

) = 796 �

X = XL − XC = 628 − 796 = −168 �
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Step 2. Substitute values of R, X, XL, and XC to calculate ZT .

R2 + X2 = 42 + (−168)2 = 2.82 × 104

RXLXC − RXCX = 4(628)(796) − 4(796)(−168) = 2.54 × 106

R2XC + XLXCX = 42(796) + 628(796)(−168) = −84 × 106

ZT = 1

2.82×104

√
(2.54×106)2+(−84×106)2 = 84×106

2.82×104
=2979 �=2980 � Ans.

In this case XC > XL (796 � > 628 �) so that the circuit is inductive (more inductive current than
capacitive current).

A simpler method for evaluating ZT when R � XL, R � XC , and R � X is by reducing the for-
mula for ZT . For these conditions, XLXCX is the dominating term so that the other terms under the
square root sign can be disregarded. The result is

ZT
∼= 1

X2

√
(XLXCX)2 ∼= XLXCX

X2
∼= XLXC

X

Since the inequality conditions hold true for this circuit (10 � � 628 �, 10 � � 796 �, and
10 � � 168 �),

ZT
∼= 628(796)

168
∼= 2976 � ∼= 2980, rounded off to three significant figures Ans.

which equals the value previously calculated.

21.13 Find the resonant frequency and total impedance ZT of the circuit (Fig. 21-16) when the component
values remain the same as those in Problem 21.12, R = 4 �, L = 100 µH, and C = 200 pF.

Step 1. Find fr .

fr = 1

2π

√
1

LC
− R2

L2
(21-6)

Compare 1/LC with R2/L2.

1

LC
= 1

(100 × 10−6)(200 × 10−12)
= 5 × 1013

R2

L2
= 42

(100 × 10−6)2
= 16

10−8
= 16 × 108

Since 1/LC � R2/L2, the R2/L2 term can be disregarded so fr can be found by using
Eq. (21-1).

fr = 1

2π

√
1

LC
= 1

6.28

√
5 × 1013 = 1.13 × 106 Hz = 1130 kHz Ans.

Step 2. Find ZT at resonance, using Eq. (21-7).

ZT = L

RC
= 100 × 10−6

4(200 × 10−12)
= 125 k� Ans.
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21.14 Find the total impedance of ZT of the circuit (Fig. 21-16) when f = 1300 kHz and the component
values remain the same as those in Problem 21.12, R = 4 �, L = 100 µH, and C = 200 pF. Round
off ZT to three significant figures.

Step 1. Calculate XL, XC , and X.

XL = 2π fL = 6.28(1.3 × 106)(100 × 10−6) = 816 �

XC = 1

2π fC
= 1

6.28
(
1.3 × 106

)(
200 × 10−12

) = 612 �

X = XL − XC = 816 − 612 = 204 �

Step 2. Substitute in the formula for ZT given in Problem 21.12.

R2 + X2 = 42 + 2042 = 4.16 × 104

RXLXC − RXCX = 4(816)(612) − 4(612)(204) = 1.5 × 106

R2XC + XLXCX = 42(612) + 816(612)(204) = 1.02 × 108

ZT = 1

4.16×104

√
(1.5×106)2+(1.02×108)2 = 1.02×108

4.16×104
=2452 �=2450 � Ans.

In this case XL >XC (816 �>612 �) so that the circuit is capacitive (more capacitive current than
inductive current).

A simpler method is to use the formula developed in Problem 21.12.

ZT
∼= XLXC

X
∼= 816(612)

204
∼= 2448 �

∼= 2450 �, rounded off to three significant figures

which equals the value calculated by the exact formula.
In summary, the accompanying table shows the nature of a practical LC parallel circuit below

the resonant frequency, at the resonant frequency, and above the resonant frequency.

Nature of LC
Problem Number Frequency ZT Parallel Circuit

21.12 1000 kHz:
Below resonant
frequency

2980 � Inductive (XC > XL)

21.13 1130 kHz:
At resonant
frequency

125 k� Resistive (XC = XL),
maximum impedance,
minimum current

21.14 1300 kHz:
Above resonant
frequency

2450 � Capacitive (XL > XC)
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21.15 A parallel LC circuit tuned to 200 kHz with a 350-µH coil has a measured impedance ZT of 19 800 �.
Calculate Q.

XL = 2π fXL = 6.28
(
2 × 105)(350 × 10−6) = 440 �

ZT = XLQ (21-8)

Q = ZT

XL

= 19 800

440
= 45 Ans.

Supplementary Problems

21.16 Find the resonant frequency of a series circuit if the inductance is 300 µH and the capacitance is
0.005 µF. Ans. fr = 130 kHz

21.17 Find the resonant frequency of a transmitting antenna that has a capacitance of 300 pF, a resistance
of 40 �, and an inductance of 300 µH. Ans. fr = 530 kHz

21.18 Find the resonant frequency of a series resonant section of a bandpass filter when L = 350 µH and
C = 20 pF. Ans. fr = 1500 kHz

21.19 What is the resonant frequency of a series circuit that consists of an inductance of 500 µH and a
capacitance of 400 pF? Ans. fr = 356 kHz

21.20 How much capacitance is needed to obtain resonance at 1500 kHz with an inductance of 45 µH?
Ans. C = 251 pF

21.21 Find the value of inductance that will produce resonance to 50 Hz if it is placed in series with
a 20-µF capacitor. Ans. L = 0.508 µH

21.22 What is the capacitance of an antenna circuit whose inductance is 50 µH if it is resonant to
1200 kHz? Ans. C = 353 pF

21.23 What is the inductance of a series resonant circuit with a 300-pF capacitor at a frequency of
1000 kHz? Ans. L = 84.7 µH

21.24 A voltage of 100-V ac at a frequency of 10 kHz is impressed across a series circuit that consists of
a 220-pF capacitor and an 800-mH coil with an internal resistance of 125 �. Find (a) the current in
the circuit, (b) the voltage drops across the capacitor and the coil, (c) the power dissipated by the
circuit, and (d) the Q of the coil.
Ans. (a) I = 4.52 mA (Z = 22 100 �); (b) VC = 327 V; VL = 227 V; (c) P = 2.55 mW;

(d) Q = 402

21.25 Find (a) the resonant frequency of the circuit in Problem 21.24. As a series resonant circuit, find
(b) the current in the circuit, (c) the voltage drops across the capacitor and the coil, (d) the power
dissipated by the resonant circuit, (e) the Q of the coil, (f ) the total bandwidth and edge frequencies,
and (g) the power dissipated by the circuit operating at the edge frequency.
Ans. (a) fr = 12.0 kHz; (b) I = 0.8 A; (c) VC = 48 230 V; VL = 48 230 V; (d) P = 80 W;
(e) Q = 482; (f ) �f = 25 Hz; f1 = 11 988 Hz; f2 = 12 012 Hz. Rounding off has distorted
these answers. If fr were rounded to unit hertz, fr = 11 985 Hz (five significant figures). Then
f1 = 11 973 Hz and f2 = 11 997 Hz. (g) P = 40 W
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21.26 What type and value of “pure reactance” must be added to the circuit in Problem 21.24 to make it
resonant at 10 kHz? Ans. L = 355 mH added in series

21.27 A series circuit has a resistance of 30 �, an inductance of 0.382 H, and a capacitance of 0.2 µF.
Find (a) the impedance of the circuit to a frequency of 500 Hz, (b) the Q of the circuit, (c) the
capacitance that must be added in parallel with the 0.2-µF capacitor to produce resonance at this
frequency, (d) the impedance of the circuit at resonance, (e) the Q of the resonant circuit, and ( f ) the
bandwidth.
Ans. (a) Z = 391 �; (b) Q = 13; (c) C = 0.065 µF (Total C = 0.265 µF at resonance);

(d ) Z = 30 �; (e) Q = 40; ( f ) �f = 12.5 Hz

21.28 A tuning capacitor is continuously variable between 20 and 350 pF. Find (a) the inductance that must
be connected in series with it to produce a lowest resonant frequency of 550 kHz, and then (b) the
highest resonant frequency. Ans. (a) L = 0.239 mH; (b) fr = 2300 kHz

21.29 A 0.1-H inductance, a 1-µF capacitor, and a 5-� resistor are connected in series across a supply
voltage of 50 V at a frequency of 503 Hz. (a) Is the circuit resonant? (b) Find the impedance of the
circuit, and (c) find the amount of voltage across each component.
Ans. (a) Yes (XC = XL = 316 �); (b) Z = 5 �; (c) VR = 50 V; VL = 3160 V; VC = 3160 V

21.30 In a series RLC circuit, R = 10 �, L = 20 mH, and C = 1.26 µF. Fill in the indicated quantities in
the accompanying table, and plot the impedance as a function of frequency.

f XL XC Z Nature∗ Q

800 Hz ? ? ? ? ?

900 Hz ? ? ? ? ?

1 kHz ? ? ? ? ?

1.1 kHz ? ? ? ? ?

1.2 kHz ? ? ? ? ?

∗Inductive, capacitive, or resistive (resonant)

Ans.
f,Hz XL, � XC, � Z, � Nature Q

800 101 158 57.9 Capacitive 5.7

900 113 140 28.8 Capacitive 2.7

1000 126 126 10 Resonant,
resistive

12.6

1100 138 115 25.1 Inductive 2.4

1200 151 105 47.1 Inductive 4.6

See Fig. 21-17 for plot of impedence as a function of frequency.
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Fig. 21-17

21.31 A series RLC circuit with R = 250 � and L = 0.6 H has a lagging phase angle of 30◦ at a frequency
of 60 Hz. Find the frequency at which this circuit will be resonant. Ans. fr = 36.1 Hz

21.32 A series RLC circuit with R = 10 � and C = 10 µF has a leading phase angle of 45◦ at a frequency
of 500 Hz. Find the frequency at which this circuit will be resonant. Ans. fr = 604 Hz

21.33 A series resonant circuit produces 240 mV across the coil with a 2-mV input. (a) What is the Q of
the coil? (b) Find R if the coil is 5 mH and fr is 300 kHz. (c) How much C is needed for this fr?
(d) What are the bandwidth and edge frequencies?
Ans. (a) Q = 120; (b) R = 78.5 �; (c) C = 56.4 pF; (d) �f = 2.5 kHz; f1 = 298.75 kHz;
f2 = 301.25 kHz

21.34 For fr = 450 kHz and Q = 50, determine the bandwidth �f and the edge frequencies f1 and f2.
Ans. �f = 9 kHz; f1 = 445.5 kHz; f2 = 454.5 kHz

21.35 Find the lowest and highest values of C needed with 0.1-µH coil to tune through the commercial FM
broadcast band of 88–108 MHz.
Ans. Cmin = 21.7 pF; Cmax = 32.7 pF

21.36 Find the resonant frequency of a filter made of a 150-µH coil and 40-pF capacitor in parallel.
Ans. fr = 2053 kHz

21.37 A 0.001-µF capacitor and a coil are connected in parallel to form the primary of an IF transformer.
Find the inductance of the coil so that the circuit is resonant to a frequency of 460 kHz.
Ans. L = 120 µH

21.38 A 16-µH coil and a 50-pF capacitor are connected in parallel (Fig. 21-18). If the effective resistance
of the coil is 25 �, find the resonant frequency, the Q of the coil at resonance, the bandwidth, and
the edge frequencies.
Ans. fr = 5620 kHz; Q = 22.6; �f = 249 kHz; f1 = 5495.5 kHz; f2 = 5744.5 kHz

21.39 An inductor is connected in parallel with a 200-pF capacitor so that the circuit is resonant to 113 kHz.
A circuit magnification meter indicates that the Q of the inductor is 800. Find (a) the value of
the inductance, (b) the effective resistance of the inductor, and (c) the impedance of the circuit at
resonance. Ans. (a) L = 9.91 mH; (b) R = 8.79 �; (c) ZT = 5.64 M�
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Fig. 21-18

21.40 An inductor with a measured Q of 100 resonates with a capacitor at 7500 kHz with an impedance of
65.9 k�. Find the value of the inductance and the capacitance of the test capacitor.
Ans. L = 14 µH; C = 32.2 pF

21.41 An inductor of 0.1 mH with a Q of 90 is connected in parallel with a 253-pF capacitor. Find (a) the
resonant frequency and bandwidth, (b) the impedance of the circuit at resonance, and (c) the effective
resistance of the inductor.
Ans. (a) fr = 1000 kHz; �f = 11.1 kHz; (b) ZT = 56.5 k�; (c) R = 7 �

21.42 Find the resonant frequency of the parallel circuit (Fig. 21-19). (Note that this is a very low Q circuit.)
Ans. fr = 159 Hz [use Eq. (21-6)]

Fig. 21-19

21.43 Fill in the indicated quantities for the low-Q circuit (Fig. 21-19) for the various given frequencies.
Round off ZT to three significant figures. (See Solved Problem 21.12.) What is the Q of the circuit at
resonance?

(a)

(b)

(c)

f , Hz ZT , � Nature

127 ? ?

159 ? ?

191 ? ?
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Ans.

(a)

(b)

(c)

f , Hz ZT , � Nature

127 7.09 20% below fr , essentially resistive

159 7.14 At fr , purely resistive

191 7.21 20% above fr , essentially resistive

Q = 7.14

21.44 Find the resonant frequency of the parallel LC circuit (Fig. 21-20). (Note that this is a high-Q circuit.)
Ans. fr = 500 kHz

Fig. 21-20

21.45 Fill in the indicated quantities for the high-Q circuit (Fig. 21-20) for the given frequencies. Round
off ZT to three significant figures. (See Solved Problems 21.12–21.14.)

(a)

(b)

(c)

f , kHz ZT , � Nature Q

400 ? ? ?

500 ? ? ?

600 ? ? ?

Ans.

(a)

(b)

(c)

f , kHz ZT , � Nature Q

400 1420 20% below fr , highly inductive 38.0

500 54.1 k At fr , high resistance 84.9

600 1730 20% above fr , highly capacitive 31.3

21.46 In a parallel resonant circuit with XL = 500 � and Q = 50, calculate ZT . Ans. ZT = 25 k�



 

Chapter 22

Waveforms and Time Constants

RL SERIES CIRCUIT WAVEFORMS

When a switch S is closed in a circuit having only resistance R (Fig. 22-1a), the readings on the ammeter A

and the voltmeter V both rise quickly to a value and remain steady at that value (Fig. 22-1b and c). If the
resistance R and the current I are known, the voltage V can be found by Ohm’s law,

V = IR (22-1)

When switch S is opened, the current and voltage drop quickly to zero.

Fig. 22-1 Response of circuit with R only

When a coil of wire is added in series with a resistor, we have an RL series circuit (Fig. 22-2a), where
V is the dc voltage, i is the instantaneous current, vR is the instantaneous voltage across the resistor, and vL is
the instantaneous voltage across the coil. When the switch S is closed, the current begins to rise rapidly from
zero until it reaches a steady value I determined by the resistance R of the circuit and the dc voltage V of
the source (Fig. 22-2b). The shape that the current curve takes is exponential. When the switch is opened, the
voltage source is removed and the current decays to zero at an exponential rate (Fig. 22-2b). With regard to
voltage waveforms across R and L, when the switch is closed, the full dc voltage V appears across the coil

Fig. 22-2 Response of circuit with R and L in series

524
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Fig. 22-2 (cont. )

and vL decays to zero at an exponential rate; and vR begins at zero and rises exponentially to a steady value
of V (Fig. 22-2c). When the switch is opened, the net series voltage across R and L, vR + vL, must equal
zero. Because vR cannot change quickly, vL drops to −V and decays to 0 V (Fig. 22-2c).

The term exponential is used to describe the current and voltage waveforms because the formulas for
calculating i, vR , and vL when time t is given contain an exponent of e (constant equal to 2.718).

The specific formulas to describe the RL waveforms follow:

RL Series Charging Formulas When Switch Is Closed

Current (Fig. 22-2b)
i = V

R
(1 − e−Rt/L) (22-2)

I = V

R
when t is large (22-3)

Voltage (Fig. 22-2c) V = vR + vL (22-4)

vR = V (1 − e−Rt/L) (22-5)

vL = V e−Rt/L (22-6)

RL Series Discharging Formulas When Switch Is Opened

Current (Fig. 22-2b) i = V

R
e−Rt/L (22-7)

I = 0 when t is large (22-8)

Voltage (Fig. 22-2c) 0 = vR + vL (22-9)

vR = V e−Rt/L (22-10)

vL = −V e−Rt/L (22-11)



 

526 WAVEFORMS AND TIME CONSTANTS [CHAP. 22

where i = instantaneous current, A
V = applied dc voltage, V
R = resistance of the circuit, �

L = inductance of the circuit, H
t = time, s
e = natural log base, constant equal to 2.718
I = final or steady-state value of current, A

vR = instantaneous voltage across the resistor, V
vL = instantaneous voltage across the coil, V

Example 22.1 Find the value of e−Rt/L for the following values of R, L, and t .

R, � L, H t , s

(a) 15 15 0
(b) 15 15 1
(c) 30 15 1
(d) 15 30 1
(e) 15 15 3
(f ) 30 20 1

The simplest way to evaluate exponentials is by use of an electronic calculator. First calculate −Rt/L and
then e−Rt/L. Round off numerical answers to three significant digits.

(a) − Rt

L
= −15(0)

15
= 0

e−Rt/L = e0 = 1 Ans.

Any quantity raised to a zero exponent equals 1.

(b) −Rt

L
= −15(1)

15
= −1

e−1 = 0.368 Ans.

(c) −Rt

L
= −30(1)

15
= −2

e−2 = 0.135 Ans.

(d) −Rt

L
= −15(1)

30
= −0.5

e−0.5 = 0.607 Ans.

(e) −Rt

L
= −15(3)

15
= −3

e−3 = 0.050 Ans.

(f ) −Rt

L
= −30(1)

20
= −1.5

e−1.5 = 0.223 Ans.

Fig. 22-3 Plot of exponential curve e−x

If we let x = (R/L)t and plot these values, we obtain the curve e−x (Fig. 22-3).
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Example 22.2 A 20-H coil and a 20-� resistor are connected in series across a 120-V dc source (Fig. 22-4a). (a) What
is the current 1, 2, 3, 4, and 5 s after the circuit is closed? (b) What is the initial current at the instant the circuit is closed?
(c) What is the voltage across the coil and across the resistor at 1 s after the circuit is closed? (d) Plot the curve of current
versus time from t = 0 to t = 5 s.

(a) Step 1. Write the formula for series RL current when the switch is closed.

i = V

R
(1 − e−Rt/L) (22-2)

Step 2. Find the value of e−Rt/L for t = 1, 2, 3, 4, and 5 s.

Fig. 22-4 Series RL circuit with switch closed

For t = 1 s: −Rt

L
= −20(1)

20
= −1

e−1 = 0.368 Ans.

For t = 2 s: −Rt

L
= −20(2)

20
= −2

e−2 = 0.135 Ans.

For t = 3 s: −Rt

L
= −20(3)

20
= −3

e−3 = 0.050 Ans.

For t = 4 s: −Rt

L
= −20(4)

20
= −4

e−4 = 0.018 Ans.

For t = 5 s: −Rt

L
= −20(5)

20
= −5

e−5 = 0.007 Ans.

Step 3. Find i by substituting values for e−Rt/L, V , and R.

i = V

R
(1 − e−Rt/L) (22-2)

For t = 1 s: i = 120

20
(1 − 0.368) = 6(0.632) = 3.79 A Ans.

For t = 2 s: i = 120

20
(1 − 0.135) = 6(0.865) = 5.19 A Ans.

For t = 3 s: i = 120

20
(1 − 0.050) = 6(0.950) = 5.70 A Ans.

For t = 4 s: i = 120

20
(1 − 0.018) = 6(0.982) = 5.89 A Ans.

For t = 5 s: i = 120

20
(1 − 0.007) = 6(0.993) = 5.96 A Ans.

(b) The initial current is that current when t = 0 s. So

−Rt

L
= −20(0)

20
= 0 and e0 = 1

Then i = 120

20
(1 − 1) = 6(0) = 0 A Ans.
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(c) Write Eqs. (22-5) and (22-6) and substitute proper values when t = 1 s.

VR = V
(

1 − e−Rt/L
)

= 120(1 − 0.368) = 120(0.632) = 75.8 Ans.

vL = V e−Rt/L = 120(0.368) = 44.2 V Ans.

As a check, substitute values for vR and vL into Eq. (22-4).

V = vR + vL

120 = 75.8 + 44.2

120 V = 120 V

(d) Plot of current curve is shown in Fig. 22-4b. Note that at t = 5 s, the current has almost reached its steady-state
value of 6 A.

Fig. 22-4 (Cont.)

Example 22.3 In Example 22.2, the switch is opened after having been closed for 7 s. What is the value of current 2 s
after the switch is opened?

For practical purposes, at time t = 7 s, the value of current has reached 6 A, its steady-state value. See Fig. 22-4b.
So write Eq. (22-7) and substitute values for t = 2 s.

i = V

R
e−Rt/L or i = Ie−Rt/L

−Rt

L
= −20(2)

20
= −2

e−2 = 0.135

i = 120

20
(0.135) = 6(0.135) = 0.81 A Ans.

RL TIME CONSTANTS

Any value of t can be inserted in the formula for current [Eq. (22-2)], and a corresponding value of the
current i can be found. Theoretically, the current never reaches the steady-state value of V/R on rise, zero, or
decay. However, from a practical standpoint, the ammeter does show steady current values, a finite number of
seconds after the circuit is closed or opened.
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A convenient unit of time measurement is the time constant T , which is equal to the ratio L/R in an
RL circuit.

t = T = L

R
(22-12)

We say that

One time constant = 1T = L

R

Two time constants = 2T = 2L

R

Three time constants = 3T = 3L

R

and so on.
By substituting one time constant, t = 1T = L/R, in Eq. (22-2),

i = V

R
(1 − e−(R/L)t ) (22-2)

we obtain
i = V

R
(1 − e−(R/L)(L/R)) or i = V

R
(1 − e−1)

Since e−1 = 0.368

then
i = V

R
(1 − 0.368) = (0.632)

V

R

Therefore, one time constant is the time in seconds required for the current in an RL circuit to rise to
0.632 times its steady-state value V/R, or at t = L/R the current is 63.2 percent of its final value.

Table 22-1 shows the value of the quantities e−Rt/L and 1 − e−Rt/L for the number of time constants
ranging from 0 to 6.

Table 22-1 Time Constant Factors

Number of Time Constants e−Rt/L 1 − e−Rt/L

0 1.000 0.000

0.5 0.607 0.393

1.0 0.368 0.632

1.5 0.223 0.777

2.0 0.135 0.865

2.5 0.082 0.918

3.0 0.050 0.950

3.5 0.030 0.970

4.0 0.018 0.982

4.5 0.011 0.989

5.0 0.007 0.993

5.5 0.004 0.996

6.0 0.002 0.998
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The table shows that the current reaches more than 99 percent (0.993) of its steady-state value in five time
constants. Since the rise during the sixth time constant is only 0.005 (0.998−0.993), the current is considered,
from a practical standpoint, to have reached its steady-state value at the end of five time constants.

Example 22.4 A circuit has total resistance of 10 � and an inductance of 50 H. In how many seconds will the current
reach its steady-state value?

Write the formula for a time constant [Eq. (22-12)] and substitute L = 50 H and R = 10 �.

T = L/R = 50/10 = 5 s, one time constant

The total time to reach the steady-state value is equal to five time constants.

Total time = 5T = 5(5) = 25 s Ans.

Example 22.5 Draw a plot of a rising current versus time constants in an RL series circuit.
Refer to Table 22-1 for values of 1 − e−Rt/L or 1 − e−t/T and the corresponding time constants. The plot is shown

in Fig. 22-5. Compare the similarity of this plot with that in Fig. 22-4b of Example 22.2d, where V/R = 6 A and one
time constant equals L/R = 20/20 = 1 s. In that example, therefore, the horizontal scale of time is the same as that
of time constants for this example. To illustrate, at t = 4 s, i = 5.89 A (Fig. 22-4b); in this example, t = 4 = T , so
i = 0.982(V/R) = 0.982(6) = 5.89 A.

Fig. 22-5 Plot of rising current in RL series circuit

RC SERIES CIRCUIT WAVEFORMS

When a capacitor is added in series with a resistor, we have the RC series circuit (Fig. 22-6a), where V is
the dc voltage, i is the instantaneous current, vR is the instantaneous voltage across the resistor, and vC is the
instantaneous voltage across the capacitor.

When switch S1 is closed and switch S2 is opened, the current rises instantly to its maximum value of
V/R and then decays exponentially until it reaches zero, its steady-state or final value (Fig. 22-6b). Also, the
full voltage V of the battery is across the resistor, V = VR . As the current decreases, the voltage across the
resistance vR decreases and the voltage across the capacitance vC rises so that the sum of the voltages vR and
vC is equal to V ; vR reduces to zero and the capacitor charges to vC = V (Fig. 22-6c).

After steady-state conditions are reached (i = 0, vR = 0, vC = V ), switch S1 is opened and switch S2
is closed. Current now flows out of the capacitor in the direction opposite to the direction it flowed while the
capacitor was being charged. The current drops instantly to −V/R and gradually decays to zero (Fig. 22-6b).
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Fig. 22-6 Response of circuit with R and C in series

Also, the voltage V across the capacitor cannot change instantly, so voltage V appears across the resistance
with opposite polarity, that of −V (Fig. 22-6c). Then the two voltages vR and vC decay exponentially to zero.

The specific formulas to describe the RC waveforms follow:

RC Series Charging Formulas When Switch S1 Is Closed and Switch S2 Is Opened

Current (Fig. 22-6b)

i = V

R
e−t/RC (22-13)

I = 0 when t is large (22-14)
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Voltage (Fig. 22-6c)

V = vR + vC (22-15)

vR = V e−t/RC (22-16)

vC = V
(

1 − e−t/RC
)

(22-17)

RC Series Discharging Formulas When Switch S1 Is Opened and Switch S2 Is Closed

Current (Fig. 22-6b)

i = −V

R
e−t/RC (22-18)

I = 0 when t is large (22-19)

Voltage (Fig. 22-6c)

0 = vR + vC (22-20)

vR = −V e−t/RC (22-21)

vC = V e−t/RC (22-22)

where i = instantaneous current, A
V = applied dc voltage, V
R = resistance of the circuit, �

C = capacitance of the circuit, F
t = time, s
e = natural log base, constant equal to 2.718
I = final or steady-state value of current, A

vR = instantaneous voltage across the resistor, V
vC = instantaneous voltage across the capacitor, V

Example 22.6 Find the value of e−t/RC for the following values of R, C, and t .

R C t

(a) 2 � 0.5 F 1 s
(b) 1 M� 10 µF 5 s
(c) 1 k� 500 µF 2 s
(d) 200 � 1000 µF 0.3 s

The simplest way to find values of exponential expressions is to use an electronic calculator.

(a) − t

RC
= 1

2 (0.5)
= −1

e−t/RC = e−1 = 0.368 Ans.

(b) − t

RC
= − 5(

1 × 106
) (

10 × 10−6
) = − 5

10
= −0.5

Remember to convert R into ohms and C into farads before you calculate.

e−0.5 = 0.607 Ans.
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(c) − t

RC
= − 2(

1 × 103
) (

500 × 10−6
) = −4

e−4 = 0.018 Ans.

(d) − t

RC
= − 0.3(

2 × 102
) (

103 × 10−6
) = −0.3

0.2
= −1.5

e−1.5 = 0.223 Ans.

Example 22.7 For an RC series circuit (Fig. 22-7), find (a) the current 1 s after the circuit is closed and (b) the voltage
across the resistance and the capacitor at that instant of time.

Fig. 22-7 Series RC circuit with switch
closed

(a) Step 1. Write the formula for series RC current when the switch is closed.

i = V

R
e−t/RC (22-13)

Step 2. Find the value of e−t/RC for t = 1 s.

− t

RC
= − 1(

2 × 103
) (

103 × 10−6
) = −1

2
= −0.5 e−0.5 = 0.607

Step 3. Find i by substituting values in Eq. (22-13).

i = 110

2000
(0.607) = 0.0334 A = 33.4 mA Ans.

(b) Write the formulas for voltage when the switch is closed and then substitute the proper values.

vR = V e−t/RC (22-16)

= 110 (0.607) = 66.8 V Ans.

vC = V
(

1 − e−t/RC
)

(22-17)

= 110(1 − 0.607) = 110(0.393) = 43.2 V Ans.

Check by using Eq. (22-15).

V = vR + vC

110 = 66.8 + 43.2

110 V = 110 V



 

534 WAVEFORMS AND TIME CONSTANTS [CHAP. 22

Example 22.8 After the circuit (Fig. 22-7) has reached steady state when the capacitor has charged to 110 V, the switch
is opened. Find now (a) the current 1 s after the circuit is opened and (b) the voltages across the resistance and the capacitor
at that time.

(a) Step 1. Write the formula for series RC current when the switch is opened.

i = −V

R
e−t/RC (22-18)

Step 2. Find e−t/RC .

e−t/RC = e−0.5 = 0.607

Step 3. Find i by substituting values in Eq. (22-18).

i = − 110

2000
(0.607) = −0.0334 A = −33.4 mA Ans.

(b) Write the formulas for voltage when the switch is opened and then substitute proper values.

vR = −V e−t/RC (22-21)

= −110(0.607) = −66.8 V Ans.

vC = V e−t/RC (22-22)

= 110(0.607) = 66.8 V Ans.

Check: 0 = vR + vC

0 = −66.8 + 66.8

0 V = 0 V

RC TIME CONSTANTS

The time constant T for a capacitive circuit is

T = RC (22-23)

We say that

One time constant = 1T = RC

Two time constants = 2T = 2RC

Three time constants = 3T = 3RC

and so on.
The time constant of a capacitive circuit is usually very short because the capacitance of a circuit may be

only a few microfarads or even picofarads.
Voltage and current values in capacitive circuits are assumed to reach their steady-state or final values

after five time constants, just as in inductive circuits. Table 22-1 applies also to capacitive circuits if e−Rt/L is
replaced by e−t/RC .
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CALCULATION FOR TIME t

The time required for a specific voltage decay can be calculated by transposing Eq. (22-21) or Eq. (22-22).

v = V e−t/RC

where V is the higher voltage at the start and v (vR or vC) is the lower voltage at the finish.

e−t/RC = v

V

Take the natural logarithm (ln) of each side.

− t

RC
ln e = ln

v

V

ln e = 1

So − t

RC
= ln

v

V
= ln v − ln V

t

RC
= − ln v + ln V = ln

V

v

t = RC ln
V

v
(22-24)

Example 22.9 A dc circuit of source voltage V has a 10-M� resistance in series with a 1-µF capacitor. What is the
time constant of the circuit and how long will current flow in the circuit when the RC combination is short-circuited?

Write the formula for time constant in a capacitive circuit, Eq. (22-23).

T = RC = (10 × 106)(1 × 10−6) = 10 s Ans.

Since the steady-state current is assumed to be zero after five time constants, the time that current will flow is

5T = 5(10) = 50 s Ans.

Example 22.10 Find the resistance necessary in an RC series circuit if the circuit has a capacitance of 10 µF and a
time constant of 1 s is desired.

Rewrite Eq. (22-23) and solve for R.

R = T

C
= 1

10 × 10−6
= 105 = 100 k� Ans.

Example 22.11 One time constant for a series RC circuit is also defined as the time in seconds required for the capacitor
to charge to 63.2 percent of its final value. Show that this statement is true.

Write the capacitance voltage equation vC when the capacitor is being charged.

vC = V
(
1 − e−t/RC

)
(22-17)

One time constant T = RC. Substitute RC for t .

vC = V
(
1 − e−RC/RC

) = V
(
1 − e−1) = V (1 − 0.368) = 0.632 V

So vC is 63.2 percent of V in one time constant.
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Example 22.12 If an RC circuit has a time constant of 1 s, how long will it take for vR to drop from 100 to 50 V?
Write the time equation for voltage decay, Eq. (22-24).

t = RC ln
V

v
= 1

(
ln

100

50

)
= ln 2 = 0.693 s Ans.

Solved Problems

22.1 A series circuit contains a resistance of 20 � and an inductance of 10 H connected across a voltage
source of 110 V. (a) What is the current 1 s after the circuit is closed? (b) What are vR and vC at this
time?

Some time after the current reaches a steady value, the switch is opened. When the series circuit
is open, the RL circuit opposes the decay of current toward the steady-state value of zero. (c) What
is the current 2 s after the circuit is opened? (d) What are vR and vC at this time?

(a) Step 1. Write the formula for charging or rising current when the switch is closed.

i = V

R

(
1 − e−Rt/L

)
(22-2)

Step 2. Find the value of e−Rt/L for t = 1 s.

−Rt

L
=−20(1)

10
= −2 e−2 = 0.135

Step 3. Substitute values for e−Rt/L, V , and R in Eq. (22-2).

i = 110

20
(1 − 0.135) = 5.5(0.865) = 4.76 A Ans.

(b) Write the formulas for vR and vL after the switch is closed and solve them when t = 1 s.

vR = V (1 − e−Rt/L) (22-5)

= 110(0.865) = 95.2 V Ans.

Also vR = iR = 4.76(20) = 95.2 V.

vL = V e−Rt/L

= 110(0.135) = 14.8 V Ans.

Check: V = vR + vL (22-4)

110 = 95.2 + 14.8

110 V = 110 V

(c) The steady-state value of current is

I = V

R
= 110

20
= 5.5 A
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Write the formula for discharging or decaying current when the switch is opened and substitute
values with t = 2 s.

i = V

R
e−Rt/L (22-7)

−Rt

L
= −20(2)

10
= −4

e−4 = 0.018

i = 5.5(0.018) = 0.10 A Ans.

(d) Write the formulas for vR and vL after the switch is opened and solve them when t = 2 s.

vR = V e−Rt/L (22-10)

= 110(0.018) = 1.98 V Ans.

vL = −V e−Rt/L (22-11)

= −110(0.018) = −1.98 V Ans.

Check: 0 = vR + vL (22-9)

0 = 1.98 − 1.98

0 V = 0 V

22.2 An RL series circuit has the following values: V = 75 V dc, R = 50 �, and L = 15 H. (a) Find the
time constant. (b) How long after the circuit is energized will the current reach a steady value? (c)
What is the steady-state value of current?

(a) Write the formula for the time constant, Eq. (22-12), and substitute given values.

T = L

R
= 15

50
= 0.3 s Ans.

(b) A steady-state value of current is reached after five time constants.

5T = 5(0.3) = 1.5 s Ans.

(c) I = V

R
= 75

50
= 1.5 A Ans.

22.3 In the circuit shown (Fig. 22-8), find (a) the total inductance and (b) the time constant. Assume that
a current of 10 A is flowing when the switch S is opened. Find (c) the current 2 s later.

(a) Reduce the series–parallel combination of inductances to its equivalent.

Parallel: La = L1L2

L1 + L2
= 5(1)

5 + 1
= 5

6
= 0.83 H

Parallel: Lb = L3L4

L3 + L4
= 4(4)

4 + 4
= 16

8
= 2.0 H

Then series: LT = La + Lb = 0.83 + 2.0 = 2.83 H Ans.
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Fig. 22-8 Circuit with branch inductances in
series with R

(b) The time constant of the circuit is the ratio of total inductance to the total resistance of the
circuit.

T = LT

R
= 2.83

5
= 0.57 s Ans.

(c) Write the formula for decaying current. The V/R value is 10 A.

i = V

R
e−Rt/L (22-7)

− Rt

LT

= −5(2)

2.83
= −3.5

e−3.5 = 0.030

Then i = 10(0.030) = 0.30 A Ans.

22.4 An RL circuit (Fig. 22-9) is used to generate a high voltage to light a neon bulb, which requires 90 V
for ionization at which time it glows. When the circuit is open, the high resistance R2 produces a low
time constant L/R so that the current drops toward zero much faster than the rise of current when the
switch is closed. The result is a high value of self-induced voltage across a coil when the RL circuit is
open. This voltage can be greater than the applied voltage. (a) Find the time constants of the circuit
when the switch is opened and when the switch is closed. (b) When the switch is closed, find the
voltage across the neon bulb. Is it sufficient to start ionization? (c) When the switch is open, what is
the voltage across the neon bulb, and is it great enough to light it?

Fig. 22-9 RL circuit produces a high voltage when switch is opened
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(a) The time constant is the ratio of total inductance to the total resistance.

Switch open:

T = L

R1 + R2
= 2

4000 + 100
= 2

4100
= 4.9 × 10−4 = 0.49 ms Ans.

Switch closed (R2 short-circuited):

T = L

R1
= 2

100
= 2 × 10−2 = 20 ms Ans.

When the switch is open, there is a much shorter time constant for current decay. The current
decays practically to zero after five time constants, or 2.5 ms.

(b) When the switch is closed, there is 10 V across the neon bulb, which is far less than the 90 V
needed to ionize it to glow.

(c) When the switch is closed, R2 is short-circuited so that the 100-� R1 is the only resistance.
The steady-state current I = V/R1 = 10/100 = 0.10 A. When the switch is opened, the rapid
drop in current results in a magnetic field collapsing at a fast rate, inducing a high voltage across
L. The energy stored in the magnetic field maintains I at 0.10 A for an instant before the current
decays. With 0.10 A in the 4-k� R2, its potential difference is 0.10(4000) = 400 V. This 400-V
pulse is sufficient to light the bulb.

22.5 For an RC series circuit (Fig. 22-10), find (a) the time constant of the circuit, (b) vC and vR one time
constant after the switch is closed and at 5 s, (c) vC and vR one time constant after discharge starts,
assuming the capacitor is fully charged to 10 V.

Fig. 22-10 RC circuit

(a) Write Eq. (22-23) for the time constant in an RC series circuit and substitute values for R and C.

T = RC = (100 × 103)(20 × 10−6) = 2 s Ans.

(b) Write the formula for charging voltage, substitute values, and solve for vC and vR .

vC = V
(
1 − e−t/RC

)
(22-17)

When t = T = 2 s:

vC = 10(1 − e−2/2) = 10(1 − e−1) = 10(1 − 0.368) = 10(0.632) = 6.32 V Ans.

V = vR + vC (22-15)

vR = V − vC = 10 − 6.32 = 3.68 V Ans.
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When t = 5 s:

vC = 10
(
1 − e−5/2) = 10

(
1 − e−2.5) = 10(1 − 0.082) = 10(0.918) = 9.18 V Ans.

vR = V − vC = 10 − 9.18 = 0.82 V Ans.

(c) Write the formula for discharging voltage, substitute values, and solve for vC and vR .

vC = V e−t/RC (22-22)

When t = T = 2 s:

vC = V e−2/2 = V e−1 = 10(0.368) = 3.68 V Ans.

0 = vR + vC (22-20)

vR = −vC = −3.68 V Ans.

22.6 For the circuit shown (Fig. 22-11), a 40-µF capacitor is added across the 20-µF capacitor in the
circuit of Fig. 22-10. Find the time constant of this circuit and the voltage across this circuit 3 s after
the start of charge.

Fig. 22-11 Circuit with C branch in series with R

Find the total capacitance for two capacitors in parallel.

Parallel: CT = C1 + C2 = 20 + 40 = 60 µF

Then T = RCT = (100 × 103)(60 × 10−6) = 6 s Ans.

Write the formula for charging voltage and substitute values to find vC .

vC = V
(
1 − e−t/RC

)
(22-17)

= 10
(
1 − e−3/6) = 10

(
1 − e−0.5) = 10(1 − 0.607) = 10(0.393) = 3.93 V Ans.

22.7 A simple switching circuit for producing a sawtooth wave is shown (Fig. 22-12a). The switch S is
closed and then opened very quickly so that the capacitor is not fully charged but only charged to the
linear portion of its charging exponential curve (Fig. 22-12b). (The linear portion is the straightest
portion at the start of the charge cycle.) The switch is opened and closed at specific intervals to
produce a sawtooth voltage wave across the capacitor. Find the magnitude of the vC curve when the
switching time interval is one-fifth the time constant of the circuit. What is the time interval?
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Fig. 22-12 RC circuit for generating a sawtooth waveform

Write the voltage formula for charging the capacitor.

vC = V (1 − e−t/RC) (22-17)

If t = 1

5
RC, then

e−t/RC = e−(1/5)RC/RC = e−1/5 = e−0.2 = 0.819

Then vC = 20(1 − 0.819) = 20(0.181) = 3.62 V Ans.

Time interval t = 1

5
RC = (100 × 103)(1 × 10−6)

5
= 0.02 s Ans.

22.8 An RC series circuit with a rectangular pulse input is shown (Fig. 22-13). A rectangular pulse is
a special case of a constant dc source because the voltage is a constant V when the pulse is on and a
constant zero when the pulse is off. If a single pulse is applied to the circuit, find the voltage across
the resistance at the time of 0.5, 1, and 2 ms. The pulse has a maximum voltage of 10 V and lasts
for 1 ms.

Fig. 22-13 RC circuit with rectangular pulse of applied voltage

Find the time constant of the circuit.

T = RC = (1 × 103)(1 × 10−6) = 1 × 10−3 = 1 ms

Write the formula for vR when the circuit is charging.

vR = V e−t/RC (22-16)
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When t = 0.5 ms,

vR = 10e−0.5/1 = 10e−0.5 = 10(0.607) = 6.07 V Ans.

When t = 1 ms,

vR = 10e−1/1 = 10e−1 = 10(0.368) = 3.68 V Ans.

At t = 1 ms, the pulse is turned off. At that instant the source voltage is zero, so

vR + vC = 0

vR = −vC

Since the voltage across the capacitor vC cannot change instantly, the voltage across the resistor
becomes −vC . Now at an instant before t = 1 ms,

vR + vC = 10

vC = 10 − vR = 10 − 3.68 = 6.32 V

Therefore, at t = 1 ms, vR = −vC = −6.32 V and then vR decays to zero. So the formula for vR at
t = 1 ms is:

vR = −6.32e−t/RC

Then in the next 1 ms or when t = 2 ms measured from the origin,

vR = −6.32e−1 = −6.32(0.368) = −2.33 V Ans.

The plot for vR is as shown in Fig. 22-14.

Fig. 22-14 Charge and discharge of an RC circuit

22.9 An RC series circuit with a square-wave input is shown (Fig. 22-15). The input is a periodic train
of pulses with an amplitude of 10 V and a width of 1 ms, with each pulse generated every 2 ms. Plot
the output voltage curve across the resistor.

T = RC = (1 × 103)(0.1 × 10−6) = 0.1 × 10−3 = 0.1 ms
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Fig. 22-15 RC circuit with square wave for input voltage

Find some values of vR within the 0 to 1 ms that the pulse is on, say at T = 0.1 ms, 2T = 0.2 ms,
and 3T = 0.3 ms. First, write the formula for vR when the circuit is charging.

vR = V e−t/RC (22-16)

When t = T = 0.1 ms, vR = 10e−1 = 10(0.368) = 3.68 V

When t = 2T = 0.2 ms, vR = 10e−2 = 10(0.135) = 1.35 V

When t = 3T = 0.3 ms, vR = 10e−3 = 10(0.05) = 0.5 V

At t = 5T or 0.5 ms, vR will reach its steady-state value of 0 V.

When the pulse is turned off between 1 and 2 ms, vR will instantly drop to −10 V because the
capacitor charged to 10 V requires a finite time to discharge. Then vR will gradually rise to 0 V.

The formula for vR when the circuit is discharging is

vR = −V e−t/RC (22-21)

where t represents time from 1 to 2 ms. So when t = 1.1 ms from origin,

vR = −3.68 V

When t = 1.2 ms, vR = −1.35 V

When t = 1.3 ms, vR = −0.5 V

When t = 1.5 ms, vR = 0 V

The symmetry of the output curve is shown in the plot (Fig. 22-16). Because the circuit has changed
the waveform of input pulses to peaks, it is called an RC peaker. It is called also a differentiating
circuit because vR can change instantaneously. We obtain a peak output when the circuit time constant
is small compared with the half-period of the input waveform. In this case T = 0.1 ms compared
with the half-period of 1 ms, so the ratio of the time constant to the half-period is 1 to 10.

In summary, to explain a short RC time circuit, a 10-V input is applied for 1 ms (10 time
constants of the RC circuit), allowing C to become completely charged and vR to be 0 V (Figs. 22-15
and 22-16). After C is charged, vC remains at 10 V with vR at 0 V (V = vC + vR). After 1 ms,
the total voltage V drops to zero, C discharges completely in five time constants, and vC and
vR remain at 0 V while there is no applied voltage. On the next cycle, C charges and discharges
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Fig. 22-16 Charge and discharge of an RC circuit with a short time constant

completely again. The interval between pulses when the input voltage is 0 V acts as a “short” to the
RC circuit.

22.10 For the circuit shown (Fig. 22-17), (a) find the time constant. (b) If at time t = 0, the voltage across
the capacitor C1 is v1 = 10 V and the voltage across the capacitor C2 is v2 = 20 V with the polarity
shown, find the current when t = 0.26 s.

Fig. 22-17 RC circuit during discharge

(a) First, find the total capacitance for two capacitors in series with a single discharge path.

CT = C1C2

C1 + C2
= 2(4)

2 + 4
= 1.33 µF

The time constant is

T = RCT = (
100 × 103)(1.33 × 10−6) = 0.133 s Ans.

(b) The net voltage V is v2 − v1 = 20 − 10 = 10 V so C1 is being charged in the direction of i as
shown.

i = V

R
e−t/RC (Here V is the net voltage at t = 0)

= 10

100 × 103
e−0.26/0.133 = 10−4e−1.95 = (0.1 × 10−3)(0.142) = 0.0142 mA Ans.
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Supplementary Problems

22.11 Find the value of e−Rt/L for the following values of R, L, and t .

R, � L, H t , s

(a) 10 10 1
(b) 5 10 1
(c) 5 10 2
(d) 10 5 1
(e) 10 5 2

Ans. (a) 0.368; (b) 0.607; (c) 0.368; (d) 0.135; (e) 0.018

22.12 Calculate the time constants of the following inductive circuits:

L R

(a) 20 H 400 �

(b) 20 µH 500 k�

(c) 50 mH 50 �

(d) 40 µH 5 �

(e) 20 mH 100 �

Ans. (a) 50 ms; (b) 40 µs; (c) 1 ms; (d) 8 µs; (e) 0.2 ms

22.13 In the circuit shown (Fig. 22-18) find (a) the current 1 s after the switch is closed, (b) the time
constant, and (c) the steady-state or final value of the current.
Ans. (a) i = 1.11 A; (b) T = 4 s; (c) I = 5 A

Fig. 22-18 RL circuit

22.14 The circuit (Fig. 22-18) is closed for 20 s. Then the switch is opened so that current decays through
L and R. Calculate i, vR , and vL after 2 s.
Ans. i = 3.03 A; vR = 15.2 V; vL = −15.2 V

22.15 A current of 20 A is flowing in an RL series circuit the instant before the switch is opened. If R = 10 �

and L = 10 H, find the current after 3 s has elapsed. Also find vR and vL at that time.
Ans. i = 0.996 A; vR = 9.96 V; vL = −9.96 V
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22.16 A 5-� resistor and a 10-H inductor are connected in series across a 60-V dc line. Find the time
constant, steady-state current, and time to reach the steady-state current value.
Ans. T = 2 s; I = 12 A; 5T = 10 s

22.17 A series circuit has the following values: V = 80 V, R = 20 �, and L = 10 H. (a) What is the time
constant? (b) What is the current 1 s after the circuit is closed? (c) What are vR and vL at that time?
(d) How long after the circuit is closed will the current reach a constant value?
Ans. (a) T = 0.5 s; (b) i = 3.46 A; (c) vR = 69.2 V; vL = 10.8 V; (d) t = 2.5 s

22.18 A circuit contains three inductances in series with a resistance across a 120-V source. If each inductor
is 8 H and the resistor is 12 �, find (a) the time constant. Find the value of the current (b) 1 s,
(c) 2 s, and (d) 3 s after the circuit is closed.
Ans. (a) T = 2 s; (b) i = 3.94 A; (c) i = 6.32 A; (d) i = 7.77 A

22.19 A circuit (Fig. 22.19) contains two inductances in parallel, a series inductance, and a series resistance
across a 110-V source. Find the time constant and the current 0.45 s after the circuit is closed.
Ans. T = 0.895 s (LT = 13.43 H); i = 2.90 A

Fig. 22-19 Combination RL circuit

22.20 An RL series circuit is shown (Fig. 22-20a).

Fig. 22-20a RL circuit

(a) Plot the rise of current after the switch is closed when time is equal to 0.5, 1, 2, and 3 s.

(b) After the current reaches its final value, the switch is opened. Plot the decay of current when
time is equal to 0.5, 1, 2, and 3 s after the switch is closed.

(c) Plot the voltages across the resistance and inductance when the switch is closed and opened for
the same time values at 0.5, 1, 2, and 3 s. Ans. See Fig. 22-20b, parts 1, 2, 3, and 4.
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Fig. 22-20b

22.21 Find the value of e−t/RC for the following values of R, C, and t .

R C t

(a) 1 M� 1 µF 1 s

(b) 1 M� 0.5 µF 1 s

(c) 100 k� 1 µF 0.1 s

(d) 100 k� 10 µF 0.5 s

(e) 10 k� 2 µF 10 ms

Ans. (a) 0.368; (b) 0.135; (c) 0.368; (d) 0.607; (e) 0.607
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22.22 Calculate the time constants of the following capacitive circuits:

R C

(a) 1 M� 0.001 µF

(b) 1 M� 1 µF

(c) 250 k� 0.05 µF

(d) 110 k� 100 pF

(e) 5 k� 300 pF

Ans. (a) 1 ms; (b) 1 ms; (c) 12.5 ms; (d) 1 µs; (e) 1.5 µs

22.23 In the circuit shown (Fig. 22-21), what are (a) the current 1 s after the circuit is closed, and (b) vR

and vC at that instant of time? Ans. (a) i = 36 mA; (b) vR = 72.8 V; (c) vC = 47.2 V

Fig. 22-21 RC circuit

22.24 After the circuit (Fig. 22-21) has reached its steady-state condition where the capacitor has been
charged to 120 V, the switch is opened. Find (a) the time required for the circuit to have reached
steady state, (b) the current 1.5 s after the circuit is opened, and (c) vR and vC at that time.
Ans. (a) t = 10 s; (b) i = −28 mA; (c) vR = −56.7 V; vC = 56.7 V

22.25 In a series RC circuit with the capacitor charging, fill in the missing values. Time t is measured at
the instant the switch is closed.

V , V R C, µF T t I i vR vC

(a) 115 100 k� 1 ? 0.1 s ? ? ? ?

(b) 220 1 k� ? 1 ms 2 ms ? ? ? ?

(c) 110 ? 10 10 s 5 s ? ? ? ?

(d) 115 10 k� 100 ? 6 s ? ? ? ?

Ans.

V , V R C, µF T t I i vR , V vC , V

(a) . . . . . . . . . . . . 0.1 s . . . . 1.15 mA 0.42 mA 42.3 72.7

(b) . . . . . . . . 1 . . . . . . . . 0.22 A 29.8 mA 29.8 190.2

(c) . . . . 1 M� . . . . . . . . . . . . 0.11 mA 0.067 mA 66.8 43.2

(d) . . . . . . . . . . . . 1 s . . . . 11.5 mA 0 A 0 115
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22.26 In a series RC circuit with the capacitor discharging, fill in the same missing values as in the table
accompanying Problem 22.25. Time t is measured at the instant the switch is opened. The circuit
constants of V , R, and C are the same as those in Problem 22.25.

Ans.

V , V R C, µF T t I i vR , V vC , V

(a) . . . . . . . . . . . . 0.1 s . . . . −1.15 mA − 0.42 mA −42.3 42.3

(b) . . . . . . . . 1 . . . . . . . . −0.22 A −29.8 mA −29.8 29.8

(c) . . . . 1 M� . . . . . . . . . . . . −0.11 mA − 0.067 mA −66.8 66.8

(d) . . . . . . . . . . . . 1 s . . . . −11.5 mA 0 A 0 0

22.27 Find the time constant of the circuits shown (Fig. 22-22).

Ans. (a) T = 1 s

(b) T = 8.33 µs (RT = 8.33 �)

(c) T = 0.2 ms (CT = 0.2 µF)

(d) T = 90 µs (CT = 0.09 µF)

Fig. 22-22 RC circuit configurations

22.28 The RC circuit (Fig. 22-23a) has its switch closed at time t = 0. Plot curves for i, vR , and vC for
t = 0, 2, 6, 10, and 14 ms during the charting cycle. Ans. See Fig. 22-23b.
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Fig. 22-23a, b

22.29 After the circuit (Fig. 22-23a) has reached steady-state values, the switch is opened. Plot curves for
i, vR , and vC for t = 0, 2, 6, 10, and 14 ms during this discharging cycle. Ans. See Fig. 22-23c.

22.30 The dc source of 6 V in the circuit (Fig. 22-23a) is replaced by a single pulse of 6 V amplitude lasting
2 ms (Fig. 22-24a). Plot the voltage across the 10-k� resistance for t = 0, 2, 4, 6, 10, and 14 ms after
the switch is closed. (Round off answers to two significant figures.) Ans. See Fig. 22-24b.

22.31 The source voltage for the circuit (Fig. 22-24a) is now replaced by a train of repetitive pulses
(Fig. 22-25a). Each pulse has a 6-V amplitude and a pulse width of 2 ms. The period of the pulse
train is 4 ms. Draw the plot of vR for t = 0, 2, 4, 6, 8, 10, 12, and 14 ms. (Round off answers to two
significant figures.) Ans. See Fig. 22-25b.
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Fig. 22-23c i, vR, vC curves during discharging cycle

Fig. 22-24

22.32 For the circuit shown (Fig. 22-26), find (a) the time constant, and (b) the current at t = 10 ms when
the voltage across C1 is 15 V and the voltage across C2 is 25 V, with the polarity as indicated at t = 0.
Ans. (a) T = 5 ms; (b) i = 0.541 mA

22.33 If the polarity of capacitor C2 is reversed (Fig. 22-26), find the current at t = 10 ms.
Ans. i = −0.135 mA
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Fig. 22-25

Fig. 22-26 RC discharging circuit

22.34 A 0.05-µF capacitor is charged to 264 V. It discharges through a 40-k� resistor. How much time is
required for vC to discharge down to 66 V? Ans. t = 2.77 ms

22.35 A 100-V source is in series with a 2-M� resistor and a 2-µF capacitor. How much time is required
for vC to charge to 63.2 V? Ans. t = 4 s (1T )
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Capacitance, 306–307

Capacitive circuits, 311–316

parallel, 315

series, 311

Capacitive reactance, 310

Capacitor motor, 374

Capacitor-start motor, 374

Capacitors, 305

parallel, 309

series, 308

types, 308

working voltage, 309

Capacity, battery, 104

Carbon–zinc cell, 100–101, 105

Cell:

alkaline, 102, 105

carbon–zinc, 100–101, 105

dry, 105

Edison, 102, 105

internal resistance, 103

lead–acid, 99–100, 105

manganese–alkaline, 102, 105

mercury, 102, 105

nickel–cadmium, 102, 105

parallel, 98

primary, 99

recharging, 99

secondary, 99

series, 98

solar, 8

types, 105

voltaic chemical, 7, 97–98

wet, 98, 105

Charge, 3, 4

law of charges, 3

Choke coil, 295p

Choke coil filter, 346p, 356p

Circle, Ohm’s law, 42–43

Circuit:

ac, 261

capacitive, 311–316

dc, 39

inductive, 281–287

magnetic, 213–214

open, 39, 80–81

resonant, 499

short, 39, 80–81

three-phrase, 474

Circular mils (CM), 57–58

Coercive force, 213

Cofactor, 129

Coils, 208–209

characteristics, 276

inductance, 275

quality, 287

Commutator, 230

Commutator motor, 373

Complex conjugate, 417

Complex impedance, 392–394

series RC, 393–394

series RL, 392–393

series RLC, 394

triangle, 392

Complex numbers, 385–392

ac circuit, 409–425

addition, 389

conjugate, 391, 401–402p

definition, 385

division, 391

multiplication, 390–391

operator j, 385–387

polar form, 387–388

rectangular form, 387–388

subtraction, 390

Complex power, 416–421

apparent, 416

formulas, 416, 417

maximum, 436p

power factor, 417

power factor correction, 420

reactive, 416–417

real, 416

summary table, 419

total, 416, 442p

triangle, 416–418

Compound, 1

Compound dc generator, 232

Conductance, 83

Conductor, 56–57

Conductor properties, 59

Conjugate complex number, 391,
401–402p

Conventional current flow
direction, 6–7

Conversion, ac:

� to Y, 424–425

polar/rectangular, 387–389

Y to �, 424–425

Conversion dc:

� to Y, 153

source, 161

Y to �, 154

Copper loss, 235, 364, 460–461

Copper wire table, 58

Core loss, magnetic, 277, 460–461

Coulomb (C), 4, 307

Coupling capcitor, 321p

Cramer’s Rule, 130–132

three simultaneous equations, 131–132

two simultaneous equations, 131
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Cumulative-compound dc
generator, 232

Current, 5–6
conventional flow direction, 6–7
electron flow direction, 6–7
exciting, 462
full-load, 462
mesh, 114–115
no-load, 462
RC series, 311, 531
RL series, 282, 525
source, 161
three-phase, 476–477

Current division rule, 82
complex numbers, 428–429p

Current-phasor triangle, 286, 315,
336–337

Cycle, 252–253

DC (direct current), 8–9
DC circuits:

parallel, 75–80
series, 52–55
series–parallel, 164

DC generator, 229–234 (See also
Generator, dc)

DC motors, 229–230, 237–241 (See also
Motors, dc)

Delta (�) connection, 153, 474
� to Y conversion:

ac, 424–425
dc, 153

Determinant:
ac circuit, 421
coefficient, 131
cofactor, 129
Cramer’s Rule, 130–132
definition, 128
� to Y conversion, ac, 424–425
fourth order, 147p–148p

impedance, 422
minor array, 129
nth order, 147p

resistance, 421
second order, 128
third order, 129
three-mesh, 421–422, 441p

three-mesh currents, 136–137
two-mesh, 421–422
two-mesh currents, 135–136

Diagram:
block, 30–31
one-line, 30–31
pictorial, 28
schematic, 27–28, 30
wiring, 32–33

Diamagnetic materials, 207
Dielectric, 305
Dielectric constant, 307
Differentiating circuit (see Peaker

circuit)
Direction of current, 6–7
Division of current, 82
Dot convention, 279, 463–464
Dry cell, 98, 105
Duplex lap winding, 231

Earth’s magnetic field, 219p
Eddy-current, 235, 277, 375, 462
Edison cell, 102, 105
Edison system, 170–171
Effective value, 259–260
Efficiency:

ac generator, 48p, 364
dc generator, 235
synchronous motor, 369
transformer, 458, 461

Electric charge, 3–4
Electric circuit, 39
Electric energy, 45
Electrical degrees, 253
Electrical plan, 32
Electrical symbols, 29
Electrodes, 97–98
Electrolyte, 97–98
Electromagnetic applications, 209–210
Electromagnetic induction, 215–216
Electromagnetism, 207
Electromotive force (emf), 5
Electron, 1

flow, 5–7
free, 6–7
shells, 2–3

Electrostatic field, 4–5
Elements, 1
Energy:

electric, 45
levels, atom, 1–2
thermal, 7

Equivalent circuit:
dc generator, 233
dc motor, 237–238
Norton’s, 161
Thevenin’s, 159

Equivalent sources, 161
Exponential form (e−x), 526

Farad (F), 16, 306
Faraday’s law, 216
Ferrites, 206
Ferromagnetic materials, 206
Field intensity, 211, 218
Field winding, 231
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Filter:
choke coil, 346p

high-pass, 292p, 295p

low-pass, 325p

Flux:
density, 206, 218
magnetic, 205, 218
mutual, 276

Force:
coercive, 213
electromotive, 5
magnetomotive, 210

Four wire system, 486p, 487p,
491–492p

Frequency, 255, 363
resonant, 499, 505

Fuse, 39

Gauge number (wire size), 58
Generator, 7
Generator, ac, 361–363

alternator, 361
efficiency, 364
frequency, 363
generated voltage, 361–362
losses, 364
parallel operation, 364
ratings, 364
three-phase, 474
voltage regulation, 363

Generator, dc, 229–234
components, 229–230
compound, 232
cumulative-compound, 232
efficiency, 235
equivalent circuit, 233
generated voltage, 234
long-shunt compound, 232–233
losses, 235
self-excited, 232
separated excited, 232
series, 232–233
short-shunt compound, 232–233
shunt, 232–233
voltage regulation, 234

Geometric degrees, 252–253
Ground, 35p, 39

Half-power points, 508
Henry (H), 16, 275
Hertz (Hz), 16, 255
High-pass filter, 292p, 295p

Horsepower, 44–45, 238
Hydrometer, 104
Hysteresis, 213, 235, 277, 461

Ideal transformer, 455
Impedance:

coil, 287–288, 294p

parallel LC circuit, 505–506
parallel RC circuit, 287
parallel RL circuit, 287
parallel RLC circuit, 336
resonant circuit, 500, 505
series RC circuit, 313
series RL circuit, 283
series RLC circuit, 334

Impedance, complex numbers:
ac circuit, 410–412
determinant, 422
parallel, 412
series, 410

Impedance ratio, 459
Induced voltage, 216
Inductance, 275

coil, 276
mutual, 279
self, 275
total, 279

Induction, electromagnetic, 215
Induction motor, 363
Inductive circuits, 281–287

parallel, 286–287
series, 282–286

Inductive reactance, 277
Inductors:

parallel, 279
polarity, 279
series, 279
series-aiding, 279
series-opposing, 279

Inert atom, 3
Instantaneous power, 340
Instantaneous value, 254
Internal resistance, 103, 287–288
International System of Units (SI) 15–16
Ionization, 3
Ions, 3, 97

Joule (J), 16, 45

Kilo- (metric prefix), 15, 16, 19
Kilowatt hour, 45
Kirchhoff’s laws:

current law (KCL), 112–113
voltage law (KVL), 110–111

Lagging phase angle, 257
Lagging power factor, 341, 417
Law:

charges, 3–4
Faraday’s, 216
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Law (continued)
Lenz’s, 217
Ohm’s, 42, 214

LC circuit, 501, 503–504
Lead–acid cell, 99–100
Leading phase angle, 257
Leading power factor, 341, 417
Left-hand rule (motor), 236
Lenz’s law, 217
Line current, 473–474
Line drop, 168
Line power loss, 169
Line voltage, 473–474
Linear circuit, 157
Linear equation, 130–131
Load:

balanced, 477–479
�-connected, 474
unbalanced, 482–483
Y-connected, 474

Lodestones, 205
Long-shunt compound dc

generator, 232–233
Loop, 114
Loop analysis, 114–115
Loop current, 114–115
Losses:

ac generator, 364
dc generator, motor, 235
transformer, 460–461

Low-pass filter, 325p

Magnetic circuit, 213–214
Magnetic field, 205, 208–209
Magnetic flux, 205, 218
Magnetic flux density, 206, 218
Magnetic materials, 206

diamagnetic, 207
ferrites, 206
ferromagnetic, 206
paramagnetic, 207

Magnetic poles, 205
Magnetic units, 210, 218
Magnetite, 205
Magnetization curve, 212
Magnetohydrodynamic (MHD) conversion, 7
Magnetomotive force (mmf), 210, 214, 218
Magnets:

artificial, 205
natural, 205
permanent, 206
temporary, 206

Manganese–alkaline cell, 102, 105
Matter, 1
Maximum (peak) value, 259–260
Maximum power, complex, 426p, 436p

Maximum power transfer theorem, 167
Mega- (metric prefix), 16
Mercury cell, 102, 105
Mesh current, 114–115

three-mesh network, 136–137
two-mesh network, 135–136

Metric prefixes, 15–16, 19
Micro- (metric prefix), 16, 19
Milli- (metric prefix), 16, 19
Mils, 57

circular, 57–58
Minor array, 129
Molecule, 1
Motors, 229
Motors, ac, 365–367

polyphase induction, 363
rotor frequency, 366
slip, 367
squirrel-cage, 365
synchronous speed, 366
torque, 367

single-phase, 372–375
ac series, 373
capacitor, 374
capacitor-start, 374
commutator, 373
induction, 373
repulsion, 373
shaded-pole, 375
split-phase, 373
synchronous, 375

synchronous, 368–370
efficiency, 369
field excitation, 370–371
loading, 369
power factor correction, 369
ratings, 369
single-phase, 372–375
synchronous speed, 366
torque, 367

Motors, dc, 229–230, 236–241
components, 229–230
compound, 240
equivalent circuit, 237–238
series, 240
shunt, 239–240
speed regulation, 239
starting resistance, 241
torque, 236

Mutual inductance, 279

Nano- (metric prefix), 16
Negative charge, 1
Network (see Circuit)
Network theorem (see Theorem)
Neutral atom, 1
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Neutral wire, 170
Neutron, 1
Nickel–cadmium cell, 102, 105
Nodal analysis, 116–117
Node, 116

principal, 116
reference, 116

Node voltage, 116–117
No-load voltage, 103
Nonsinusoidal waveform, 266p

Norton’s theorem, 161–162
Nucleus, 1

Ohm (�), 16, 40
Ohm’s law:

electric circuit, 42
magnetic circuit, 214

One-line diagram, 30–31
Open circuit, 39, 80–81
Open-circuit test, transformer, 461, 468p

Open-circuit voltage, 103, 160
Operations with complex numbers:

addition, 389
division, 391
multiplication, 390–391
operator j, 385–387
subtraction, 390

Parallel ac circuits:
complex, 411–413
LC, 286–287
resistances, 267p, 268p

RC, 315
RL, 286–287
RLC, 338–340

Parallel dc circuits, 75–85
conductance, 83
distribution of current, 75
division of current, 82
equal resistors, 79
power, 84
total current, 75
total resistance, 77–80
voltage, 75

Parallel operation (generators), 364
Parallel resonance, 503–507
Paramagnetic material, 207
Peak (maximum) value, 259–260
Peaker (RC ) circuit, 542–544p

Peak-to-peak value, 259–260
Period, 255
Permeability, 206, 212, 218
Phase angle, 256, 409, 415

capacitive circuit, 312–313, 315–316, 333, 336
inductive circuit, 283–285, 332, 335
lagging, 257

Phase angle (continued)
leading, 257
resistive circuit, 261

Phase current, 475
Phase splitting, 373
Phase voltage, 475
Phasor, 256–257, 409

polar form, 387–388
rectangular form, 387–388

Phasor diagram, 257–259
current triangle, 286, 315,

336, 343
voltage triangle, 283, 313,

332–333
Photoelectric effect, 8

 to T conversion, 153
Pico- (metric prefix), 16
Piezoelectric effect, 8
Polarity:

battery, 97
coil, 208, 463–464
induced voltage, 217
inductors, 279–280
single conductor, 207
transformer, 463–464
voltage drop, 55–56

Poles, magnetic, 205
Polyphase induction motor

(see Motors, ac)
Positive charge, 1
Potential difference, 5
Potentiometer, 41
Power:

apparent, 289, 317, 341, 478
half, 508
instantaneous, 340
maximum transfer of, 167
reactive, 289, 317, 341, 478
real, 288, 316, 341, 478
resistor, 43–44
three-phase, 478–479
total ac, 416, 442p

total dc, 60–61, 84
Power factor (PF), 289, 341, 370–371, 417

lagging, 341, 417
leading, 341, 417

Power factor correction, 343, 370–371
complex, 420
synchronous motor, 369–370

Power transformer, 464p

Power triangle, 289, 416, 418, 478
Powers of ten, 16–19
Primary cell, 99
Primary winding, transformer, 455
Principal node, 116
Proton, 1
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Q of coil, 287, 297p

measurement, 515p

Q of parallel circuit, 506
Q of resonant circuit, 508
Q of series circuit, 503

Radian, 15, 253
RC circuit:

parallel, 315
peaker, 542–544p

series, 311, 530–532
time constant, 534

Reactance:
capacitive, 310
inductive, 277

Reactive power, 289, 317, 341, 478
Reactive power, complex, 416–417
Real power, 288, 316, 341, 478
Real power, complex, 416
Reference node, 116
Reference phasor, 257
Relative permeability, 206, 212, 218
Relay circuit, 209–210
Reluctance, 213–214
Repulsion motor, 373
Resistance, 40, 261

copper wire, 58–59
determinant, 421
internal, 103
parallel, 77–80
series, 52–53
specific, 58–59
temperature coefficient, 59–60
Thevenin, 159

Resistivity, 58–59
Resistor, 40

carbon-composition, 40
fixed, 40
power rating, 41
tolerance, 40
variable, 41
wire-wound, 40

Resonance:
parallel, 503–507
series, 499–502

Resonant frequency, 499, 505
Retentivity, 213
Rheostat, 41
Right-hand rule, 208–209
RL circuit:

high-voltage, 538p

parallel, 286–287
series, 282–286, 524–526
time constant, 528

RLC circuit:
parallel, 335–338

RLC circuit (continued)
parallel branches, RL and RC, 338–340
resonant, 499, 501–502
series, 332–334

rms (root-mean-square) value, 258–259
Rotor, 229, 361, 365–366, 369
Rounding-off numbers, 20–21
Rule:

current division, 82, 428–429p

equal resistors in parallel, 79
left-hand, 236
Ohm’s law circle, 42
powers of ten, 16–19
right-hand, 207–208
voltage division, 61

Sawtooth waveform, 540–541p

Schematic diagram, 27–28, 30
Scientific notation, 20, 21
Secondary winding, transformer, 455
Self-excited dc generator, 232
Self-inductance, 275
Separated excited dc generator, 232
Series ac circuits:

complex, 409–411
C only, 311–312
L only, 281–282
R only, 261
RC, 311
RL, 282–286
RLC, 332–334

Series dc circuits, 52–55
Series dc generator, 232–233
Series dc motor, 240
Series–parallel circuit, ac complex,

414–415
Series–parallel dc circuits, 164
Series RC complex impedance, 393–394
Series resonance, 499–502
Series RL complex impedance, 392–393
Series RLC complex impedance, 394
Shaded-pole motor, 375
Shelf life, battery, 105
Short circuit, 39, 80–81
Short-circuit test, transformer, 461, 467p

Short-shunt compound dc generator,
232–233

Shunt dc generator, 232–233
Shunt dc motor, 239–240
SI (International System of Units), 15–16
Siemens (S), 16, 83
Significant digit, 20–21
Simplex lap winding, 231
Sine-wave, 254
Single-line diagram, 30–31
Single-phase motors, 372–375
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Sinusoid, 256
average value, 259–260
effective (rms) value, 259–260
peak (maximum) value, 259–260
peak-to-peak value, 259–260
table for conversions, 260

Slip, 366
Slip rings, 361
Solar cell, 8–9
Solenoid, 211
Sources, 7–9

ac, 9, 252
current, 161
dc, 8
equivalent current and voltage, 161
Norton, 161
Thevenin, 159
voltage, 8–9

Specific gravity, cell, 104
Specific resistance, 58–59
Speed–load characteristic:

compound motor, 241
induction motor, 366
series motor, 241
shunt motor, 241

Speed regulation, dc motor, 239
Speed, synchronous, 366
Split-phase motor, 373
Squirrel-cage motor, 365
Starting resistor, dc motor, 241
Stator, 361, 365, 369
Step-down transformer, 456
Step-up transformer, 456
Storage battery, 99–100
Summary complex number table:

ac circuit, 415
complex power, 419

Superposition theorem, 157–158
Switch, 33, 34–35p

Symbols, electrical, 29
Synchronizing ac generators, 364
Synchronous motors (see Motors, ac,

synchronous)

T to 
 conversion, 154
Temperature coefficient of resistance, 59–60
Tesla (T), 16, 206, 218
Theorem:

maximum power transfer, 167
Norton’s, 161–162
superposition, 157–158
Thevenin’s, 159–160

Thermal energy, 7
Thermionic emission, 8
Thermocouple, 8
Thevenin’s theorem, 159–160

Three-phase systems, 474–483
balanced load, 477–479
�-connected, 474
power, 478–479
summary table, 476
transformer connections, 475
unbalanced load, 482–483, 491–493p

Y-connected, 474
Three-wire distribution system, 170
Time constant, 528

RC circuit, 534
RL circuit, 528

Time diagram:
C only, 312
L only, 282
power, 340
R only, 261
RC peaker, 544
RC series, 314, 531
RL parallel, 258
RL series, 284, 524–525
sawtooth, 541

Time, exponential voltage decay or rise, 525, 531
Tolerance, resistance, 40–41
Torque:

dc motor, 236–237
induction motor, 367
synchronous motor, 367

Torque–load characteristic:
compound motor, 241
series motor, 241
shunt motor, 241

Total power, complex, 416, 422p

Transformers, 455–464
autotransformer, 460
basic construction, 455
current ratio, 457
efficiency, 458, 461
ideal, 455
impedance ratio, 459
losses, 460–461
no-load condition, 462
polarity, 463–464
power type, 464p

primary winding, 455
ratings, 458
secondary winding, 455
step-down, 456
step-up, 456
three-phase connections, 475
three-phase voltage, current table, 476
turns ratio, 455
voltage ratio, 455

Transistor:
radio receiver, 30–31

symbol, 29–30
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Triplex lap winding, 231

Tuned circuit, 499, 508

Turns ratio, 455

Two-terminal network, 409

Unbalanced three-phase load, 482–483,
491–493p

Unbalanced three-wire system, Edison,
170–171

Units, SI, 15–16

Unstable atom, 2

VA (voltamperes), 289

Valence electrons, 1

VAR (voltamperes reactive), 289

Vector, 257

Volt (V), 5

Voltage, 5

induced, 216

node, 116

open circuit, 103, 160

polarity, 110–111

RC series circuit, 311–312, 531

RL series circuit, 287, 525

three-phase, 475–476

(See also AC voltage)

Voltage-divider circuit, 177p

Voltage division rule, 61

Voltage drop, 53–55

Voltage-phasor triangle, 283, 313,
332–333

Voltage ratio, 455
Voltage regulation:

ac generator, 363
dc generator, 234

Voltaic chemical cell, 7, 97–98

Watt (W), 16, 43
Wattage rating, 41
Wave winding, 231
Waveforms:

RC peaker circuit, 542–544p
RC series circuit, 530–532
RL series circuit, 524–526
sawtooth, 540–541p

Wavelength, 256
Weber (Wb), 16, 206, 218
Wet cell, 98, 105
Wheatstone bridge:

ac, 426
dc, 166–167, 180p

Winding, transformer:
primary, 455
secondary, 455

Wire Gauge, American (AWG), 58
Wire measurement, 57–58
Wire resistance, 58–59
Wiring diagram, 32
Work, 5

Y (Wye) connection, 153, 474
Y to � conversion:

ac, 424–425
dc, 154




